Properties

Label 2-783-1.1-c1-0-1
Degree $2$
Conductor $783$
Sign $1$
Analytic cond. $6.25228$
Root an. cond. $2.50045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0985·2-s − 1.99·4-s − 4.03·5-s − 4.56·7-s + 0.393·8-s + 0.397·10-s + 0.732·11-s + 2.33·13-s + 0.449·14-s + 3.94·16-s − 5.93·17-s + 5.44·19-s + 8.03·20-s − 0.0721·22-s − 1.94·23-s + 11.2·25-s − 0.230·26-s + 9.08·28-s + 29-s − 5.73·31-s − 1.17·32-s + 0.585·34-s + 18.4·35-s + 2.29·37-s − 0.535·38-s − 1.58·40-s − 8.10·41-s + ⋯
L(s)  = 1  − 0.0696·2-s − 0.995·4-s − 1.80·5-s − 1.72·7-s + 0.138·8-s + 0.125·10-s + 0.220·11-s + 0.647·13-s + 0.120·14-s + 0.985·16-s − 1.44·17-s + 1.24·19-s + 1.79·20-s − 0.0153·22-s − 0.405·23-s + 2.25·25-s − 0.0451·26-s + 1.71·28-s + 0.185·29-s − 1.03·31-s − 0.207·32-s + 0.100·34-s + 3.11·35-s + 0.376·37-s − 0.0869·38-s − 0.250·40-s − 1.26·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $1$
Analytic conductor: \(6.25228\)
Root analytic conductor: \(2.50045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 783,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4104202883\)
\(L(\frac12)\) \(\approx\) \(0.4104202883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 0.0985T + 2T^{2} \)
5 \( 1 + 4.03T + 5T^{2} \)
7 \( 1 + 4.56T + 7T^{2} \)
11 \( 1 - 0.732T + 11T^{2} \)
13 \( 1 - 2.33T + 13T^{2} \)
17 \( 1 + 5.93T + 17T^{2} \)
19 \( 1 - 5.44T + 19T^{2} \)
23 \( 1 + 1.94T + 23T^{2} \)
31 \( 1 + 5.73T + 31T^{2} \)
37 \( 1 - 2.29T + 37T^{2} \)
41 \( 1 + 8.10T + 41T^{2} \)
43 \( 1 - 6.23T + 43T^{2} \)
47 \( 1 - 6.42T + 47T^{2} \)
53 \( 1 - 7.93T + 53T^{2} \)
59 \( 1 + 12.5T + 59T^{2} \)
61 \( 1 + 12.5T + 61T^{2} \)
67 \( 1 - 6.87T + 67T^{2} \)
71 \( 1 + 3.01T + 71T^{2} \)
73 \( 1 - 4.76T + 73T^{2} \)
79 \( 1 + 0.854T + 79T^{2} \)
83 \( 1 + 6.55T + 83T^{2} \)
89 \( 1 - 1.41T + 89T^{2} \)
97 \( 1 - 14.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24445680035697911853610637523, −9.169325272836498815746098442920, −8.819158629679961826964514662574, −7.72260386921067616738245927215, −6.98741944355894741494541214662, −5.93912251418156909682914523686, −4.57512039786918757268031938974, −3.78031198472190204683467357830, −3.20375838943910458841034798807, −0.51631225622350115737203013108, 0.51631225622350115737203013108, 3.20375838943910458841034798807, 3.78031198472190204683467357830, 4.57512039786918757268031938974, 5.93912251418156909682914523686, 6.98741944355894741494541214662, 7.72260386921067616738245927215, 8.819158629679961826964514662574, 9.169325272836498815746098442920, 10.24445680035697911853610637523

Graph of the $Z$-function along the critical line