Properties

Label 7803.2.a.ce.1.7
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,0,0,-16,0,0,-16,0,0,-8,0,0,24,0,0,-8,0,0,-56,0,0,16, 0,0,0,0,0,-16,0,0,0,0,0,-72,0,0,-72,0,0,-8,0,0,-40,0,0,24,0,0,-32,0,0, -40,0,0,-72,0,0,-48,0,0,48,0,0,-32,0,0,24,0,0,-88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61878 q^{2} +0.620447 q^{4} -0.812904 q^{5} -2.09960 q^{7} +2.23319 q^{8} +1.31591 q^{10} -1.37936 q^{11} +5.60334 q^{13} +3.39879 q^{14} -4.85594 q^{16} +0.00715563 q^{19} -0.504364 q^{20} +2.23288 q^{22} +6.20479 q^{23} -4.33919 q^{25} -9.07057 q^{26} -1.30269 q^{28} +0.436138 q^{29} -4.24842 q^{31} +3.39431 q^{32} +1.70677 q^{35} +0.923561 q^{37} -0.0115834 q^{38} -1.81537 q^{40} -6.05356 q^{41} -1.17902 q^{43} -0.855820 q^{44} -10.0442 q^{46} -5.43379 q^{47} -2.59168 q^{49} +7.02419 q^{50} +3.47658 q^{52} +12.1209 q^{53} +1.12129 q^{55} -4.68881 q^{56} -0.706011 q^{58} -7.91642 q^{59} -9.76442 q^{61} +6.87726 q^{62} +4.21724 q^{64} -4.55498 q^{65} +10.4241 q^{67} -2.76289 q^{70} +10.9333 q^{71} -9.64990 q^{73} -1.49504 q^{74} +0.00443969 q^{76} +2.89611 q^{77} -5.43506 q^{79} +3.94741 q^{80} +9.79938 q^{82} +1.28033 q^{83} +1.90858 q^{86} -3.08038 q^{88} +0.603172 q^{89} -11.7648 q^{91} +3.84974 q^{92} +8.79610 q^{94} -0.00581684 q^{95} +5.30194 q^{97} +4.19536 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 16 q^{7} - 16 q^{10} - 8 q^{13} + 24 q^{16} - 8 q^{19} - 56 q^{22} + 16 q^{25} - 16 q^{31} - 72 q^{37} - 72 q^{40} - 8 q^{43} - 40 q^{46} + 24 q^{49} - 32 q^{52} - 40 q^{55} - 72 q^{58}+ \cdots - 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61878 −1.14465 −0.572325 0.820027i \(-0.693958\pi\)
−0.572325 + 0.820027i \(0.693958\pi\)
\(3\) 0 0
\(4\) 0.620447 0.310224
\(5\) −0.812904 −0.363542 −0.181771 0.983341i \(-0.558183\pi\)
−0.181771 + 0.983341i \(0.558183\pi\)
\(6\) 0 0
\(7\) −2.09960 −0.793574 −0.396787 0.917911i \(-0.629875\pi\)
−0.396787 + 0.917911i \(0.629875\pi\)
\(8\) 2.23319 0.789553
\(9\) 0 0
\(10\) 1.31591 0.416128
\(11\) −1.37936 −0.415893 −0.207946 0.978140i \(-0.566678\pi\)
−0.207946 + 0.978140i \(0.566678\pi\)
\(12\) 0 0
\(13\) 5.60334 1.55409 0.777043 0.629447i \(-0.216718\pi\)
0.777043 + 0.629447i \(0.216718\pi\)
\(14\) 3.39879 0.908365
\(15\) 0 0
\(16\) −4.85594 −1.21398
\(17\) 0 0
\(18\) 0 0
\(19\) 0.00715563 0.00164162 0.000820808 1.00000i \(-0.499739\pi\)
0.000820808 1.00000i \(0.499739\pi\)
\(20\) −0.504364 −0.112779
\(21\) 0 0
\(22\) 2.23288 0.476052
\(23\) 6.20479 1.29379 0.646894 0.762580i \(-0.276068\pi\)
0.646894 + 0.762580i \(0.276068\pi\)
\(24\) 0 0
\(25\) −4.33919 −0.867837
\(26\) −9.07057 −1.77889
\(27\) 0 0
\(28\) −1.30269 −0.246185
\(29\) 0.436138 0.0809888 0.0404944 0.999180i \(-0.487107\pi\)
0.0404944 + 0.999180i \(0.487107\pi\)
\(30\) 0 0
\(31\) −4.24842 −0.763039 −0.381520 0.924361i \(-0.624599\pi\)
−0.381520 + 0.924361i \(0.624599\pi\)
\(32\) 3.39431 0.600035
\(33\) 0 0
\(34\) 0 0
\(35\) 1.70677 0.288497
\(36\) 0 0
\(37\) 0.923561 0.151833 0.0759163 0.997114i \(-0.475812\pi\)
0.0759163 + 0.997114i \(0.475812\pi\)
\(38\) −0.0115834 −0.00187907
\(39\) 0 0
\(40\) −1.81537 −0.287035
\(41\) −6.05356 −0.945407 −0.472704 0.881221i \(-0.656722\pi\)
−0.472704 + 0.881221i \(0.656722\pi\)
\(42\) 0 0
\(43\) −1.17902 −0.179799 −0.0898996 0.995951i \(-0.528655\pi\)
−0.0898996 + 0.995951i \(0.528655\pi\)
\(44\) −0.855820 −0.129020
\(45\) 0 0
\(46\) −10.0442 −1.48093
\(47\) −5.43379 −0.792599 −0.396300 0.918121i \(-0.629706\pi\)
−0.396300 + 0.918121i \(0.629706\pi\)
\(48\) 0 0
\(49\) −2.59168 −0.370240
\(50\) 7.02419 0.993370
\(51\) 0 0
\(52\) 3.47658 0.482114
\(53\) 12.1209 1.66494 0.832468 0.554073i \(-0.186927\pi\)
0.832468 + 0.554073i \(0.186927\pi\)
\(54\) 0 0
\(55\) 1.12129 0.151194
\(56\) −4.68881 −0.626569
\(57\) 0 0
\(58\) −0.706011 −0.0927038
\(59\) −7.91642 −1.03063 −0.515315 0.857001i \(-0.672325\pi\)
−0.515315 + 0.857001i \(0.672325\pi\)
\(60\) 0 0
\(61\) −9.76442 −1.25021 −0.625103 0.780542i \(-0.714943\pi\)
−0.625103 + 0.780542i \(0.714943\pi\)
\(62\) 6.87726 0.873413
\(63\) 0 0
\(64\) 4.21724 0.527155
\(65\) −4.55498 −0.564975
\(66\) 0 0
\(67\) 10.4241 1.27351 0.636753 0.771068i \(-0.280277\pi\)
0.636753 + 0.771068i \(0.280277\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.76289 −0.330228
\(71\) 10.9333 1.29754 0.648769 0.760985i \(-0.275284\pi\)
0.648769 + 0.760985i \(0.275284\pi\)
\(72\) 0 0
\(73\) −9.64990 −1.12943 −0.564717 0.825284i \(-0.691015\pi\)
−0.564717 + 0.825284i \(0.691015\pi\)
\(74\) −1.49504 −0.173795
\(75\) 0 0
\(76\) 0.00443969 0.000509268 0
\(77\) 2.89611 0.330042
\(78\) 0 0
\(79\) −5.43506 −0.611491 −0.305746 0.952113i \(-0.598906\pi\)
−0.305746 + 0.952113i \(0.598906\pi\)
\(80\) 3.94741 0.441334
\(81\) 0 0
\(82\) 9.79938 1.08216
\(83\) 1.28033 0.140535 0.0702675 0.997528i \(-0.477615\pi\)
0.0702675 + 0.997528i \(0.477615\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.90858 0.205807
\(87\) 0 0
\(88\) −3.08038 −0.328369
\(89\) 0.603172 0.0639361 0.0319681 0.999489i \(-0.489823\pi\)
0.0319681 + 0.999489i \(0.489823\pi\)
\(90\) 0 0
\(91\) −11.7648 −1.23328
\(92\) 3.84974 0.401364
\(93\) 0 0
\(94\) 8.79610 0.907249
\(95\) −0.00581684 −0.000596796 0
\(96\) 0 0
\(97\) 5.30194 0.538331 0.269165 0.963094i \(-0.413252\pi\)
0.269165 + 0.963094i \(0.413252\pi\)
\(98\) 4.19536 0.423795
\(99\) 0 0
\(100\) −2.69224 −0.269224
\(101\) 18.8690 1.87753 0.938767 0.344552i \(-0.111969\pi\)
0.938767 + 0.344552i \(0.111969\pi\)
\(102\) 0 0
\(103\) 15.7661 1.55348 0.776740 0.629821i \(-0.216872\pi\)
0.776740 + 0.629821i \(0.216872\pi\)
\(104\) 12.5133 1.22703
\(105\) 0 0
\(106\) −19.6211 −1.90577
\(107\) −2.14449 −0.207315 −0.103658 0.994613i \(-0.533055\pi\)
−0.103658 + 0.994613i \(0.533055\pi\)
\(108\) 0 0
\(109\) −2.38886 −0.228811 −0.114405 0.993434i \(-0.536496\pi\)
−0.114405 + 0.993434i \(0.536496\pi\)
\(110\) −1.81512 −0.173065
\(111\) 0 0
\(112\) 10.1955 0.963387
\(113\) −11.8064 −1.11066 −0.555328 0.831631i \(-0.687407\pi\)
−0.555328 + 0.831631i \(0.687407\pi\)
\(114\) 0 0
\(115\) −5.04390 −0.470346
\(116\) 0.270601 0.0251246
\(117\) 0 0
\(118\) 12.8149 1.17971
\(119\) 0 0
\(120\) 0 0
\(121\) −9.09736 −0.827033
\(122\) 15.8064 1.43105
\(123\) 0 0
\(124\) −2.63592 −0.236713
\(125\) 7.59186 0.679037
\(126\) 0 0
\(127\) 0.556912 0.0494179 0.0247090 0.999695i \(-0.492134\pi\)
0.0247090 + 0.999695i \(0.492134\pi\)
\(128\) −13.6154 −1.20344
\(129\) 0 0
\(130\) 7.37350 0.646699
\(131\) 14.8327 1.29594 0.647969 0.761667i \(-0.275619\pi\)
0.647969 + 0.761667i \(0.275619\pi\)
\(132\) 0 0
\(133\) −0.0150240 −0.00130274
\(134\) −16.8743 −1.45772
\(135\) 0 0
\(136\) 0 0
\(137\) −9.06382 −0.774374 −0.387187 0.922001i \(-0.626553\pi\)
−0.387187 + 0.922001i \(0.626553\pi\)
\(138\) 0 0
\(139\) −13.7396 −1.16537 −0.582687 0.812697i \(-0.697999\pi\)
−0.582687 + 0.812697i \(0.697999\pi\)
\(140\) 1.05896 0.0894986
\(141\) 0 0
\(142\) −17.6985 −1.48523
\(143\) −7.72903 −0.646334
\(144\) 0 0
\(145\) −0.354538 −0.0294428
\(146\) 15.6211 1.29281
\(147\) 0 0
\(148\) 0.573021 0.0471020
\(149\) 10.4965 0.859904 0.429952 0.902852i \(-0.358531\pi\)
0.429952 + 0.902852i \(0.358531\pi\)
\(150\) 0 0
\(151\) −7.94556 −0.646600 −0.323300 0.946296i \(-0.604792\pi\)
−0.323300 + 0.946296i \(0.604792\pi\)
\(152\) 0.0159799 0.00129614
\(153\) 0 0
\(154\) −4.68816 −0.377782
\(155\) 3.45356 0.277397
\(156\) 0 0
\(157\) 7.65841 0.611208 0.305604 0.952159i \(-0.401142\pi\)
0.305604 + 0.952159i \(0.401142\pi\)
\(158\) 8.79816 0.699944
\(159\) 0 0
\(160\) −2.75925 −0.218138
\(161\) −13.0276 −1.02672
\(162\) 0 0
\(163\) 7.88871 0.617891 0.308946 0.951080i \(-0.400024\pi\)
0.308946 + 0.951080i \(0.400024\pi\)
\(164\) −3.75591 −0.293288
\(165\) 0 0
\(166\) −2.07258 −0.160863
\(167\) 20.9901 1.62426 0.812131 0.583475i \(-0.198307\pi\)
0.812131 + 0.583475i \(0.198307\pi\)
\(168\) 0 0
\(169\) 18.3974 1.41519
\(170\) 0 0
\(171\) 0 0
\(172\) −0.731521 −0.0557779
\(173\) 22.0238 1.67444 0.837219 0.546868i \(-0.184180\pi\)
0.837219 + 0.546868i \(0.184180\pi\)
\(174\) 0 0
\(175\) 9.11056 0.688693
\(176\) 6.69809 0.504888
\(177\) 0 0
\(178\) −0.976403 −0.0731845
\(179\) −10.8811 −0.813292 −0.406646 0.913586i \(-0.633302\pi\)
−0.406646 + 0.913586i \(0.633302\pi\)
\(180\) 0 0
\(181\) −9.07488 −0.674531 −0.337265 0.941410i \(-0.609502\pi\)
−0.337265 + 0.941410i \(0.609502\pi\)
\(182\) 19.0446 1.41168
\(183\) 0 0
\(184\) 13.8565 1.02151
\(185\) −0.750767 −0.0551975
\(186\) 0 0
\(187\) 0 0
\(188\) −3.37138 −0.245883
\(189\) 0 0
\(190\) 0.00941619 0.000683122 0
\(191\) 8.60933 0.622949 0.311475 0.950254i \(-0.399177\pi\)
0.311475 + 0.950254i \(0.399177\pi\)
\(192\) 0 0
\(193\) −8.93418 −0.643096 −0.321548 0.946893i \(-0.604203\pi\)
−0.321548 + 0.946893i \(0.604203\pi\)
\(194\) −8.58268 −0.616200
\(195\) 0 0
\(196\) −1.60800 −0.114857
\(197\) 12.2661 0.873924 0.436962 0.899480i \(-0.356054\pi\)
0.436962 + 0.899480i \(0.356054\pi\)
\(198\) 0 0
\(199\) −22.5931 −1.60159 −0.800793 0.598942i \(-0.795588\pi\)
−0.800793 + 0.598942i \(0.795588\pi\)
\(200\) −9.69024 −0.685203
\(201\) 0 0
\(202\) −30.5447 −2.14912
\(203\) −0.915715 −0.0642706
\(204\) 0 0
\(205\) 4.92096 0.343695
\(206\) −25.5218 −1.77819
\(207\) 0 0
\(208\) −27.2095 −1.88664
\(209\) −0.00987020 −0.000682736 0
\(210\) 0 0
\(211\) −11.4966 −0.791460 −0.395730 0.918367i \(-0.629508\pi\)
−0.395730 + 0.918367i \(0.629508\pi\)
\(212\) 7.52038 0.516502
\(213\) 0 0
\(214\) 3.47145 0.237303
\(215\) 0.958432 0.0653645
\(216\) 0 0
\(217\) 8.91999 0.605528
\(218\) 3.86703 0.261908
\(219\) 0 0
\(220\) 0.695700 0.0469041
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0279 1.07331 0.536655 0.843802i \(-0.319688\pi\)
0.536655 + 0.843802i \(0.319688\pi\)
\(224\) −7.12669 −0.476172
\(225\) 0 0
\(226\) 19.1120 1.27131
\(227\) −5.78973 −0.384278 −0.192139 0.981368i \(-0.561542\pi\)
−0.192139 + 0.981368i \(0.561542\pi\)
\(228\) 0 0
\(229\) −11.7447 −0.776110 −0.388055 0.921636i \(-0.626853\pi\)
−0.388055 + 0.921636i \(0.626853\pi\)
\(230\) 8.16496 0.538382
\(231\) 0 0
\(232\) 0.973980 0.0639449
\(233\) −14.4563 −0.947066 −0.473533 0.880776i \(-0.657022\pi\)
−0.473533 + 0.880776i \(0.657022\pi\)
\(234\) 0 0
\(235\) 4.41715 0.288143
\(236\) −4.91172 −0.319726
\(237\) 0 0
\(238\) 0 0
\(239\) 29.6210 1.91602 0.958012 0.286727i \(-0.0925673\pi\)
0.958012 + 0.286727i \(0.0925673\pi\)
\(240\) 0 0
\(241\) −27.2211 −1.75346 −0.876732 0.480979i \(-0.840281\pi\)
−0.876732 + 0.480979i \(0.840281\pi\)
\(242\) 14.7266 0.946663
\(243\) 0 0
\(244\) −6.05831 −0.387843
\(245\) 2.10679 0.134598
\(246\) 0 0
\(247\) 0.0400955 0.00255121
\(248\) −9.48754 −0.602460
\(249\) 0 0
\(250\) −12.2896 −0.777259
\(251\) −22.5761 −1.42499 −0.712495 0.701677i \(-0.752435\pi\)
−0.712495 + 0.701677i \(0.752435\pi\)
\(252\) 0 0
\(253\) −8.55865 −0.538077
\(254\) −0.901517 −0.0565662
\(255\) 0 0
\(256\) 13.6059 0.850366
\(257\) 29.8412 1.86144 0.930721 0.365731i \(-0.119181\pi\)
0.930721 + 0.365731i \(0.119181\pi\)
\(258\) 0 0
\(259\) −1.93911 −0.120490
\(260\) −2.82612 −0.175269
\(261\) 0 0
\(262\) −24.0108 −1.48340
\(263\) −28.8696 −1.78018 −0.890088 0.455788i \(-0.849357\pi\)
−0.890088 + 0.455788i \(0.849357\pi\)
\(264\) 0 0
\(265\) −9.85314 −0.605273
\(266\) 0.0243205 0.00149119
\(267\) 0 0
\(268\) 6.46760 0.395071
\(269\) −8.75721 −0.533937 −0.266968 0.963705i \(-0.586022\pi\)
−0.266968 + 0.963705i \(0.586022\pi\)
\(270\) 0 0
\(271\) −22.6956 −1.37866 −0.689329 0.724448i \(-0.742095\pi\)
−0.689329 + 0.724448i \(0.742095\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 14.6723 0.886387
\(275\) 5.98530 0.360927
\(276\) 0 0
\(277\) 13.3862 0.804297 0.402148 0.915575i \(-0.368264\pi\)
0.402148 + 0.915575i \(0.368264\pi\)
\(278\) 22.2413 1.33395
\(279\) 0 0
\(280\) 3.81155 0.227784
\(281\) −21.9082 −1.30693 −0.653466 0.756956i \(-0.726686\pi\)
−0.653466 + 0.756956i \(0.726686\pi\)
\(282\) 0 0
\(283\) 8.54095 0.507707 0.253853 0.967243i \(-0.418302\pi\)
0.253853 + 0.967243i \(0.418302\pi\)
\(284\) 6.78351 0.402527
\(285\) 0 0
\(286\) 12.5116 0.739826
\(287\) 12.7101 0.750251
\(288\) 0 0
\(289\) 0 0
\(290\) 0.573919 0.0337017
\(291\) 0 0
\(292\) −5.98725 −0.350377
\(293\) −7.30183 −0.426577 −0.213289 0.976989i \(-0.568417\pi\)
−0.213289 + 0.976989i \(0.568417\pi\)
\(294\) 0 0
\(295\) 6.43529 0.374677
\(296\) 2.06249 0.119880
\(297\) 0 0
\(298\) −16.9915 −0.984289
\(299\) 34.7676 2.01066
\(300\) 0 0
\(301\) 2.47547 0.142684
\(302\) 12.8621 0.740131
\(303\) 0 0
\(304\) −0.0347473 −0.00199290
\(305\) 7.93754 0.454502
\(306\) 0 0
\(307\) 11.4855 0.655512 0.327756 0.944762i \(-0.393708\pi\)
0.327756 + 0.944762i \(0.393708\pi\)
\(308\) 1.79688 0.102387
\(309\) 0 0
\(310\) −5.59055 −0.317522
\(311\) −22.9552 −1.30167 −0.650834 0.759220i \(-0.725580\pi\)
−0.650834 + 0.759220i \(0.725580\pi\)
\(312\) 0 0
\(313\) −34.5357 −1.95207 −0.976036 0.217610i \(-0.930174\pi\)
−0.976036 + 0.217610i \(0.930174\pi\)
\(314\) −12.3973 −0.699619
\(315\) 0 0
\(316\) −3.37216 −0.189699
\(317\) 32.1677 1.80672 0.903360 0.428883i \(-0.141093\pi\)
0.903360 + 0.428883i \(0.141093\pi\)
\(318\) 0 0
\(319\) −0.601592 −0.0336827
\(320\) −3.42821 −0.191643
\(321\) 0 0
\(322\) 21.0888 1.17523
\(323\) 0 0
\(324\) 0 0
\(325\) −24.3139 −1.34869
\(326\) −12.7701 −0.707269
\(327\) 0 0
\(328\) −13.5188 −0.746449
\(329\) 11.4088 0.628986
\(330\) 0 0
\(331\) 17.5835 0.966476 0.483238 0.875489i \(-0.339461\pi\)
0.483238 + 0.875489i \(0.339461\pi\)
\(332\) 0.794380 0.0435973
\(333\) 0 0
\(334\) −33.9783 −1.85921
\(335\) −8.47379 −0.462973
\(336\) 0 0
\(337\) −26.4074 −1.43850 −0.719252 0.694749i \(-0.755515\pi\)
−0.719252 + 0.694749i \(0.755515\pi\)
\(338\) −29.7814 −1.61989
\(339\) 0 0
\(340\) 0 0
\(341\) 5.86011 0.317343
\(342\) 0 0
\(343\) 20.1387 1.08739
\(344\) −2.63298 −0.141961
\(345\) 0 0
\(346\) −35.6517 −1.91664
\(347\) −21.7865 −1.16956 −0.584781 0.811191i \(-0.698820\pi\)
−0.584781 + 0.811191i \(0.698820\pi\)
\(348\) 0 0
\(349\) −19.6719 −1.05301 −0.526505 0.850172i \(-0.676498\pi\)
−0.526505 + 0.850172i \(0.676498\pi\)
\(350\) −14.7480 −0.788313
\(351\) 0 0
\(352\) −4.68198 −0.249550
\(353\) −0.396746 −0.0211166 −0.0105583 0.999944i \(-0.503361\pi\)
−0.0105583 + 0.999944i \(0.503361\pi\)
\(354\) 0 0
\(355\) −8.88769 −0.471709
\(356\) 0.374236 0.0198345
\(357\) 0 0
\(358\) 17.6141 0.930935
\(359\) 19.0564 1.00576 0.502878 0.864357i \(-0.332274\pi\)
0.502878 + 0.864357i \(0.332274\pi\)
\(360\) 0 0
\(361\) −18.9999 −0.999997
\(362\) 14.6902 0.772101
\(363\) 0 0
\(364\) −7.29942 −0.382593
\(365\) 7.84444 0.410597
\(366\) 0 0
\(367\) 32.0678 1.67393 0.836963 0.547260i \(-0.184329\pi\)
0.836963 + 0.547260i \(0.184329\pi\)
\(368\) −30.1301 −1.57064
\(369\) 0 0
\(370\) 1.21533 0.0631818
\(371\) −25.4491 −1.32125
\(372\) 0 0
\(373\) −5.54108 −0.286906 −0.143453 0.989657i \(-0.545821\pi\)
−0.143453 + 0.989657i \(0.545821\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −12.1347 −0.625799
\(377\) 2.44383 0.125864
\(378\) 0 0
\(379\) 12.3097 0.632308 0.316154 0.948708i \(-0.397608\pi\)
0.316154 + 0.948708i \(0.397608\pi\)
\(380\) −0.00360904 −0.000185140 0
\(381\) 0 0
\(382\) −13.9366 −0.713059
\(383\) 8.72976 0.446070 0.223035 0.974810i \(-0.428404\pi\)
0.223035 + 0.974810i \(0.428404\pi\)
\(384\) 0 0
\(385\) −2.35426 −0.119984
\(386\) 14.4625 0.736120
\(387\) 0 0
\(388\) 3.28958 0.167003
\(389\) −0.863655 −0.0437891 −0.0218945 0.999760i \(-0.506970\pi\)
−0.0218945 + 0.999760i \(0.506970\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −5.78772 −0.292324
\(393\) 0 0
\(394\) −19.8561 −1.00034
\(395\) 4.41818 0.222303
\(396\) 0 0
\(397\) −14.8100 −0.743292 −0.371646 0.928375i \(-0.621206\pi\)
−0.371646 + 0.928375i \(0.621206\pi\)
\(398\) 36.5733 1.83325
\(399\) 0 0
\(400\) 21.0708 1.05354
\(401\) −25.6795 −1.28238 −0.641188 0.767384i \(-0.721558\pi\)
−0.641188 + 0.767384i \(0.721558\pi\)
\(402\) 0 0
\(403\) −23.8054 −1.18583
\(404\) 11.7072 0.582455
\(405\) 0 0
\(406\) 1.48234 0.0735674
\(407\) −1.27392 −0.0631461
\(408\) 0 0
\(409\) 33.0421 1.63383 0.816913 0.576761i \(-0.195684\pi\)
0.816913 + 0.576761i \(0.195684\pi\)
\(410\) −7.96595 −0.393410
\(411\) 0 0
\(412\) 9.78203 0.481926
\(413\) 16.6213 0.817882
\(414\) 0 0
\(415\) −1.04079 −0.0510903
\(416\) 19.0195 0.932507
\(417\) 0 0
\(418\) 0.0159777 0.000781494 0
\(419\) −3.02327 −0.147697 −0.0738483 0.997269i \(-0.523528\pi\)
−0.0738483 + 0.997269i \(0.523528\pi\)
\(420\) 0 0
\(421\) 7.79933 0.380116 0.190058 0.981773i \(-0.439132\pi\)
0.190058 + 0.981773i \(0.439132\pi\)
\(422\) 18.6105 0.905945
\(423\) 0 0
\(424\) 27.0683 1.31455
\(425\) 0 0
\(426\) 0 0
\(427\) 20.5014 0.992131
\(428\) −1.33054 −0.0643141
\(429\) 0 0
\(430\) −1.55149 −0.0748195
\(431\) −35.1509 −1.69316 −0.846579 0.532263i \(-0.821342\pi\)
−0.846579 + 0.532263i \(0.821342\pi\)
\(432\) 0 0
\(433\) −8.45280 −0.406216 −0.203108 0.979156i \(-0.565104\pi\)
−0.203108 + 0.979156i \(0.565104\pi\)
\(434\) −14.4395 −0.693118
\(435\) 0 0
\(436\) −1.48216 −0.0709825
\(437\) 0.0443992 0.00212390
\(438\) 0 0
\(439\) 3.78223 0.180516 0.0902580 0.995918i \(-0.471231\pi\)
0.0902580 + 0.995918i \(0.471231\pi\)
\(440\) 2.50405 0.119376
\(441\) 0 0
\(442\) 0 0
\(443\) −36.1780 −1.71887 −0.859433 0.511248i \(-0.829183\pi\)
−0.859433 + 0.511248i \(0.829183\pi\)
\(444\) 0 0
\(445\) −0.490321 −0.0232435
\(446\) −25.9457 −1.22856
\(447\) 0 0
\(448\) −8.85451 −0.418336
\(449\) 15.1134 0.713243 0.356622 0.934249i \(-0.383929\pi\)
0.356622 + 0.934249i \(0.383929\pi\)
\(450\) 0 0
\(451\) 8.35004 0.393188
\(452\) −7.32527 −0.344552
\(453\) 0 0
\(454\) 9.37230 0.439864
\(455\) 9.56363 0.448350
\(456\) 0 0
\(457\) −34.7220 −1.62423 −0.812113 0.583501i \(-0.801682\pi\)
−0.812113 + 0.583501i \(0.801682\pi\)
\(458\) 19.0120 0.888374
\(459\) 0 0
\(460\) −3.12947 −0.145912
\(461\) −23.1121 −1.07644 −0.538218 0.842806i \(-0.680902\pi\)
−0.538218 + 0.842806i \(0.680902\pi\)
\(462\) 0 0
\(463\) −17.1158 −0.795437 −0.397719 0.917507i \(-0.630198\pi\)
−0.397719 + 0.917507i \(0.630198\pi\)
\(464\) −2.11786 −0.0983192
\(465\) 0 0
\(466\) 23.4016 1.08406
\(467\) 17.0663 0.789736 0.394868 0.918738i \(-0.370790\pi\)
0.394868 + 0.918738i \(0.370790\pi\)
\(468\) 0 0
\(469\) −21.8864 −1.01062
\(470\) −7.15039 −0.329823
\(471\) 0 0
\(472\) −17.6789 −0.813737
\(473\) 1.62630 0.0747772
\(474\) 0 0
\(475\) −0.0310496 −0.00142466
\(476\) 0 0
\(477\) 0 0
\(478\) −47.9499 −2.19318
\(479\) −24.3984 −1.11479 −0.557397 0.830246i \(-0.688200\pi\)
−0.557397 + 0.830246i \(0.688200\pi\)
\(480\) 0 0
\(481\) 5.17503 0.235961
\(482\) 44.0649 2.00710
\(483\) 0 0
\(484\) −5.64443 −0.256565
\(485\) −4.30997 −0.195706
\(486\) 0 0
\(487\) −17.2386 −0.781154 −0.390577 0.920570i \(-0.627724\pi\)
−0.390577 + 0.920570i \(0.627724\pi\)
\(488\) −21.8058 −0.987103
\(489\) 0 0
\(490\) −3.41042 −0.154067
\(491\) 11.6234 0.524558 0.262279 0.964992i \(-0.415526\pi\)
0.262279 + 0.964992i \(0.415526\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.0649057 −0.00292025
\(495\) 0 0
\(496\) 20.6301 0.926318
\(497\) −22.9555 −1.02969
\(498\) 0 0
\(499\) 19.9655 0.893778 0.446889 0.894589i \(-0.352532\pi\)
0.446889 + 0.894589i \(0.352532\pi\)
\(500\) 4.71035 0.210653
\(501\) 0 0
\(502\) 36.5457 1.63111
\(503\) 11.3550 0.506295 0.253148 0.967428i \(-0.418534\pi\)
0.253148 + 0.967428i \(0.418534\pi\)
\(504\) 0 0
\(505\) −15.3387 −0.682562
\(506\) 13.8546 0.615910
\(507\) 0 0
\(508\) 0.345534 0.0153306
\(509\) −9.82575 −0.435519 −0.217759 0.976002i \(-0.569875\pi\)
−0.217759 + 0.976002i \(0.569875\pi\)
\(510\) 0 0
\(511\) 20.2609 0.896290
\(512\) 5.20592 0.230071
\(513\) 0 0
\(514\) −48.3063 −2.13070
\(515\) −12.8163 −0.564755
\(516\) 0 0
\(517\) 7.49515 0.329636
\(518\) 3.13899 0.137919
\(519\) 0 0
\(520\) −10.1721 −0.446078
\(521\) −16.6105 −0.727717 −0.363859 0.931454i \(-0.618541\pi\)
−0.363859 + 0.931454i \(0.618541\pi\)
\(522\) 0 0
\(523\) 13.4702 0.589012 0.294506 0.955650i \(-0.404845\pi\)
0.294506 + 0.955650i \(0.404845\pi\)
\(524\) 9.20289 0.402030
\(525\) 0 0
\(526\) 46.7335 2.03768
\(527\) 0 0
\(528\) 0 0
\(529\) 15.4994 0.673888
\(530\) 15.9501 0.692826
\(531\) 0 0
\(532\) −0.00932158 −0.000404142 0
\(533\) −33.9202 −1.46925
\(534\) 0 0
\(535\) 1.74326 0.0753678
\(536\) 23.2790 1.00550
\(537\) 0 0
\(538\) 14.1760 0.611171
\(539\) 3.57486 0.153980
\(540\) 0 0
\(541\) 24.3360 1.04629 0.523143 0.852245i \(-0.324759\pi\)
0.523143 + 0.852245i \(0.324759\pi\)
\(542\) 36.7391 1.57808
\(543\) 0 0
\(544\) 0 0
\(545\) 1.94191 0.0831823
\(546\) 0 0
\(547\) 23.9143 1.02250 0.511250 0.859432i \(-0.329183\pi\)
0.511250 + 0.859432i \(0.329183\pi\)
\(548\) −5.62362 −0.240229
\(549\) 0 0
\(550\) −9.68889 −0.413136
\(551\) 0.00312084 0.000132952 0
\(552\) 0 0
\(553\) 11.4114 0.485264
\(554\) −21.6692 −0.920638
\(555\) 0 0
\(556\) −8.52467 −0.361526
\(557\) −0.00668957 −0.000283446 0 −0.000141723 1.00000i \(-0.500045\pi\)
−0.000141723 1.00000i \(0.500045\pi\)
\(558\) 0 0
\(559\) −6.60646 −0.279424
\(560\) −8.28799 −0.350231
\(561\) 0 0
\(562\) 35.4645 1.49598
\(563\) 9.81215 0.413533 0.206766 0.978390i \(-0.433706\pi\)
0.206766 + 0.978390i \(0.433706\pi\)
\(564\) 0 0
\(565\) 9.59750 0.403770
\(566\) −13.8259 −0.581146
\(567\) 0 0
\(568\) 24.4161 1.02448
\(569\) −14.8826 −0.623910 −0.311955 0.950097i \(-0.600984\pi\)
−0.311955 + 0.950097i \(0.600984\pi\)
\(570\) 0 0
\(571\) 18.3999 0.770012 0.385006 0.922914i \(-0.374199\pi\)
0.385006 + 0.922914i \(0.374199\pi\)
\(572\) −4.79545 −0.200508
\(573\) 0 0
\(574\) −20.5748 −0.858774
\(575\) −26.9237 −1.12280
\(576\) 0 0
\(577\) −17.1344 −0.713316 −0.356658 0.934235i \(-0.616084\pi\)
−0.356658 + 0.934235i \(0.616084\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −0.219972 −0.00913385
\(581\) −2.68819 −0.111525
\(582\) 0 0
\(583\) −16.7191 −0.692435
\(584\) −21.5501 −0.891748
\(585\) 0 0
\(586\) 11.8200 0.488282
\(587\) 4.31079 0.177925 0.0889626 0.996035i \(-0.471645\pi\)
0.0889626 + 0.996035i \(0.471645\pi\)
\(588\) 0 0
\(589\) −0.0304002 −0.00125262
\(590\) −10.4173 −0.428874
\(591\) 0 0
\(592\) −4.48476 −0.184322
\(593\) 18.9392 0.777741 0.388871 0.921292i \(-0.372865\pi\)
0.388871 + 0.921292i \(0.372865\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.51250 0.266762
\(597\) 0 0
\(598\) −56.2810 −2.30150
\(599\) 1.82078 0.0743950 0.0371975 0.999308i \(-0.488157\pi\)
0.0371975 + 0.999308i \(0.488157\pi\)
\(600\) 0 0
\(601\) −28.8295 −1.17598 −0.587990 0.808869i \(-0.700080\pi\)
−0.587990 + 0.808869i \(0.700080\pi\)
\(602\) −4.00725 −0.163323
\(603\) 0 0
\(604\) −4.92980 −0.200591
\(605\) 7.39528 0.300661
\(606\) 0 0
\(607\) 0.229266 0.00930562 0.00465281 0.999989i \(-0.498519\pi\)
0.00465281 + 0.999989i \(0.498519\pi\)
\(608\) 0.0242885 0.000985027 0
\(609\) 0 0
\(610\) −12.8491 −0.520246
\(611\) −30.4474 −1.23177
\(612\) 0 0
\(613\) −34.9225 −1.41051 −0.705253 0.708956i \(-0.749166\pi\)
−0.705253 + 0.708956i \(0.749166\pi\)
\(614\) −18.5925 −0.750332
\(615\) 0 0
\(616\) 6.46756 0.260585
\(617\) −3.02767 −0.121889 −0.0609447 0.998141i \(-0.519411\pi\)
−0.0609447 + 0.998141i \(0.519411\pi\)
\(618\) 0 0
\(619\) −4.39550 −0.176670 −0.0883350 0.996091i \(-0.528155\pi\)
−0.0883350 + 0.996091i \(0.528155\pi\)
\(620\) 2.14275 0.0860549
\(621\) 0 0
\(622\) 37.1593 1.48995
\(623\) −1.26642 −0.0507381
\(624\) 0 0
\(625\) 15.5245 0.620979
\(626\) 55.9056 2.23444
\(627\) 0 0
\(628\) 4.75164 0.189611
\(629\) 0 0
\(630\) 0 0
\(631\) 9.86746 0.392817 0.196409 0.980522i \(-0.437072\pi\)
0.196409 + 0.980522i \(0.437072\pi\)
\(632\) −12.1375 −0.482805
\(633\) 0 0
\(634\) −52.0725 −2.06806
\(635\) −0.452716 −0.0179655
\(636\) 0 0
\(637\) −14.5221 −0.575385
\(638\) 0.973844 0.0385549
\(639\) 0 0
\(640\) 11.0680 0.437502
\(641\) −24.1140 −0.952446 −0.476223 0.879325i \(-0.657994\pi\)
−0.476223 + 0.879325i \(0.657994\pi\)
\(642\) 0 0
\(643\) −0.484669 −0.0191135 −0.00955674 0.999954i \(-0.503042\pi\)
−0.00955674 + 0.999954i \(0.503042\pi\)
\(644\) −8.08292 −0.318512
\(645\) 0 0
\(646\) 0 0
\(647\) −11.3102 −0.444651 −0.222326 0.974972i \(-0.571365\pi\)
−0.222326 + 0.974972i \(0.571365\pi\)
\(648\) 0 0
\(649\) 10.9196 0.428632
\(650\) 39.3589 1.54378
\(651\) 0 0
\(652\) 4.89453 0.191684
\(653\) −43.0687 −1.68541 −0.842705 0.538376i \(-0.819038\pi\)
−0.842705 + 0.538376i \(0.819038\pi\)
\(654\) 0 0
\(655\) −12.0575 −0.471127
\(656\) 29.3957 1.14771
\(657\) 0 0
\(658\) −18.4683 −0.719969
\(659\) −48.4534 −1.88748 −0.943738 0.330695i \(-0.892717\pi\)
−0.943738 + 0.330695i \(0.892717\pi\)
\(660\) 0 0
\(661\) 42.4555 1.65133 0.825663 0.564164i \(-0.190801\pi\)
0.825663 + 0.564164i \(0.190801\pi\)
\(662\) −28.4638 −1.10628
\(663\) 0 0
\(664\) 2.85923 0.110960
\(665\) 0.0122130 0.000473602 0
\(666\) 0 0
\(667\) 2.70615 0.104782
\(668\) 13.0232 0.503884
\(669\) 0 0
\(670\) 13.7172 0.529941
\(671\) 13.4687 0.519952
\(672\) 0 0
\(673\) 7.75060 0.298764 0.149382 0.988780i \(-0.452272\pi\)
0.149382 + 0.988780i \(0.452272\pi\)
\(674\) 42.7478 1.64658
\(675\) 0 0
\(676\) 11.4146 0.439024
\(677\) −40.9960 −1.57560 −0.787802 0.615929i \(-0.788781\pi\)
−0.787802 + 0.615929i \(0.788781\pi\)
\(678\) 0 0
\(679\) −11.1320 −0.427205
\(680\) 0 0
\(681\) 0 0
\(682\) −9.48622 −0.363246
\(683\) −36.7584 −1.40652 −0.703260 0.710932i \(-0.748273\pi\)
−0.703260 + 0.710932i \(0.748273\pi\)
\(684\) 0 0
\(685\) 7.36801 0.281517
\(686\) −32.6001 −1.24468
\(687\) 0 0
\(688\) 5.72526 0.218273
\(689\) 67.9176 2.58745
\(690\) 0 0
\(691\) 9.91773 0.377288 0.188644 0.982046i \(-0.439591\pi\)
0.188644 + 0.982046i \(0.439591\pi\)
\(692\) 13.6646 0.519450
\(693\) 0 0
\(694\) 35.2676 1.33874
\(695\) 11.1689 0.423662
\(696\) 0 0
\(697\) 0 0
\(698\) 31.8444 1.20533
\(699\) 0 0
\(700\) 5.65262 0.213649
\(701\) −18.8994 −0.713819 −0.356910 0.934139i \(-0.616170\pi\)
−0.356910 + 0.934139i \(0.616170\pi\)
\(702\) 0 0
\(703\) 0.00660867 0.000249251 0
\(704\) −5.81709 −0.219240
\(705\) 0 0
\(706\) 0.642244 0.0241712
\(707\) −39.6173 −1.48996
\(708\) 0 0
\(709\) 16.9622 0.637030 0.318515 0.947918i \(-0.396816\pi\)
0.318515 + 0.947918i \(0.396816\pi\)
\(710\) 14.3872 0.539942
\(711\) 0 0
\(712\) 1.34700 0.0504809
\(713\) −26.3606 −0.987211
\(714\) 0 0
\(715\) 6.28296 0.234969
\(716\) −6.75115 −0.252302
\(717\) 0 0
\(718\) −30.8481 −1.15124
\(719\) −1.11134 −0.0414459 −0.0207230 0.999785i \(-0.506597\pi\)
−0.0207230 + 0.999785i \(0.506597\pi\)
\(720\) 0 0
\(721\) −33.1025 −1.23280
\(722\) 30.7567 1.14465
\(723\) 0 0
\(724\) −5.63048 −0.209255
\(725\) −1.89248 −0.0702851
\(726\) 0 0
\(727\) 31.4813 1.16758 0.583788 0.811906i \(-0.301570\pi\)
0.583788 + 0.811906i \(0.301570\pi\)
\(728\) −26.2730 −0.973742
\(729\) 0 0
\(730\) −12.6984 −0.469989
\(731\) 0 0
\(732\) 0 0
\(733\) 16.1073 0.594935 0.297467 0.954732i \(-0.403858\pi\)
0.297467 + 0.954732i \(0.403858\pi\)
\(734\) −51.9107 −1.91606
\(735\) 0 0
\(736\) 21.0610 0.776318
\(737\) −14.3786 −0.529642
\(738\) 0 0
\(739\) 28.8022 1.05951 0.529753 0.848152i \(-0.322285\pi\)
0.529753 + 0.848152i \(0.322285\pi\)
\(740\) −0.465811 −0.0171236
\(741\) 0 0
\(742\) 41.1964 1.51237
\(743\) −44.6548 −1.63823 −0.819113 0.573632i \(-0.805534\pi\)
−0.819113 + 0.573632i \(0.805534\pi\)
\(744\) 0 0
\(745\) −8.53262 −0.312611
\(746\) 8.96979 0.328407
\(747\) 0 0
\(748\) 0 0
\(749\) 4.50256 0.164520
\(750\) 0 0
\(751\) −38.1637 −1.39261 −0.696306 0.717745i \(-0.745174\pi\)
−0.696306 + 0.717745i \(0.745174\pi\)
\(752\) 26.3861 0.962203
\(753\) 0 0
\(754\) −3.95602 −0.144070
\(755\) 6.45898 0.235066
\(756\) 0 0
\(757\) −21.7159 −0.789278 −0.394639 0.918836i \(-0.629130\pi\)
−0.394639 + 0.918836i \(0.629130\pi\)
\(758\) −19.9267 −0.723772
\(759\) 0 0
\(760\) −0.0129901 −0.000471202 0
\(761\) −42.8323 −1.55267 −0.776334 0.630321i \(-0.782923\pi\)
−0.776334 + 0.630321i \(0.782923\pi\)
\(762\) 0 0
\(763\) 5.01564 0.181578
\(764\) 5.34163 0.193254
\(765\) 0 0
\(766\) −14.1316 −0.510594
\(767\) −44.3584 −1.60169
\(768\) 0 0
\(769\) 16.6231 0.599443 0.299721 0.954027i \(-0.403106\pi\)
0.299721 + 0.954027i \(0.403106\pi\)
\(770\) 3.81102 0.137340
\(771\) 0 0
\(772\) −5.54319 −0.199504
\(773\) 6.93237 0.249340 0.124670 0.992198i \(-0.460213\pi\)
0.124670 + 0.992198i \(0.460213\pi\)
\(774\) 0 0
\(775\) 18.4347 0.662194
\(776\) 11.8403 0.425041
\(777\) 0 0
\(778\) 1.39807 0.0501232
\(779\) −0.0433171 −0.00155199
\(780\) 0 0
\(781\) −15.0809 −0.539637
\(782\) 0 0
\(783\) 0 0
\(784\) 12.5850 0.449466
\(785\) −6.22555 −0.222199
\(786\) 0 0
\(787\) 30.1387 1.07433 0.537164 0.843478i \(-0.319496\pi\)
0.537164 + 0.843478i \(0.319496\pi\)
\(788\) 7.61047 0.271112
\(789\) 0 0
\(790\) −7.15206 −0.254459
\(791\) 24.7888 0.881388
\(792\) 0 0
\(793\) −54.7134 −1.94293
\(794\) 23.9741 0.850809
\(795\) 0 0
\(796\) −14.0178 −0.496849
\(797\) 0.412813 0.0146226 0.00731128 0.999973i \(-0.497673\pi\)
0.00731128 + 0.999973i \(0.497673\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −14.7286 −0.520733
\(801\) 0 0
\(802\) 41.5695 1.46787
\(803\) 13.3107 0.469724
\(804\) 0 0
\(805\) 10.5902 0.373254
\(806\) 38.5356 1.35736
\(807\) 0 0
\(808\) 42.1381 1.48241
\(809\) −18.8299 −0.662023 −0.331011 0.943627i \(-0.607390\pi\)
−0.331011 + 0.943627i \(0.607390\pi\)
\(810\) 0 0
\(811\) −54.4668 −1.91259 −0.956294 0.292408i \(-0.905544\pi\)
−0.956294 + 0.292408i \(0.905544\pi\)
\(812\) −0.568153 −0.0199383
\(813\) 0 0
\(814\) 2.06220 0.0722802
\(815\) −6.41276 −0.224629
\(816\) 0 0
\(817\) −0.00843665 −0.000295161 0
\(818\) −53.4878 −1.87016
\(819\) 0 0
\(820\) 3.05320 0.106622
\(821\) −5.72330 −0.199744 −0.0998722 0.995000i \(-0.531843\pi\)
−0.0998722 + 0.995000i \(0.531843\pi\)
\(822\) 0 0
\(823\) −38.8966 −1.35585 −0.677925 0.735131i \(-0.737121\pi\)
−0.677925 + 0.735131i \(0.737121\pi\)
\(824\) 35.2087 1.22655
\(825\) 0 0
\(826\) −26.9063 −0.936188
\(827\) 37.3432 1.29855 0.649275 0.760553i \(-0.275072\pi\)
0.649275 + 0.760553i \(0.275072\pi\)
\(828\) 0 0
\(829\) 14.6224 0.507855 0.253928 0.967223i \(-0.418277\pi\)
0.253928 + 0.967223i \(0.418277\pi\)
\(830\) 1.68481 0.0584805
\(831\) 0 0
\(832\) 23.6306 0.819244
\(833\) 0 0
\(834\) 0 0
\(835\) −17.0629 −0.590487
\(836\) −0.00612394 −0.000211801 0
\(837\) 0 0
\(838\) 4.89401 0.169061
\(839\) 8.93026 0.308307 0.154153 0.988047i \(-0.450735\pi\)
0.154153 + 0.988047i \(0.450735\pi\)
\(840\) 0 0
\(841\) −28.8098 −0.993441
\(842\) −12.6254 −0.435100
\(843\) 0 0
\(844\) −7.13304 −0.245529
\(845\) −14.9553 −0.514479
\(846\) 0 0
\(847\) 19.1008 0.656312
\(848\) −58.8584 −2.02121
\(849\) 0 0
\(850\) 0 0
\(851\) 5.73051 0.196439
\(852\) 0 0
\(853\) 22.9810 0.786853 0.393426 0.919356i \(-0.371290\pi\)
0.393426 + 0.919356i \(0.371290\pi\)
\(854\) −33.1872 −1.13564
\(855\) 0 0
\(856\) −4.78905 −0.163686
\(857\) 9.41958 0.321767 0.160883 0.986973i \(-0.448566\pi\)
0.160883 + 0.986973i \(0.448566\pi\)
\(858\) 0 0
\(859\) −31.8111 −1.08538 −0.542690 0.839933i \(-0.682594\pi\)
−0.542690 + 0.839933i \(0.682594\pi\)
\(860\) 0.594656 0.0202776
\(861\) 0 0
\(862\) 56.9015 1.93807
\(863\) 28.4968 0.970041 0.485020 0.874503i \(-0.338812\pi\)
0.485020 + 0.874503i \(0.338812\pi\)
\(864\) 0 0
\(865\) −17.9032 −0.608728
\(866\) 13.6832 0.464975
\(867\) 0 0
\(868\) 5.53438 0.187849
\(869\) 7.49690 0.254315
\(870\) 0 0
\(871\) 58.4098 1.97914
\(872\) −5.33477 −0.180658
\(873\) 0 0
\(874\) −0.0718725 −0.00243112
\(875\) −15.9399 −0.538866
\(876\) 0 0
\(877\) −53.5156 −1.80709 −0.903546 0.428491i \(-0.859045\pi\)
−0.903546 + 0.428491i \(0.859045\pi\)
\(878\) −6.12260 −0.206628
\(879\) 0 0
\(880\) −5.44491 −0.183548
\(881\) 33.8902 1.14179 0.570895 0.821023i \(-0.306596\pi\)
0.570895 + 0.821023i \(0.306596\pi\)
\(882\) 0 0
\(883\) 2.09301 0.0704353 0.0352177 0.999380i \(-0.488788\pi\)
0.0352177 + 0.999380i \(0.488788\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 58.5641 1.96750
\(887\) 10.1669 0.341371 0.170686 0.985326i \(-0.445402\pi\)
0.170686 + 0.985326i \(0.445402\pi\)
\(888\) 0 0
\(889\) −1.16929 −0.0392168
\(890\) 0.793722 0.0266056
\(891\) 0 0
\(892\) 9.94448 0.332966
\(893\) −0.0388822 −0.00130114
\(894\) 0 0
\(895\) 8.84529 0.295666
\(896\) 28.5869 0.955021
\(897\) 0 0
\(898\) −24.4652 −0.816414
\(899\) −1.85290 −0.0617976
\(900\) 0 0
\(901\) 0 0
\(902\) −13.5169 −0.450063
\(903\) 0 0
\(904\) −26.3660 −0.876921
\(905\) 7.37701 0.245220
\(906\) 0 0
\(907\) 16.2158 0.538437 0.269218 0.963079i \(-0.413235\pi\)
0.269218 + 0.963079i \(0.413235\pi\)
\(908\) −3.59222 −0.119212
\(909\) 0 0
\(910\) −15.4814 −0.513204
\(911\) 7.88531 0.261252 0.130626 0.991432i \(-0.458301\pi\)
0.130626 + 0.991432i \(0.458301\pi\)
\(912\) 0 0
\(913\) −1.76604 −0.0584475
\(914\) 56.2072 1.85917
\(915\) 0 0
\(916\) −7.28695 −0.240768
\(917\) −31.1427 −1.02842
\(918\) 0 0
\(919\) −55.1843 −1.82036 −0.910181 0.414210i \(-0.864058\pi\)
−0.910181 + 0.414210i \(0.864058\pi\)
\(920\) −11.2640 −0.371363
\(921\) 0 0
\(922\) 37.4133 1.23214
\(923\) 61.2627 2.01649
\(924\) 0 0
\(925\) −4.00751 −0.131766
\(926\) 27.7067 0.910497
\(927\) 0 0
\(928\) 1.48039 0.0485961
\(929\) 0.749896 0.0246033 0.0123016 0.999924i \(-0.496084\pi\)
0.0123016 + 0.999924i \(0.496084\pi\)
\(930\) 0 0
\(931\) −0.0185451 −0.000607792 0
\(932\) −8.96939 −0.293802
\(933\) 0 0
\(934\) −27.6266 −0.903971
\(935\) 0 0
\(936\) 0 0
\(937\) −46.3906 −1.51551 −0.757757 0.652537i \(-0.773705\pi\)
−0.757757 + 0.652537i \(0.773705\pi\)
\(938\) 35.4293 1.15681
\(939\) 0 0
\(940\) 2.74061 0.0893887
\(941\) −15.7019 −0.511866 −0.255933 0.966694i \(-0.582383\pi\)
−0.255933 + 0.966694i \(0.582383\pi\)
\(942\) 0 0
\(943\) −37.5611 −1.22316
\(944\) 38.4417 1.25117
\(945\) 0 0
\(946\) −2.63262 −0.0855937
\(947\) −38.7968 −1.26073 −0.630363 0.776300i \(-0.717094\pi\)
−0.630363 + 0.776300i \(0.717094\pi\)
\(948\) 0 0
\(949\) −54.0717 −1.75524
\(950\) 0.0502625 0.00163073
\(951\) 0 0
\(952\) 0 0
\(953\) −17.7642 −0.575439 −0.287719 0.957715i \(-0.592897\pi\)
−0.287719 + 0.957715i \(0.592897\pi\)
\(954\) 0 0
\(955\) −6.99856 −0.226468
\(956\) 18.3783 0.594396
\(957\) 0 0
\(958\) 39.4957 1.27605
\(959\) 19.0304 0.614523
\(960\) 0 0
\(961\) −12.9509 −0.417771
\(962\) −8.37723 −0.270093
\(963\) 0 0
\(964\) −16.8892 −0.543966
\(965\) 7.26263 0.233792
\(966\) 0 0
\(967\) −47.2166 −1.51838 −0.759191 0.650867i \(-0.774405\pi\)
−0.759191 + 0.650867i \(0.774405\pi\)
\(968\) −20.3162 −0.652986
\(969\) 0 0
\(970\) 6.97689 0.224015
\(971\) 2.48379 0.0797085 0.0398542 0.999206i \(-0.487311\pi\)
0.0398542 + 0.999206i \(0.487311\pi\)
\(972\) 0 0
\(973\) 28.8476 0.924811
\(974\) 27.9054 0.894148
\(975\) 0 0
\(976\) 47.4154 1.51773
\(977\) 2.64911 0.0847525 0.0423762 0.999102i \(-0.486507\pi\)
0.0423762 + 0.999102i \(0.486507\pi\)
\(978\) 0 0
\(979\) −0.831992 −0.0265906
\(980\) 1.30715 0.0417554
\(981\) 0 0
\(982\) −18.8158 −0.600435
\(983\) −25.1160 −0.801075 −0.400538 0.916280i \(-0.631177\pi\)
−0.400538 + 0.916280i \(0.631177\pi\)
\(984\) 0 0
\(985\) −9.97117 −0.317708
\(986\) 0 0
\(987\) 0 0
\(988\) 0.0248771 0.000791446 0
\(989\) −7.31558 −0.232622
\(990\) 0 0
\(991\) 9.88780 0.314096 0.157048 0.987591i \(-0.449802\pi\)
0.157048 + 0.987591i \(0.449802\pi\)
\(992\) −14.4205 −0.457850
\(993\) 0 0
\(994\) 37.1598 1.17864
\(995\) 18.3661 0.582243
\(996\) 0 0
\(997\) −30.3886 −0.962416 −0.481208 0.876606i \(-0.659802\pi\)
−0.481208 + 0.876606i \(0.659802\pi\)
\(998\) −32.3197 −1.02306
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.ce.1.7 24
3.2 odd 2 inner 7803.2.a.ce.1.18 24
17.5 odd 16 459.2.l.b.433.9 yes 48
17.7 odd 16 459.2.l.b.406.9 yes 48
17.16 even 2 7803.2.a.cf.1.7 24
51.5 even 16 459.2.l.b.433.4 yes 48
51.41 even 16 459.2.l.b.406.4 48
51.50 odd 2 7803.2.a.cf.1.18 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.b.406.4 48 51.41 even 16
459.2.l.b.406.9 yes 48 17.7 odd 16
459.2.l.b.433.4 yes 48 51.5 even 16
459.2.l.b.433.9 yes 48 17.5 odd 16
7803.2.a.ce.1.7 24 1.1 even 1 trivial
7803.2.a.ce.1.18 24 3.2 odd 2 inner
7803.2.a.cf.1.7 24 17.16 even 2
7803.2.a.cf.1.18 24 51.50 odd 2