Properties

Label 783.2.a.i.1.5
Level $783$
Weight $2$
Character 783.1
Self dual yes
Analytic conductor $6.252$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(1,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 13x^{6} + 11x^{5} + 49x^{4} - 37x^{3} - 43x^{2} + 35x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.0985138\) of defining polynomial
Character \(\chi\) \(=\) 783.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0985138 q^{2} -1.99030 q^{4} -4.03464 q^{5} -4.56635 q^{7} +0.393099 q^{8} +0.397468 q^{10} +0.732700 q^{11} +2.33523 q^{13} +0.449848 q^{14} +3.94186 q^{16} -5.93885 q^{17} +5.44014 q^{19} +8.03012 q^{20} -0.0721810 q^{22} -1.94595 q^{23} +11.2783 q^{25} -0.230053 q^{26} +9.08837 q^{28} +1.00000 q^{29} -5.73786 q^{31} -1.17453 q^{32} +0.585059 q^{34} +18.4236 q^{35} +2.29226 q^{37} -0.535929 q^{38} -1.58601 q^{40} -8.10257 q^{41} +6.23167 q^{43} -1.45829 q^{44} +0.191703 q^{46} +6.42814 q^{47} +13.8515 q^{49} -1.11107 q^{50} -4.64780 q^{52} +7.93489 q^{53} -2.95618 q^{55} -1.79503 q^{56} -0.0985138 q^{58} -12.5382 q^{59} -12.5422 q^{61} +0.565258 q^{62} -7.76802 q^{64} -9.42182 q^{65} +6.87092 q^{67} +11.8201 q^{68} -1.81497 q^{70} -3.01388 q^{71} +4.76256 q^{73} -0.225819 q^{74} -10.8275 q^{76} -3.34576 q^{77} -0.854385 q^{79} -15.9040 q^{80} +0.798215 q^{82} -6.55761 q^{83} +23.9611 q^{85} -0.613905 q^{86} +0.288024 q^{88} +1.41902 q^{89} -10.6635 q^{91} +3.87302 q^{92} -0.633261 q^{94} -21.9490 q^{95} +14.7352 q^{97} -1.36456 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 11 q^{4} + 2 q^{5} + 5 q^{7} - 3 q^{8} + 7 q^{10} + 2 q^{11} + 11 q^{13} - 8 q^{14} + 21 q^{16} - 6 q^{17} + 5 q^{19} + 27 q^{20} + 17 q^{22} + 4 q^{23} + 30 q^{25} - 16 q^{26} + 2 q^{28}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0985138 −0.0696598 −0.0348299 0.999393i \(-0.511089\pi\)
−0.0348299 + 0.999393i \(0.511089\pi\)
\(3\) 0 0
\(4\) −1.99030 −0.995148
\(5\) −4.03464 −1.80435 −0.902173 0.431375i \(-0.858028\pi\)
−0.902173 + 0.431375i \(0.858028\pi\)
\(6\) 0 0
\(7\) −4.56635 −1.72592 −0.862958 0.505275i \(-0.831391\pi\)
−0.862958 + 0.505275i \(0.831391\pi\)
\(8\) 0.393099 0.138982
\(9\) 0 0
\(10\) 0.397468 0.125690
\(11\) 0.732700 0.220917 0.110459 0.993881i \(-0.464768\pi\)
0.110459 + 0.993881i \(0.464768\pi\)
\(12\) 0 0
\(13\) 2.33523 0.647677 0.323838 0.946112i \(-0.395027\pi\)
0.323838 + 0.946112i \(0.395027\pi\)
\(14\) 0.449848 0.120227
\(15\) 0 0
\(16\) 3.94186 0.985466
\(17\) −5.93885 −1.44038 −0.720192 0.693775i \(-0.755946\pi\)
−0.720192 + 0.693775i \(0.755946\pi\)
\(18\) 0 0
\(19\) 5.44014 1.24805 0.624027 0.781403i \(-0.285495\pi\)
0.624027 + 0.781403i \(0.285495\pi\)
\(20\) 8.03012 1.79559
\(21\) 0 0
\(22\) −0.0721810 −0.0153890
\(23\) −1.94595 −0.405759 −0.202879 0.979204i \(-0.565030\pi\)
−0.202879 + 0.979204i \(0.565030\pi\)
\(24\) 0 0
\(25\) 11.2783 2.25566
\(26\) −0.230053 −0.0451170
\(27\) 0 0
\(28\) 9.08837 1.71754
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −5.73786 −1.03055 −0.515275 0.857025i \(-0.672310\pi\)
−0.515275 + 0.857025i \(0.672310\pi\)
\(32\) −1.17453 −0.207629
\(33\) 0 0
\(34\) 0.585059 0.100337
\(35\) 18.4236 3.11415
\(36\) 0 0
\(37\) 2.29226 0.376845 0.188423 0.982088i \(-0.439662\pi\)
0.188423 + 0.982088i \(0.439662\pi\)
\(38\) −0.535929 −0.0869392
\(39\) 0 0
\(40\) −1.58601 −0.250771
\(41\) −8.10257 −1.26541 −0.632704 0.774393i \(-0.718055\pi\)
−0.632704 + 0.774393i \(0.718055\pi\)
\(42\) 0 0
\(43\) 6.23167 0.950320 0.475160 0.879899i \(-0.342390\pi\)
0.475160 + 0.879899i \(0.342390\pi\)
\(44\) −1.45829 −0.219845
\(45\) 0 0
\(46\) 0.191703 0.0282651
\(47\) 6.42814 0.937641 0.468820 0.883294i \(-0.344679\pi\)
0.468820 + 0.883294i \(0.344679\pi\)
\(48\) 0 0
\(49\) 13.8515 1.97879
\(50\) −1.11107 −0.157129
\(51\) 0 0
\(52\) −4.64780 −0.644534
\(53\) 7.93489 1.08994 0.544970 0.838455i \(-0.316541\pi\)
0.544970 + 0.838455i \(0.316541\pi\)
\(54\) 0 0
\(55\) −2.95618 −0.398611
\(56\) −1.79503 −0.239871
\(57\) 0 0
\(58\) −0.0985138 −0.0129355
\(59\) −12.5382 −1.63233 −0.816167 0.577816i \(-0.803905\pi\)
−0.816167 + 0.577816i \(0.803905\pi\)
\(60\) 0 0
\(61\) −12.5422 −1.60586 −0.802931 0.596073i \(-0.796727\pi\)
−0.802931 + 0.596073i \(0.796727\pi\)
\(62\) 0.565258 0.0717879
\(63\) 0 0
\(64\) −7.76802 −0.971003
\(65\) −9.42182 −1.16863
\(66\) 0 0
\(67\) 6.87092 0.839416 0.419708 0.907659i \(-0.362132\pi\)
0.419708 + 0.907659i \(0.362132\pi\)
\(68\) 11.8201 1.43339
\(69\) 0 0
\(70\) −1.81497 −0.216931
\(71\) −3.01388 −0.357682 −0.178841 0.983878i \(-0.557235\pi\)
−0.178841 + 0.983878i \(0.557235\pi\)
\(72\) 0 0
\(73\) 4.76256 0.557416 0.278708 0.960376i \(-0.410094\pi\)
0.278708 + 0.960376i \(0.410094\pi\)
\(74\) −0.225819 −0.0262510
\(75\) 0 0
\(76\) −10.8275 −1.24200
\(77\) −3.34576 −0.381285
\(78\) 0 0
\(79\) −0.854385 −0.0961258 −0.0480629 0.998844i \(-0.515305\pi\)
−0.0480629 + 0.998844i \(0.515305\pi\)
\(80\) −15.9040 −1.77812
\(81\) 0 0
\(82\) 0.798215 0.0881481
\(83\) −6.55761 −0.719791 −0.359895 0.932993i \(-0.617188\pi\)
−0.359895 + 0.932993i \(0.617188\pi\)
\(84\) 0 0
\(85\) 23.9611 2.59895
\(86\) −0.613905 −0.0661991
\(87\) 0 0
\(88\) 0.288024 0.0307034
\(89\) 1.41902 0.150415 0.0752077 0.997168i \(-0.476038\pi\)
0.0752077 + 0.997168i \(0.476038\pi\)
\(90\) 0 0
\(91\) −10.6635 −1.11784
\(92\) 3.87302 0.403790
\(93\) 0 0
\(94\) −0.633261 −0.0653158
\(95\) −21.9490 −2.25192
\(96\) 0 0
\(97\) 14.7352 1.49614 0.748068 0.663623i \(-0.230982\pi\)
0.748068 + 0.663623i \(0.230982\pi\)
\(98\) −1.36456 −0.137842
\(99\) 0 0
\(100\) −22.4472 −2.24472
\(101\) 6.16888 0.613826 0.306913 0.951738i \(-0.400704\pi\)
0.306913 + 0.951738i \(0.400704\pi\)
\(102\) 0 0
\(103\) −0.991263 −0.0976721 −0.0488360 0.998807i \(-0.515551\pi\)
−0.0488360 + 0.998807i \(0.515551\pi\)
\(104\) 0.917978 0.0900151
\(105\) 0 0
\(106\) −0.781696 −0.0759250
\(107\) 18.8298 1.82034 0.910171 0.414234i \(-0.135950\pi\)
0.910171 + 0.414234i \(0.135950\pi\)
\(108\) 0 0
\(109\) −1.57376 −0.150738 −0.0753692 0.997156i \(-0.524014\pi\)
−0.0753692 + 0.997156i \(0.524014\pi\)
\(110\) 0.291224 0.0277672
\(111\) 0 0
\(112\) −17.9999 −1.70083
\(113\) 18.5165 1.74188 0.870941 0.491388i \(-0.163510\pi\)
0.870941 + 0.491388i \(0.163510\pi\)
\(114\) 0 0
\(115\) 7.85121 0.732129
\(116\) −1.99030 −0.184794
\(117\) 0 0
\(118\) 1.23519 0.113708
\(119\) 27.1188 2.48598
\(120\) 0 0
\(121\) −10.4632 −0.951196
\(122\) 1.23558 0.111864
\(123\) 0 0
\(124\) 11.4200 1.02555
\(125\) −25.3307 −2.26565
\(126\) 0 0
\(127\) −4.86735 −0.431907 −0.215954 0.976404i \(-0.569286\pi\)
−0.215954 + 0.976404i \(0.569286\pi\)
\(128\) 3.11431 0.275269
\(129\) 0 0
\(130\) 0.928179 0.0814067
\(131\) 12.1065 1.05775 0.528875 0.848700i \(-0.322614\pi\)
0.528875 + 0.848700i \(0.322614\pi\)
\(132\) 0 0
\(133\) −24.8416 −2.15404
\(134\) −0.676880 −0.0584736
\(135\) 0 0
\(136\) −2.33456 −0.200187
\(137\) −8.28144 −0.707531 −0.353766 0.935334i \(-0.615099\pi\)
−0.353766 + 0.935334i \(0.615099\pi\)
\(138\) 0 0
\(139\) 15.6455 1.32704 0.663519 0.748160i \(-0.269062\pi\)
0.663519 + 0.748160i \(0.269062\pi\)
\(140\) −36.6683 −3.09904
\(141\) 0 0
\(142\) 0.296909 0.0249161
\(143\) 1.71102 0.143083
\(144\) 0 0
\(145\) −4.03464 −0.335058
\(146\) −0.469178 −0.0388295
\(147\) 0 0
\(148\) −4.56228 −0.375017
\(149\) 11.0933 0.908798 0.454399 0.890798i \(-0.349854\pi\)
0.454399 + 0.890798i \(0.349854\pi\)
\(150\) 0 0
\(151\) −21.6652 −1.76309 −0.881544 0.472103i \(-0.843495\pi\)
−0.881544 + 0.472103i \(0.843495\pi\)
\(152\) 2.13852 0.173457
\(153\) 0 0
\(154\) 0.329604 0.0265602
\(155\) 23.1502 1.85947
\(156\) 0 0
\(157\) 14.6471 1.16897 0.584483 0.811406i \(-0.301297\pi\)
0.584483 + 0.811406i \(0.301297\pi\)
\(158\) 0.0841687 0.00669610
\(159\) 0 0
\(160\) 4.73879 0.374634
\(161\) 8.88589 0.700306
\(162\) 0 0
\(163\) 7.44147 0.582861 0.291431 0.956592i \(-0.405869\pi\)
0.291431 + 0.956592i \(0.405869\pi\)
\(164\) 16.1265 1.25927
\(165\) 0 0
\(166\) 0.646015 0.0501405
\(167\) 7.84306 0.606915 0.303457 0.952845i \(-0.401859\pi\)
0.303457 + 0.952845i \(0.401859\pi\)
\(168\) 0 0
\(169\) −7.54669 −0.580515
\(170\) −2.36050 −0.181042
\(171\) 0 0
\(172\) −12.4029 −0.945709
\(173\) −4.93433 −0.375150 −0.187575 0.982250i \(-0.560063\pi\)
−0.187575 + 0.982250i \(0.560063\pi\)
\(174\) 0 0
\(175\) −51.5006 −3.89308
\(176\) 2.88820 0.217706
\(177\) 0 0
\(178\) −0.139793 −0.0104779
\(179\) −3.58843 −0.268212 −0.134106 0.990967i \(-0.542816\pi\)
−0.134106 + 0.990967i \(0.542816\pi\)
\(180\) 0 0
\(181\) 11.3273 0.841951 0.420975 0.907072i \(-0.361688\pi\)
0.420975 + 0.907072i \(0.361688\pi\)
\(182\) 1.05050 0.0778682
\(183\) 0 0
\(184\) −0.764952 −0.0563930
\(185\) −9.24845 −0.679959
\(186\) 0 0
\(187\) −4.35140 −0.318206
\(188\) −12.7939 −0.933091
\(189\) 0 0
\(190\) 2.16228 0.156868
\(191\) 10.2667 0.742872 0.371436 0.928459i \(-0.378866\pi\)
0.371436 + 0.928459i \(0.378866\pi\)
\(192\) 0 0
\(193\) 3.41822 0.246049 0.123025 0.992404i \(-0.460741\pi\)
0.123025 + 0.992404i \(0.460741\pi\)
\(194\) −1.45162 −0.104220
\(195\) 0 0
\(196\) −27.5686 −1.96919
\(197\) 4.34099 0.309282 0.154641 0.987971i \(-0.450578\pi\)
0.154641 + 0.987971i \(0.450578\pi\)
\(198\) 0 0
\(199\) −1.93557 −0.137209 −0.0686045 0.997644i \(-0.521855\pi\)
−0.0686045 + 0.997644i \(0.521855\pi\)
\(200\) 4.43349 0.313495
\(201\) 0 0
\(202\) −0.607720 −0.0427590
\(203\) −4.56635 −0.320495
\(204\) 0 0
\(205\) 32.6909 2.28323
\(206\) 0.0976531 0.00680381
\(207\) 0 0
\(208\) 9.20517 0.638264
\(209\) 3.98599 0.275717
\(210\) 0 0
\(211\) 0.533900 0.0367552 0.0183776 0.999831i \(-0.494150\pi\)
0.0183776 + 0.999831i \(0.494150\pi\)
\(212\) −15.7928 −1.08465
\(213\) 0 0
\(214\) −1.85499 −0.126805
\(215\) −25.1425 −1.71471
\(216\) 0 0
\(217\) 26.2010 1.77864
\(218\) 0.155037 0.0105004
\(219\) 0 0
\(220\) 5.88367 0.396677
\(221\) −13.8686 −0.932903
\(222\) 0 0
\(223\) 11.8987 0.796796 0.398398 0.917213i \(-0.369566\pi\)
0.398398 + 0.917213i \(0.369566\pi\)
\(224\) 5.36329 0.358350
\(225\) 0 0
\(226\) −1.82413 −0.121339
\(227\) −18.8867 −1.25355 −0.626777 0.779199i \(-0.715626\pi\)
−0.626777 + 0.779199i \(0.715626\pi\)
\(228\) 0 0
\(229\) −4.58382 −0.302907 −0.151454 0.988464i \(-0.548395\pi\)
−0.151454 + 0.988464i \(0.548395\pi\)
\(230\) −0.773453 −0.0510000
\(231\) 0 0
\(232\) 0.393099 0.0258082
\(233\) 9.87450 0.646900 0.323450 0.946245i \(-0.395157\pi\)
0.323450 + 0.946245i \(0.395157\pi\)
\(234\) 0 0
\(235\) −25.9352 −1.69183
\(236\) 24.9547 1.62441
\(237\) 0 0
\(238\) −2.67158 −0.173173
\(239\) −10.5588 −0.682992 −0.341496 0.939883i \(-0.610934\pi\)
−0.341496 + 0.939883i \(0.610934\pi\)
\(240\) 0 0
\(241\) −6.76815 −0.435975 −0.217987 0.975952i \(-0.569949\pi\)
−0.217987 + 0.975952i \(0.569949\pi\)
\(242\) 1.03076 0.0662601
\(243\) 0 0
\(244\) 24.9626 1.59807
\(245\) −55.8858 −3.57041
\(246\) 0 0
\(247\) 12.7040 0.808336
\(248\) −2.25555 −0.143227
\(249\) 0 0
\(250\) 2.49542 0.157824
\(251\) −4.61752 −0.291455 −0.145728 0.989325i \(-0.546552\pi\)
−0.145728 + 0.989325i \(0.546552\pi\)
\(252\) 0 0
\(253\) −1.42580 −0.0896392
\(254\) 0.479501 0.0300866
\(255\) 0 0
\(256\) 15.2292 0.951828
\(257\) 16.2482 1.01354 0.506768 0.862082i \(-0.330840\pi\)
0.506768 + 0.862082i \(0.330840\pi\)
\(258\) 0 0
\(259\) −10.4673 −0.650404
\(260\) 18.7522 1.16296
\(261\) 0 0
\(262\) −1.19266 −0.0736826
\(263\) −21.7865 −1.34341 −0.671707 0.740817i \(-0.734439\pi\)
−0.671707 + 0.740817i \(0.734439\pi\)
\(264\) 0 0
\(265\) −32.0144 −1.96663
\(266\) 2.44724 0.150050
\(267\) 0 0
\(268\) −13.6752 −0.835343
\(269\) −13.0841 −0.797753 −0.398876 0.917005i \(-0.630600\pi\)
−0.398876 + 0.917005i \(0.630600\pi\)
\(270\) 0 0
\(271\) −15.5239 −0.943007 −0.471504 0.881864i \(-0.656289\pi\)
−0.471504 + 0.881864i \(0.656289\pi\)
\(272\) −23.4101 −1.41945
\(273\) 0 0
\(274\) 0.815836 0.0492865
\(275\) 8.26361 0.498315
\(276\) 0 0
\(277\) −22.2494 −1.33684 −0.668419 0.743785i \(-0.733029\pi\)
−0.668419 + 0.743785i \(0.733029\pi\)
\(278\) −1.54130 −0.0924411
\(279\) 0 0
\(280\) 7.24228 0.432809
\(281\) 21.0658 1.25668 0.628341 0.777938i \(-0.283734\pi\)
0.628341 + 0.777938i \(0.283734\pi\)
\(282\) 0 0
\(283\) 2.90593 0.172739 0.0863697 0.996263i \(-0.472473\pi\)
0.0863697 + 0.996263i \(0.472473\pi\)
\(284\) 5.99852 0.355947
\(285\) 0 0
\(286\) −0.168559 −0.00996713
\(287\) 36.9991 2.18399
\(288\) 0 0
\(289\) 18.2700 1.07470
\(290\) 0.397468 0.0233401
\(291\) 0 0
\(292\) −9.47891 −0.554711
\(293\) 12.9581 0.757022 0.378511 0.925597i \(-0.376436\pi\)
0.378511 + 0.925597i \(0.376436\pi\)
\(294\) 0 0
\(295\) 50.5871 2.94529
\(296\) 0.901086 0.0523746
\(297\) 0 0
\(298\) −1.09284 −0.0633067
\(299\) −4.54425 −0.262801
\(300\) 0 0
\(301\) −28.4559 −1.64017
\(302\) 2.13432 0.122816
\(303\) 0 0
\(304\) 21.4443 1.22992
\(305\) 50.6031 2.89753
\(306\) 0 0
\(307\) 5.07988 0.289924 0.144962 0.989437i \(-0.453694\pi\)
0.144962 + 0.989437i \(0.453694\pi\)
\(308\) 6.65905 0.379435
\(309\) 0 0
\(310\) −2.28061 −0.129530
\(311\) 5.07042 0.287517 0.143759 0.989613i \(-0.454081\pi\)
0.143759 + 0.989613i \(0.454081\pi\)
\(312\) 0 0
\(313\) −20.6528 −1.16737 −0.583683 0.811982i \(-0.698389\pi\)
−0.583683 + 0.811982i \(0.698389\pi\)
\(314\) −1.44294 −0.0814299
\(315\) 0 0
\(316\) 1.70048 0.0956593
\(317\) 0.986895 0.0554296 0.0277148 0.999616i \(-0.491177\pi\)
0.0277148 + 0.999616i \(0.491177\pi\)
\(318\) 0 0
\(319\) 0.732700 0.0410233
\(320\) 31.3412 1.75202
\(321\) 0 0
\(322\) −0.875383 −0.0487832
\(323\) −32.3082 −1.79768
\(324\) 0 0
\(325\) 26.3375 1.46094
\(326\) −0.733088 −0.0406020
\(327\) 0 0
\(328\) −3.18511 −0.175868
\(329\) −29.3531 −1.61829
\(330\) 0 0
\(331\) 11.2757 0.619770 0.309885 0.950774i \(-0.399709\pi\)
0.309885 + 0.950774i \(0.399709\pi\)
\(332\) 13.0516 0.716298
\(333\) 0 0
\(334\) −0.772650 −0.0422775
\(335\) −27.7217 −1.51460
\(336\) 0 0
\(337\) −8.49874 −0.462956 −0.231478 0.972840i \(-0.574356\pi\)
−0.231478 + 0.972840i \(0.574356\pi\)
\(338\) 0.743453 0.0404385
\(339\) 0 0
\(340\) −47.6897 −2.58634
\(341\) −4.20413 −0.227666
\(342\) 0 0
\(343\) −31.2864 −1.68930
\(344\) 2.44966 0.132077
\(345\) 0 0
\(346\) 0.486100 0.0261329
\(347\) 5.21157 0.279772 0.139886 0.990168i \(-0.455326\pi\)
0.139886 + 0.990168i \(0.455326\pi\)
\(348\) 0 0
\(349\) 6.71439 0.359413 0.179707 0.983720i \(-0.442485\pi\)
0.179707 + 0.983720i \(0.442485\pi\)
\(350\) 5.07352 0.271191
\(351\) 0 0
\(352\) −0.860575 −0.0458688
\(353\) 5.29679 0.281920 0.140960 0.990015i \(-0.454981\pi\)
0.140960 + 0.990015i \(0.454981\pi\)
\(354\) 0 0
\(355\) 12.1599 0.645382
\(356\) −2.82426 −0.149686
\(357\) 0 0
\(358\) 0.353510 0.0186836
\(359\) 1.18134 0.0623486 0.0311743 0.999514i \(-0.490075\pi\)
0.0311743 + 0.999514i \(0.490075\pi\)
\(360\) 0 0
\(361\) 10.5952 0.557640
\(362\) −1.11589 −0.0586501
\(363\) 0 0
\(364\) 21.2235 1.11241
\(365\) −19.2152 −1.00577
\(366\) 0 0
\(367\) 17.7121 0.924567 0.462283 0.886732i \(-0.347030\pi\)
0.462283 + 0.886732i \(0.347030\pi\)
\(368\) −7.67068 −0.399862
\(369\) 0 0
\(370\) 0.911100 0.0473658
\(371\) −36.2334 −1.88115
\(372\) 0 0
\(373\) 24.9512 1.29193 0.645963 0.763369i \(-0.276456\pi\)
0.645963 + 0.763369i \(0.276456\pi\)
\(374\) 0.428672 0.0221661
\(375\) 0 0
\(376\) 2.52690 0.130315
\(377\) 2.33523 0.120271
\(378\) 0 0
\(379\) −4.01067 −0.206014 −0.103007 0.994681i \(-0.532846\pi\)
−0.103007 + 0.994681i \(0.532846\pi\)
\(380\) 43.6850 2.24099
\(381\) 0 0
\(382\) −1.01141 −0.0517483
\(383\) 31.6739 1.61846 0.809230 0.587492i \(-0.199885\pi\)
0.809230 + 0.587492i \(0.199885\pi\)
\(384\) 0 0
\(385\) 13.4989 0.687969
\(386\) −0.336742 −0.0171397
\(387\) 0 0
\(388\) −29.3274 −1.48888
\(389\) 35.1264 1.78098 0.890489 0.455005i \(-0.150362\pi\)
0.890489 + 0.455005i \(0.150362\pi\)
\(390\) 0 0
\(391\) 11.5567 0.584448
\(392\) 5.44502 0.275015
\(393\) 0 0
\(394\) −0.427647 −0.0215445
\(395\) 3.44713 0.173444
\(396\) 0 0
\(397\) 15.0595 0.755814 0.377907 0.925844i \(-0.376644\pi\)
0.377907 + 0.925844i \(0.376644\pi\)
\(398\) 0.190681 0.00955795
\(399\) 0 0
\(400\) 44.4576 2.22288
\(401\) 37.4374 1.86953 0.934766 0.355263i \(-0.115609\pi\)
0.934766 + 0.355263i \(0.115609\pi\)
\(402\) 0 0
\(403\) −13.3992 −0.667463
\(404\) −12.2779 −0.610848
\(405\) 0 0
\(406\) 0.449848 0.0223256
\(407\) 1.67954 0.0832517
\(408\) 0 0
\(409\) 30.4089 1.50362 0.751811 0.659378i \(-0.229180\pi\)
0.751811 + 0.659378i \(0.229180\pi\)
\(410\) −3.22051 −0.159050
\(411\) 0 0
\(412\) 1.97291 0.0971981
\(413\) 57.2537 2.81727
\(414\) 0 0
\(415\) 26.4576 1.29875
\(416\) −2.74279 −0.134476
\(417\) 0 0
\(418\) −0.392675 −0.0192064
\(419\) −24.6235 −1.20293 −0.601467 0.798897i \(-0.705417\pi\)
−0.601467 + 0.798897i \(0.705417\pi\)
\(420\) 0 0
\(421\) 24.1809 1.17851 0.589253 0.807949i \(-0.299422\pi\)
0.589253 + 0.807949i \(0.299422\pi\)
\(422\) −0.0525965 −0.00256036
\(423\) 0 0
\(424\) 3.11920 0.151482
\(425\) −66.9802 −3.24902
\(426\) 0 0
\(427\) 57.2719 2.77158
\(428\) −37.4768 −1.81151
\(429\) 0 0
\(430\) 2.47689 0.119446
\(431\) −21.9830 −1.05889 −0.529443 0.848346i \(-0.677599\pi\)
−0.529443 + 0.848346i \(0.677599\pi\)
\(432\) 0 0
\(433\) 15.0884 0.725104 0.362552 0.931964i \(-0.381906\pi\)
0.362552 + 0.931964i \(0.381906\pi\)
\(434\) −2.58116 −0.123900
\(435\) 0 0
\(436\) 3.13224 0.150007
\(437\) −10.5863 −0.506409
\(438\) 0 0
\(439\) −5.15949 −0.246249 −0.123125 0.992391i \(-0.539291\pi\)
−0.123125 + 0.992391i \(0.539291\pi\)
\(440\) −1.16207 −0.0553996
\(441\) 0 0
\(442\) 1.36625 0.0649858
\(443\) 5.15492 0.244918 0.122459 0.992474i \(-0.460922\pi\)
0.122459 + 0.992474i \(0.460922\pi\)
\(444\) 0 0
\(445\) −5.72522 −0.271401
\(446\) −1.17219 −0.0555046
\(447\) 0 0
\(448\) 35.4715 1.67587
\(449\) 5.28749 0.249532 0.124766 0.992186i \(-0.460182\pi\)
0.124766 + 0.992186i \(0.460182\pi\)
\(450\) 0 0
\(451\) −5.93675 −0.279551
\(452\) −36.8532 −1.73343
\(453\) 0 0
\(454\) 1.86060 0.0873223
\(455\) 43.0233 2.01696
\(456\) 0 0
\(457\) 13.1977 0.617363 0.308681 0.951165i \(-0.400112\pi\)
0.308681 + 0.951165i \(0.400112\pi\)
\(458\) 0.451570 0.0211005
\(459\) 0 0
\(460\) −15.6262 −0.728577
\(461\) −35.8725 −1.67075 −0.835374 0.549683i \(-0.814749\pi\)
−0.835374 + 0.549683i \(0.814749\pi\)
\(462\) 0 0
\(463\) −26.8663 −1.24858 −0.624291 0.781192i \(-0.714612\pi\)
−0.624291 + 0.781192i \(0.714612\pi\)
\(464\) 3.94186 0.182996
\(465\) 0 0
\(466\) −0.972775 −0.0450629
\(467\) −34.4414 −1.59376 −0.796880 0.604138i \(-0.793518\pi\)
−0.796880 + 0.604138i \(0.793518\pi\)
\(468\) 0 0
\(469\) −31.3750 −1.44876
\(470\) 2.55498 0.117852
\(471\) 0 0
\(472\) −4.92875 −0.226864
\(473\) 4.56594 0.209942
\(474\) 0 0
\(475\) 61.3556 2.81519
\(476\) −53.9745 −2.47392
\(477\) 0 0
\(478\) 1.04019 0.0475771
\(479\) 24.8968 1.13756 0.568782 0.822489i \(-0.307415\pi\)
0.568782 + 0.822489i \(0.307415\pi\)
\(480\) 0 0
\(481\) 5.35296 0.244074
\(482\) 0.666756 0.0303699
\(483\) 0 0
\(484\) 20.8248 0.946580
\(485\) −59.4513 −2.69954
\(486\) 0 0
\(487\) −15.5650 −0.705317 −0.352659 0.935752i \(-0.614722\pi\)
−0.352659 + 0.935752i \(0.614722\pi\)
\(488\) −4.93032 −0.223185
\(489\) 0 0
\(490\) 5.50553 0.248714
\(491\) 43.4099 1.95906 0.979531 0.201292i \(-0.0645139\pi\)
0.979531 + 0.201292i \(0.0645139\pi\)
\(492\) 0 0
\(493\) −5.93885 −0.267472
\(494\) −1.25152 −0.0563085
\(495\) 0 0
\(496\) −22.6179 −1.01557
\(497\) 13.7624 0.617330
\(498\) 0 0
\(499\) −8.64901 −0.387183 −0.193591 0.981082i \(-0.562014\pi\)
−0.193591 + 0.981082i \(0.562014\pi\)
\(500\) 50.4156 2.25465
\(501\) 0 0
\(502\) 0.454889 0.0203027
\(503\) −19.1178 −0.852419 −0.426209 0.904625i \(-0.640151\pi\)
−0.426209 + 0.904625i \(0.640151\pi\)
\(504\) 0 0
\(505\) −24.8892 −1.10755
\(506\) 0.140461 0.00624425
\(507\) 0 0
\(508\) 9.68746 0.429811
\(509\) −7.37422 −0.326856 −0.163428 0.986555i \(-0.552255\pi\)
−0.163428 + 0.986555i \(0.552255\pi\)
\(510\) 0 0
\(511\) −21.7475 −0.962053
\(512\) −7.72891 −0.341573
\(513\) 0 0
\(514\) −1.60067 −0.0706027
\(515\) 3.99939 0.176234
\(516\) 0 0
\(517\) 4.70990 0.207141
\(518\) 1.03117 0.0453070
\(519\) 0 0
\(520\) −3.70371 −0.162418
\(521\) 1.31697 0.0576973 0.0288487 0.999584i \(-0.490816\pi\)
0.0288487 + 0.999584i \(0.490816\pi\)
\(522\) 0 0
\(523\) 16.3118 0.713267 0.356633 0.934244i \(-0.383925\pi\)
0.356633 + 0.934244i \(0.383925\pi\)
\(524\) −24.0955 −1.05262
\(525\) 0 0
\(526\) 2.14627 0.0935820
\(527\) 34.0763 1.48439
\(528\) 0 0
\(529\) −19.2133 −0.835360
\(530\) 3.15386 0.136995
\(531\) 0 0
\(532\) 49.4421 2.14359
\(533\) −18.9214 −0.819576
\(534\) 0 0
\(535\) −75.9713 −3.28452
\(536\) 2.70095 0.116663
\(537\) 0 0
\(538\) 1.28897 0.0555713
\(539\) 10.1490 0.437148
\(540\) 0 0
\(541\) −17.3788 −0.747175 −0.373587 0.927595i \(-0.621872\pi\)
−0.373587 + 0.927595i \(0.621872\pi\)
\(542\) 1.52931 0.0656897
\(543\) 0 0
\(544\) 6.97534 0.299065
\(545\) 6.34954 0.271984
\(546\) 0 0
\(547\) 1.61387 0.0690041 0.0345020 0.999405i \(-0.489015\pi\)
0.0345020 + 0.999405i \(0.489015\pi\)
\(548\) 16.4825 0.704098
\(549\) 0 0
\(550\) −0.814080 −0.0347125
\(551\) 5.44014 0.231758
\(552\) 0 0
\(553\) 3.90142 0.165905
\(554\) 2.19188 0.0931239
\(555\) 0 0
\(556\) −31.1392 −1.32060
\(557\) −11.8184 −0.500763 −0.250382 0.968147i \(-0.580556\pi\)
−0.250382 + 0.968147i \(0.580556\pi\)
\(558\) 0 0
\(559\) 14.5524 0.615500
\(560\) 72.6231 3.06889
\(561\) 0 0
\(562\) −2.07528 −0.0875402
\(563\) −22.5227 −0.949218 −0.474609 0.880197i \(-0.657411\pi\)
−0.474609 + 0.880197i \(0.657411\pi\)
\(564\) 0 0
\(565\) −74.7072 −3.14296
\(566\) −0.286274 −0.0120330
\(567\) 0 0
\(568\) −1.18476 −0.0497112
\(569\) 41.2742 1.73030 0.865151 0.501511i \(-0.167222\pi\)
0.865151 + 0.501511i \(0.167222\pi\)
\(570\) 0 0
\(571\) −32.4617 −1.35848 −0.679240 0.733916i \(-0.737691\pi\)
−0.679240 + 0.733916i \(0.737691\pi\)
\(572\) −3.40544 −0.142389
\(573\) 0 0
\(574\) −3.64493 −0.152136
\(575\) −21.9470 −0.915255
\(576\) 0 0
\(577\) 33.3635 1.38894 0.694470 0.719522i \(-0.255639\pi\)
0.694470 + 0.719522i \(0.255639\pi\)
\(578\) −1.79984 −0.0748636
\(579\) 0 0
\(580\) 8.03012 0.333433
\(581\) 29.9443 1.24230
\(582\) 0 0
\(583\) 5.81389 0.240787
\(584\) 1.87216 0.0774705
\(585\) 0 0
\(586\) −1.27656 −0.0527340
\(587\) −14.6927 −0.606434 −0.303217 0.952922i \(-0.598061\pi\)
−0.303217 + 0.952922i \(0.598061\pi\)
\(588\) 0 0
\(589\) −31.2148 −1.28618
\(590\) −4.98353 −0.205169
\(591\) 0 0
\(592\) 9.03578 0.371368
\(593\) 27.7605 1.13999 0.569994 0.821649i \(-0.306945\pi\)
0.569994 + 0.821649i \(0.306945\pi\)
\(594\) 0 0
\(595\) −109.415 −4.48557
\(596\) −22.0789 −0.904388
\(597\) 0 0
\(598\) 0.447671 0.0183066
\(599\) −32.4749 −1.32689 −0.663445 0.748225i \(-0.730906\pi\)
−0.663445 + 0.748225i \(0.730906\pi\)
\(600\) 0 0
\(601\) 13.9953 0.570880 0.285440 0.958397i \(-0.407860\pi\)
0.285440 + 0.958397i \(0.407860\pi\)
\(602\) 2.80330 0.114254
\(603\) 0 0
\(604\) 43.1201 1.75453
\(605\) 42.2150 1.71629
\(606\) 0 0
\(607\) 30.0331 1.21901 0.609503 0.792783i \(-0.291369\pi\)
0.609503 + 0.792783i \(0.291369\pi\)
\(608\) −6.38959 −0.259132
\(609\) 0 0
\(610\) −4.98511 −0.201841
\(611\) 15.0112 0.607288
\(612\) 0 0
\(613\) 1.02509 0.0414029 0.0207015 0.999786i \(-0.493410\pi\)
0.0207015 + 0.999786i \(0.493410\pi\)
\(614\) −0.500438 −0.0201960
\(615\) 0 0
\(616\) −1.31522 −0.0529915
\(617\) 45.0591 1.81401 0.907005 0.421120i \(-0.138363\pi\)
0.907005 + 0.421120i \(0.138363\pi\)
\(618\) 0 0
\(619\) −17.0441 −0.685059 −0.342529 0.939507i \(-0.611284\pi\)
−0.342529 + 0.939507i \(0.611284\pi\)
\(620\) −46.0757 −1.85044
\(621\) 0 0
\(622\) −0.499506 −0.0200284
\(623\) −6.47972 −0.259604
\(624\) 0 0
\(625\) 45.8087 1.83235
\(626\) 2.03459 0.0813184
\(627\) 0 0
\(628\) −29.1521 −1.16329
\(629\) −13.6134 −0.542802
\(630\) 0 0
\(631\) 36.8117 1.46545 0.732726 0.680523i \(-0.238248\pi\)
0.732726 + 0.680523i \(0.238248\pi\)
\(632\) −0.335858 −0.0133597
\(633\) 0 0
\(634\) −0.0972228 −0.00386121
\(635\) 19.6380 0.779310
\(636\) 0 0
\(637\) 32.3465 1.28161
\(638\) −0.0721810 −0.00285767
\(639\) 0 0
\(640\) −12.5651 −0.496680
\(641\) −29.3025 −1.15738 −0.578689 0.815548i \(-0.696436\pi\)
−0.578689 + 0.815548i \(0.696436\pi\)
\(642\) 0 0
\(643\) −38.8912 −1.53372 −0.766859 0.641815i \(-0.778182\pi\)
−0.766859 + 0.641815i \(0.778182\pi\)
\(644\) −17.6855 −0.696908
\(645\) 0 0
\(646\) 3.18280 0.125226
\(647\) −26.7727 −1.05254 −0.526271 0.850317i \(-0.676410\pi\)
−0.526271 + 0.850317i \(0.676410\pi\)
\(648\) 0 0
\(649\) −9.18673 −0.360611
\(650\) −2.59460 −0.101769
\(651\) 0 0
\(652\) −14.8107 −0.580033
\(653\) 11.8552 0.463928 0.231964 0.972724i \(-0.425485\pi\)
0.231964 + 0.972724i \(0.425485\pi\)
\(654\) 0 0
\(655\) −48.8453 −1.90855
\(656\) −31.9392 −1.24702
\(657\) 0 0
\(658\) 2.89169 0.112730
\(659\) −5.61121 −0.218582 −0.109291 0.994010i \(-0.534858\pi\)
−0.109291 + 0.994010i \(0.534858\pi\)
\(660\) 0 0
\(661\) −20.4821 −0.796662 −0.398331 0.917242i \(-0.630410\pi\)
−0.398331 + 0.917242i \(0.630410\pi\)
\(662\) −1.11081 −0.0431730
\(663\) 0 0
\(664\) −2.57779 −0.100038
\(665\) 100.227 3.88663
\(666\) 0 0
\(667\) −1.94595 −0.0753476
\(668\) −15.6100 −0.603970
\(669\) 0 0
\(670\) 2.73097 0.105506
\(671\) −9.18965 −0.354762
\(672\) 0 0
\(673\) −7.81724 −0.301332 −0.150666 0.988585i \(-0.548142\pi\)
−0.150666 + 0.988585i \(0.548142\pi\)
\(674\) 0.837243 0.0322494
\(675\) 0 0
\(676\) 15.0201 0.577698
\(677\) −8.26231 −0.317546 −0.158773 0.987315i \(-0.550754\pi\)
−0.158773 + 0.987315i \(0.550754\pi\)
\(678\) 0 0
\(679\) −67.2861 −2.58220
\(680\) 9.41910 0.361206
\(681\) 0 0
\(682\) 0.414165 0.0158592
\(683\) 19.1396 0.732358 0.366179 0.930544i \(-0.380666\pi\)
0.366179 + 0.930544i \(0.380666\pi\)
\(684\) 0 0
\(685\) 33.4126 1.27663
\(686\) 3.08214 0.117677
\(687\) 0 0
\(688\) 24.5644 0.936508
\(689\) 18.5298 0.705929
\(690\) 0 0
\(691\) −26.4595 −1.00657 −0.503283 0.864122i \(-0.667875\pi\)
−0.503283 + 0.864122i \(0.667875\pi\)
\(692\) 9.82078 0.373330
\(693\) 0 0
\(694\) −0.513412 −0.0194889
\(695\) −63.1241 −2.39443
\(696\) 0 0
\(697\) 48.1200 1.82267
\(698\) −0.661460 −0.0250366
\(699\) 0 0
\(700\) 102.501 3.87419
\(701\) 40.1101 1.51494 0.757468 0.652872i \(-0.226436\pi\)
0.757468 + 0.652872i \(0.226436\pi\)
\(702\) 0 0
\(703\) 12.4702 0.470324
\(704\) −5.69163 −0.214511
\(705\) 0 0
\(706\) −0.521807 −0.0196385
\(707\) −28.1692 −1.05941
\(708\) 0 0
\(709\) 31.9477 1.19982 0.599911 0.800067i \(-0.295203\pi\)
0.599911 + 0.800067i \(0.295203\pi\)
\(710\) −1.19792 −0.0449572
\(711\) 0 0
\(712\) 0.557814 0.0209050
\(713\) 11.1656 0.418155
\(714\) 0 0
\(715\) −6.90336 −0.258171
\(716\) 7.14204 0.266910
\(717\) 0 0
\(718\) −0.116378 −0.00434319
\(719\) 15.8652 0.591672 0.295836 0.955239i \(-0.404402\pi\)
0.295836 + 0.955239i \(0.404402\pi\)
\(720\) 0 0
\(721\) 4.52645 0.168574
\(722\) −1.04377 −0.0388451
\(723\) 0 0
\(724\) −22.5446 −0.837865
\(725\) 11.2783 0.418866
\(726\) 0 0
\(727\) −21.1870 −0.785782 −0.392891 0.919585i \(-0.628525\pi\)
−0.392891 + 0.919585i \(0.628525\pi\)
\(728\) −4.19180 −0.155359
\(729\) 0 0
\(730\) 1.89296 0.0700618
\(731\) −37.0089 −1.36883
\(732\) 0 0
\(733\) −18.5954 −0.686836 −0.343418 0.939183i \(-0.611585\pi\)
−0.343418 + 0.939183i \(0.611585\pi\)
\(734\) −1.74489 −0.0644051
\(735\) 0 0
\(736\) 2.28557 0.0842473
\(737\) 5.03432 0.185442
\(738\) 0 0
\(739\) −8.18908 −0.301240 −0.150620 0.988592i \(-0.548127\pi\)
−0.150620 + 0.988592i \(0.548127\pi\)
\(740\) 18.4071 0.676660
\(741\) 0 0
\(742\) 3.56949 0.131040
\(743\) 24.7742 0.908878 0.454439 0.890778i \(-0.349840\pi\)
0.454439 + 0.890778i \(0.349840\pi\)
\(744\) 0 0
\(745\) −44.7574 −1.63979
\(746\) −2.45804 −0.0899952
\(747\) 0 0
\(748\) 8.66056 0.316661
\(749\) −85.9832 −3.14176
\(750\) 0 0
\(751\) −36.3697 −1.32715 −0.663575 0.748110i \(-0.730962\pi\)
−0.663575 + 0.748110i \(0.730962\pi\)
\(752\) 25.3389 0.924013
\(753\) 0 0
\(754\) −0.230053 −0.00837802
\(755\) 87.4112 3.18122
\(756\) 0 0
\(757\) 21.3314 0.775305 0.387652 0.921806i \(-0.373286\pi\)
0.387652 + 0.921806i \(0.373286\pi\)
\(758\) 0.395107 0.0143509
\(759\) 0 0
\(760\) −8.62814 −0.312975
\(761\) 16.3820 0.593848 0.296924 0.954901i \(-0.404039\pi\)
0.296924 + 0.954901i \(0.404039\pi\)
\(762\) 0 0
\(763\) 7.18631 0.260162
\(764\) −20.4337 −0.739267
\(765\) 0 0
\(766\) −3.12032 −0.112742
\(767\) −29.2796 −1.05722
\(768\) 0 0
\(769\) 20.9892 0.756891 0.378445 0.925624i \(-0.376459\pi\)
0.378445 + 0.925624i \(0.376459\pi\)
\(770\) −1.32983 −0.0479238
\(771\) 0 0
\(772\) −6.80327 −0.244855
\(773\) −4.99970 −0.179827 −0.0899134 0.995950i \(-0.528659\pi\)
−0.0899134 + 0.995950i \(0.528659\pi\)
\(774\) 0 0
\(775\) −64.7133 −2.32457
\(776\) 5.79240 0.207935
\(777\) 0 0
\(778\) −3.46043 −0.124063
\(779\) −44.0791 −1.57930
\(780\) 0 0
\(781\) −2.20827 −0.0790182
\(782\) −1.13850 −0.0407125
\(783\) 0 0
\(784\) 54.6008 1.95003
\(785\) −59.0958 −2.10922
\(786\) 0 0
\(787\) −20.0672 −0.715320 −0.357660 0.933852i \(-0.616425\pi\)
−0.357660 + 0.933852i \(0.616425\pi\)
\(788\) −8.63984 −0.307782
\(789\) 0 0
\(790\) −0.339590 −0.0120821
\(791\) −84.5526 −3.00634
\(792\) 0 0
\(793\) −29.2889 −1.04008
\(794\) −1.48357 −0.0526498
\(795\) 0 0
\(796\) 3.85236 0.136543
\(797\) −46.1551 −1.63490 −0.817448 0.576002i \(-0.804612\pi\)
−0.817448 + 0.576002i \(0.804612\pi\)
\(798\) 0 0
\(799\) −38.1758 −1.35056
\(800\) −13.2467 −0.468340
\(801\) 0 0
\(802\) −3.68810 −0.130231
\(803\) 3.48953 0.123143
\(804\) 0 0
\(805\) −35.8513 −1.26359
\(806\) 1.32001 0.0464953
\(807\) 0 0
\(808\) 2.42498 0.0853105
\(809\) 44.1213 1.55122 0.775611 0.631211i \(-0.217442\pi\)
0.775611 + 0.631211i \(0.217442\pi\)
\(810\) 0 0
\(811\) −48.1501 −1.69078 −0.845390 0.534150i \(-0.820632\pi\)
−0.845390 + 0.534150i \(0.820632\pi\)
\(812\) 9.08837 0.318939
\(813\) 0 0
\(814\) −0.165458 −0.00579929
\(815\) −30.0236 −1.05168
\(816\) 0 0
\(817\) 33.9012 1.18605
\(818\) −2.99569 −0.104742
\(819\) 0 0
\(820\) −65.0646 −2.27215
\(821\) 39.0794 1.36388 0.681941 0.731407i \(-0.261136\pi\)
0.681941 + 0.731407i \(0.261136\pi\)
\(822\) 0 0
\(823\) 41.2966 1.43951 0.719754 0.694229i \(-0.244254\pi\)
0.719754 + 0.694229i \(0.244254\pi\)
\(824\) −0.389665 −0.0135746
\(825\) 0 0
\(826\) −5.64028 −0.196251
\(827\) −17.8844 −0.621900 −0.310950 0.950426i \(-0.600647\pi\)
−0.310950 + 0.950426i \(0.600647\pi\)
\(828\) 0 0
\(829\) 50.9416 1.76928 0.884638 0.466279i \(-0.154406\pi\)
0.884638 + 0.466279i \(0.154406\pi\)
\(830\) −2.60644 −0.0904707
\(831\) 0 0
\(832\) −18.1401 −0.628896
\(833\) −82.2621 −2.85021
\(834\) 0 0
\(835\) −31.6439 −1.09508
\(836\) −7.93330 −0.274379
\(837\) 0 0
\(838\) 2.42575 0.0837961
\(839\) 35.6168 1.22963 0.614815 0.788671i \(-0.289231\pi\)
0.614815 + 0.788671i \(0.289231\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −2.38215 −0.0820945
\(843\) 0 0
\(844\) −1.06262 −0.0365768
\(845\) 30.4482 1.04745
\(846\) 0 0
\(847\) 47.7784 1.64168
\(848\) 31.2782 1.07410
\(849\) 0 0
\(850\) 6.59847 0.226326
\(851\) −4.46063 −0.152908
\(852\) 0 0
\(853\) −35.8276 −1.22671 −0.613356 0.789806i \(-0.710181\pi\)
−0.613356 + 0.789806i \(0.710181\pi\)
\(854\) −5.64207 −0.193068
\(855\) 0 0
\(856\) 7.40196 0.252994
\(857\) 2.07261 0.0707991 0.0353995 0.999373i \(-0.488730\pi\)
0.0353995 + 0.999373i \(0.488730\pi\)
\(858\) 0 0
\(859\) 8.93407 0.304827 0.152413 0.988317i \(-0.451296\pi\)
0.152413 + 0.988317i \(0.451296\pi\)
\(860\) 50.0410 1.70638
\(861\) 0 0
\(862\) 2.16563 0.0737617
\(863\) −39.6911 −1.35110 −0.675550 0.737315i \(-0.736094\pi\)
−0.675550 + 0.737315i \(0.736094\pi\)
\(864\) 0 0
\(865\) 19.9083 0.676901
\(866\) −1.48642 −0.0505106
\(867\) 0 0
\(868\) −52.1478 −1.77001
\(869\) −0.626007 −0.0212358
\(870\) 0 0
\(871\) 16.0452 0.543671
\(872\) −0.618642 −0.0209499
\(873\) 0 0
\(874\) 1.04289 0.0352764
\(875\) 115.669 3.91032
\(876\) 0 0
\(877\) −19.9324 −0.673069 −0.336535 0.941671i \(-0.609255\pi\)
−0.336535 + 0.941671i \(0.609255\pi\)
\(878\) 0.508281 0.0171537
\(879\) 0 0
\(880\) −11.6529 −0.392818
\(881\) 28.6600 0.965580 0.482790 0.875736i \(-0.339623\pi\)
0.482790 + 0.875736i \(0.339623\pi\)
\(882\) 0 0
\(883\) 29.8489 1.00450 0.502248 0.864724i \(-0.332507\pi\)
0.502248 + 0.864724i \(0.332507\pi\)
\(884\) 27.6026 0.928376
\(885\) 0 0
\(886\) −0.507831 −0.0170609
\(887\) 39.8861 1.33924 0.669622 0.742702i \(-0.266456\pi\)
0.669622 + 0.742702i \(0.266456\pi\)
\(888\) 0 0
\(889\) 22.2260 0.745436
\(890\) 0.564013 0.0189058
\(891\) 0 0
\(892\) −23.6819 −0.792929
\(893\) 34.9700 1.17023
\(894\) 0 0
\(895\) 14.4780 0.483947
\(896\) −14.2210 −0.475091
\(897\) 0 0
\(898\) −0.520890 −0.0173823
\(899\) −5.73786 −0.191368
\(900\) 0 0
\(901\) −47.1241 −1.56993
\(902\) 0.584852 0.0194734
\(903\) 0 0
\(904\) 7.27880 0.242089
\(905\) −45.7015 −1.51917
\(906\) 0 0
\(907\) −25.2967 −0.839962 −0.419981 0.907533i \(-0.637963\pi\)
−0.419981 + 0.907533i \(0.637963\pi\)
\(908\) 37.5901 1.24747
\(909\) 0 0
\(910\) −4.23839 −0.140501
\(911\) −1.31582 −0.0435949 −0.0217975 0.999762i \(-0.506939\pi\)
−0.0217975 + 0.999762i \(0.506939\pi\)
\(912\) 0 0
\(913\) −4.80476 −0.159014
\(914\) −1.30016 −0.0430054
\(915\) 0 0
\(916\) 9.12316 0.301438
\(917\) −55.2824 −1.82559
\(918\) 0 0
\(919\) 4.52035 0.149112 0.0745562 0.997217i \(-0.476246\pi\)
0.0745562 + 0.997217i \(0.476246\pi\)
\(920\) 3.08630 0.101752
\(921\) 0 0
\(922\) 3.53393 0.116384
\(923\) −7.03812 −0.231662
\(924\) 0 0
\(925\) 25.8528 0.850036
\(926\) 2.64670 0.0869759
\(927\) 0 0
\(928\) −1.17453 −0.0385557
\(929\) 7.26202 0.238259 0.119130 0.992879i \(-0.461990\pi\)
0.119130 + 0.992879i \(0.461990\pi\)
\(930\) 0 0
\(931\) 75.3542 2.46963
\(932\) −19.6532 −0.643761
\(933\) 0 0
\(934\) 3.39296 0.111021
\(935\) 17.5563 0.574153
\(936\) 0 0
\(937\) −35.8159 −1.17005 −0.585027 0.811014i \(-0.698916\pi\)
−0.585027 + 0.811014i \(0.698916\pi\)
\(938\) 3.09087 0.100920
\(939\) 0 0
\(940\) 51.6187 1.68362
\(941\) −20.2410 −0.659838 −0.329919 0.944009i \(-0.607021\pi\)
−0.329919 + 0.944009i \(0.607021\pi\)
\(942\) 0 0
\(943\) 15.7672 0.513451
\(944\) −49.4239 −1.60861
\(945\) 0 0
\(946\) −0.449808 −0.0146245
\(947\) −16.1762 −0.525655 −0.262828 0.964843i \(-0.584655\pi\)
−0.262828 + 0.964843i \(0.584655\pi\)
\(948\) 0 0
\(949\) 11.1217 0.361025
\(950\) −6.04437 −0.196105
\(951\) 0 0
\(952\) 10.6604 0.345505
\(953\) 36.6035 1.18570 0.592851 0.805312i \(-0.298002\pi\)
0.592851 + 0.805312i \(0.298002\pi\)
\(954\) 0 0
\(955\) −41.4224 −1.34040
\(956\) 21.0151 0.679678
\(957\) 0 0
\(958\) −2.45268 −0.0792424
\(959\) 37.8159 1.22114
\(960\) 0 0
\(961\) 1.92303 0.0620331
\(962\) −0.527341 −0.0170021
\(963\) 0 0
\(964\) 13.4706 0.433859
\(965\) −13.7913 −0.443957
\(966\) 0 0
\(967\) −42.6228 −1.37066 −0.685328 0.728234i \(-0.740341\pi\)
−0.685328 + 0.728234i \(0.740341\pi\)
\(968\) −4.11306 −0.132199
\(969\) 0 0
\(970\) 5.85677 0.188050
\(971\) 30.2446 0.970595 0.485298 0.874349i \(-0.338711\pi\)
0.485298 + 0.874349i \(0.338711\pi\)
\(972\) 0 0
\(973\) −71.4429 −2.29036
\(974\) 1.53337 0.0491323
\(975\) 0 0
\(976\) −49.4396 −1.58252
\(977\) 5.14443 0.164585 0.0822925 0.996608i \(-0.473776\pi\)
0.0822925 + 0.996608i \(0.473776\pi\)
\(978\) 0 0
\(979\) 1.03971 0.0332294
\(980\) 111.229 3.55309
\(981\) 0 0
\(982\) −4.27648 −0.136468
\(983\) −35.7294 −1.13959 −0.569795 0.821787i \(-0.692977\pi\)
−0.569795 + 0.821787i \(0.692977\pi\)
\(984\) 0 0
\(985\) −17.5143 −0.558052
\(986\) 0.585059 0.0186321
\(987\) 0 0
\(988\) −25.2847 −0.804414
\(989\) −12.1265 −0.385601
\(990\) 0 0
\(991\) 30.7868 0.977973 0.488987 0.872291i \(-0.337367\pi\)
0.488987 + 0.872291i \(0.337367\pi\)
\(992\) 6.73927 0.213972
\(993\) 0 0
\(994\) −1.35579 −0.0430030
\(995\) 7.80933 0.247573
\(996\) 0 0
\(997\) 28.6023 0.905844 0.452922 0.891550i \(-0.350382\pi\)
0.452922 + 0.891550i \(0.350382\pi\)
\(998\) 0.852047 0.0269711
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.a.i.1.5 8
3.2 odd 2 783.2.a.j.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.a.i.1.5 8 1.1 even 1 trivial
783.2.a.j.1.4 yes 8 3.2 odd 2