Properties

Label 7803.2.a.ca.1.13
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,6,0,12,3,0,-3,18,0,0,-6,0,-3,-3,0,6,0,0,-3,-6,0,12,3,0,6, -24,0,-9,6,0,0,42,0,0,33,0,0,36,0,-15,0,0,-3,18,0,-12,24,0,18,42,0,-12, 48,0,-3,15,0,12,18,0,0,-63,0,30,-24,0,12,0,0,51,21,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 6 x^{14} - 3 x^{13} + 76 x^{12} - 69 x^{11} - 354 x^{10} + 523 x^{9} + 720 x^{8} - 1437 x^{7} + \cdots - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(2.32100\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32100 q^{2} +3.38702 q^{4} +3.93643 q^{5} +4.64937 q^{7} +3.21926 q^{8} +9.13644 q^{10} +3.08721 q^{11} -3.71402 q^{13} +10.7912 q^{14} +0.697859 q^{16} -5.38802 q^{19} +13.3328 q^{20} +7.16540 q^{22} -3.50014 q^{23} +10.4955 q^{25} -8.62022 q^{26} +15.7475 q^{28} -0.595460 q^{29} -4.02969 q^{31} -4.81880 q^{32} +18.3019 q^{35} +1.09685 q^{37} -12.5056 q^{38} +12.6724 q^{40} -2.62337 q^{41} +7.81087 q^{43} +10.4564 q^{44} -8.12381 q^{46} -2.55512 q^{47} +14.6167 q^{49} +24.3600 q^{50} -12.5795 q^{52} +12.9031 q^{53} +12.1526 q^{55} +14.9676 q^{56} -1.38206 q^{58} -8.06452 q^{59} -2.27876 q^{61} -9.35288 q^{62} -12.5801 q^{64} -14.6200 q^{65} +10.1892 q^{67} +42.4787 q^{70} +11.5168 q^{71} +13.9430 q^{73} +2.54579 q^{74} -18.2493 q^{76} +14.3536 q^{77} -0.886611 q^{79} +2.74707 q^{80} -6.08883 q^{82} -7.23859 q^{83} +18.1290 q^{86} +9.93855 q^{88} -7.65382 q^{89} -17.2679 q^{91} -11.8550 q^{92} -5.93042 q^{94} -21.2096 q^{95} -0.528318 q^{97} +33.9252 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 6 q^{2} + 12 q^{4} + 3 q^{5} - 3 q^{7} + 18 q^{8} - 6 q^{11} - 3 q^{13} - 3 q^{14} + 6 q^{16} - 3 q^{19} - 6 q^{20} + 12 q^{22} + 3 q^{23} + 6 q^{25} - 24 q^{26} - 9 q^{28} + 6 q^{29} + 42 q^{32}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32100 1.64119 0.820596 0.571509i \(-0.193642\pi\)
0.820596 + 0.571509i \(0.193642\pi\)
\(3\) 0 0
\(4\) 3.38702 1.69351
\(5\) 3.93643 1.76043 0.880213 0.474579i \(-0.157400\pi\)
0.880213 + 0.474579i \(0.157400\pi\)
\(6\) 0 0
\(7\) 4.64937 1.75730 0.878649 0.477468i \(-0.158445\pi\)
0.878649 + 0.477468i \(0.158445\pi\)
\(8\) 3.21926 1.13818
\(9\) 0 0
\(10\) 9.13644 2.88920
\(11\) 3.08721 0.930829 0.465415 0.885093i \(-0.345905\pi\)
0.465415 + 0.885093i \(0.345905\pi\)
\(12\) 0 0
\(13\) −3.71402 −1.03008 −0.515042 0.857165i \(-0.672224\pi\)
−0.515042 + 0.857165i \(0.672224\pi\)
\(14\) 10.7912 2.88406
\(15\) 0 0
\(16\) 0.697859 0.174465
\(17\) 0 0
\(18\) 0 0
\(19\) −5.38802 −1.23610 −0.618049 0.786140i \(-0.712077\pi\)
−0.618049 + 0.786140i \(0.712077\pi\)
\(20\) 13.3328 2.98130
\(21\) 0 0
\(22\) 7.16540 1.52767
\(23\) −3.50014 −0.729830 −0.364915 0.931041i \(-0.618902\pi\)
−0.364915 + 0.931041i \(0.618902\pi\)
\(24\) 0 0
\(25\) 10.4955 2.09910
\(26\) −8.62022 −1.69056
\(27\) 0 0
\(28\) 15.7475 2.97600
\(29\) −0.595460 −0.110574 −0.0552871 0.998471i \(-0.517607\pi\)
−0.0552871 + 0.998471i \(0.517607\pi\)
\(30\) 0 0
\(31\) −4.02969 −0.723753 −0.361877 0.932226i \(-0.617864\pi\)
−0.361877 + 0.932226i \(0.617864\pi\)
\(32\) −4.81880 −0.851852
\(33\) 0 0
\(34\) 0 0
\(35\) 18.3019 3.09359
\(36\) 0 0
\(37\) 1.09685 0.180322 0.0901608 0.995927i \(-0.471262\pi\)
0.0901608 + 0.995927i \(0.471262\pi\)
\(38\) −12.5056 −2.02867
\(39\) 0 0
\(40\) 12.6724 2.00368
\(41\) −2.62337 −0.409702 −0.204851 0.978793i \(-0.565671\pi\)
−0.204851 + 0.978793i \(0.565671\pi\)
\(42\) 0 0
\(43\) 7.81087 1.19115 0.595573 0.803301i \(-0.296925\pi\)
0.595573 + 0.803301i \(0.296925\pi\)
\(44\) 10.4564 1.57637
\(45\) 0 0
\(46\) −8.12381 −1.19779
\(47\) −2.55512 −0.372703 −0.186351 0.982483i \(-0.559666\pi\)
−0.186351 + 0.982483i \(0.559666\pi\)
\(48\) 0 0
\(49\) 14.6167 2.08810
\(50\) 24.3600 3.44503
\(51\) 0 0
\(52\) −12.5795 −1.74446
\(53\) 12.9031 1.77238 0.886189 0.463325i \(-0.153344\pi\)
0.886189 + 0.463325i \(0.153344\pi\)
\(54\) 0 0
\(55\) 12.1526 1.63866
\(56\) 14.9676 2.00012
\(57\) 0 0
\(58\) −1.38206 −0.181473
\(59\) −8.06452 −1.04991 −0.524956 0.851130i \(-0.675918\pi\)
−0.524956 + 0.851130i \(0.675918\pi\)
\(60\) 0 0
\(61\) −2.27876 −0.291766 −0.145883 0.989302i \(-0.546602\pi\)
−0.145883 + 0.989302i \(0.546602\pi\)
\(62\) −9.35288 −1.18782
\(63\) 0 0
\(64\) −12.5801 −1.57252
\(65\) −14.6200 −1.81339
\(66\) 0 0
\(67\) 10.1892 1.24481 0.622404 0.782696i \(-0.286156\pi\)
0.622404 + 0.782696i \(0.286156\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 42.4787 5.07718
\(71\) 11.5168 1.36679 0.683395 0.730049i \(-0.260503\pi\)
0.683395 + 0.730049i \(0.260503\pi\)
\(72\) 0 0
\(73\) 13.9430 1.63191 0.815955 0.578115i \(-0.196212\pi\)
0.815955 + 0.578115i \(0.196212\pi\)
\(74\) 2.54579 0.295942
\(75\) 0 0
\(76\) −18.2493 −2.09334
\(77\) 14.3536 1.63574
\(78\) 0 0
\(79\) −0.886611 −0.0997515 −0.0498758 0.998755i \(-0.515883\pi\)
−0.0498758 + 0.998755i \(0.515883\pi\)
\(80\) 2.74707 0.307132
\(81\) 0 0
\(82\) −6.08883 −0.672399
\(83\) −7.23859 −0.794539 −0.397269 0.917702i \(-0.630042\pi\)
−0.397269 + 0.917702i \(0.630042\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.1290 1.95490
\(87\) 0 0
\(88\) 9.93855 1.05945
\(89\) −7.65382 −0.811303 −0.405652 0.914028i \(-0.632955\pi\)
−0.405652 + 0.914028i \(0.632955\pi\)
\(90\) 0 0
\(91\) −17.2679 −1.81016
\(92\) −11.8550 −1.23597
\(93\) 0 0
\(94\) −5.93042 −0.611676
\(95\) −21.2096 −2.17606
\(96\) 0 0
\(97\) −0.528318 −0.0536426 −0.0268213 0.999640i \(-0.508539\pi\)
−0.0268213 + 0.999640i \(0.508539\pi\)
\(98\) 33.9252 3.42696
\(99\) 0 0
\(100\) 35.5485 3.55485
\(101\) −0.885430 −0.0881036 −0.0440518 0.999029i \(-0.514027\pi\)
−0.0440518 + 0.999029i \(0.514027\pi\)
\(102\) 0 0
\(103\) 3.98414 0.392569 0.196285 0.980547i \(-0.437112\pi\)
0.196285 + 0.980547i \(0.437112\pi\)
\(104\) −11.9564 −1.17242
\(105\) 0 0
\(106\) 29.9480 2.90881
\(107\) 7.41940 0.717260 0.358630 0.933480i \(-0.383244\pi\)
0.358630 + 0.933480i \(0.383244\pi\)
\(108\) 0 0
\(109\) −11.5916 −1.11027 −0.555135 0.831760i \(-0.687334\pi\)
−0.555135 + 0.831760i \(0.687334\pi\)
\(110\) 28.2061 2.68935
\(111\) 0 0
\(112\) 3.24461 0.306586
\(113\) −3.40454 −0.320272 −0.160136 0.987095i \(-0.551193\pi\)
−0.160136 + 0.987095i \(0.551193\pi\)
\(114\) 0 0
\(115\) −13.7781 −1.28481
\(116\) −2.01683 −0.187258
\(117\) 0 0
\(118\) −18.7177 −1.72311
\(119\) 0 0
\(120\) 0 0
\(121\) −1.46913 −0.133557
\(122\) −5.28900 −0.478844
\(123\) 0 0
\(124\) −13.6486 −1.22568
\(125\) 21.6327 1.93489
\(126\) 0 0
\(127\) −9.20187 −0.816534 −0.408267 0.912862i \(-0.633867\pi\)
−0.408267 + 0.912862i \(0.633867\pi\)
\(128\) −19.5608 −1.72895
\(129\) 0 0
\(130\) −33.9329 −2.97611
\(131\) −7.98259 −0.697442 −0.348721 0.937227i \(-0.613384\pi\)
−0.348721 + 0.937227i \(0.613384\pi\)
\(132\) 0 0
\(133\) −25.0509 −2.17219
\(134\) 23.6491 2.04297
\(135\) 0 0
\(136\) 0 0
\(137\) 0.0615045 0.00525468 0.00262734 0.999997i \(-0.499164\pi\)
0.00262734 + 0.999997i \(0.499164\pi\)
\(138\) 0 0
\(139\) −7.42112 −0.629451 −0.314726 0.949183i \(-0.601912\pi\)
−0.314726 + 0.949183i \(0.601912\pi\)
\(140\) 61.9890 5.23903
\(141\) 0 0
\(142\) 26.7304 2.24317
\(143\) −11.4660 −0.958832
\(144\) 0 0
\(145\) −2.34399 −0.194658
\(146\) 32.3617 2.67828
\(147\) 0 0
\(148\) 3.71506 0.305376
\(149\) 15.8134 1.29548 0.647741 0.761861i \(-0.275714\pi\)
0.647741 + 0.761861i \(0.275714\pi\)
\(150\) 0 0
\(151\) −19.4411 −1.58209 −0.791047 0.611755i \(-0.790464\pi\)
−0.791047 + 0.611755i \(0.790464\pi\)
\(152\) −17.3455 −1.40690
\(153\) 0 0
\(154\) 33.3146 2.68457
\(155\) −15.8626 −1.27411
\(156\) 0 0
\(157\) −20.5387 −1.63916 −0.819582 0.572963i \(-0.805794\pi\)
−0.819582 + 0.572963i \(0.805794\pi\)
\(158\) −2.05782 −0.163711
\(159\) 0 0
\(160\) −18.9689 −1.49962
\(161\) −16.2735 −1.28253
\(162\) 0 0
\(163\) 14.9709 1.17261 0.586305 0.810090i \(-0.300582\pi\)
0.586305 + 0.810090i \(0.300582\pi\)
\(164\) −8.88541 −0.693834
\(165\) 0 0
\(166\) −16.8007 −1.30399
\(167\) −22.0028 −1.70262 −0.851312 0.524660i \(-0.824193\pi\)
−0.851312 + 0.524660i \(0.824193\pi\)
\(168\) 0 0
\(169\) 0.793944 0.0610726
\(170\) 0 0
\(171\) 0 0
\(172\) 26.4556 2.01722
\(173\) −5.27537 −0.401079 −0.200539 0.979686i \(-0.564269\pi\)
−0.200539 + 0.979686i \(0.564269\pi\)
\(174\) 0 0
\(175\) 48.7975 3.68874
\(176\) 2.15444 0.162397
\(177\) 0 0
\(178\) −17.7645 −1.33150
\(179\) −4.27673 −0.319658 −0.159829 0.987145i \(-0.551094\pi\)
−0.159829 + 0.987145i \(0.551094\pi\)
\(180\) 0 0
\(181\) 7.92258 0.588881 0.294440 0.955670i \(-0.404867\pi\)
0.294440 + 0.955670i \(0.404867\pi\)
\(182\) −40.0786 −2.97083
\(183\) 0 0
\(184\) −11.2679 −0.830679
\(185\) 4.31769 0.317443
\(186\) 0 0
\(187\) 0 0
\(188\) −8.65424 −0.631175
\(189\) 0 0
\(190\) −49.2274 −3.57133
\(191\) 4.23329 0.306310 0.153155 0.988202i \(-0.451057\pi\)
0.153155 + 0.988202i \(0.451057\pi\)
\(192\) 0 0
\(193\) 10.9289 0.786680 0.393340 0.919393i \(-0.371319\pi\)
0.393340 + 0.919393i \(0.371319\pi\)
\(194\) −1.22622 −0.0880377
\(195\) 0 0
\(196\) 49.5069 3.53621
\(197\) −14.1732 −1.00980 −0.504901 0.863177i \(-0.668471\pi\)
−0.504901 + 0.863177i \(0.668471\pi\)
\(198\) 0 0
\(199\) −3.33506 −0.236416 −0.118208 0.992989i \(-0.537715\pi\)
−0.118208 + 0.992989i \(0.537715\pi\)
\(200\) 33.7878 2.38916
\(201\) 0 0
\(202\) −2.05508 −0.144595
\(203\) −2.76852 −0.194312
\(204\) 0 0
\(205\) −10.3267 −0.721250
\(206\) 9.24717 0.644281
\(207\) 0 0
\(208\) −2.59186 −0.179713
\(209\) −16.6340 −1.15060
\(210\) 0 0
\(211\) 23.7286 1.63354 0.816772 0.576960i \(-0.195761\pi\)
0.816772 + 0.576960i \(0.195761\pi\)
\(212\) 43.7030 3.00154
\(213\) 0 0
\(214\) 17.2204 1.17716
\(215\) 30.7470 2.09692
\(216\) 0 0
\(217\) −18.7355 −1.27185
\(218\) −26.9040 −1.82217
\(219\) 0 0
\(220\) 41.1611 2.77508
\(221\) 0 0
\(222\) 0 0
\(223\) −13.1707 −0.881976 −0.440988 0.897513i \(-0.645372\pi\)
−0.440988 + 0.897513i \(0.645372\pi\)
\(224\) −22.4044 −1.49696
\(225\) 0 0
\(226\) −7.90192 −0.525628
\(227\) −18.4376 −1.22374 −0.611872 0.790957i \(-0.709583\pi\)
−0.611872 + 0.790957i \(0.709583\pi\)
\(228\) 0 0
\(229\) −4.17505 −0.275895 −0.137948 0.990440i \(-0.544051\pi\)
−0.137948 + 0.990440i \(0.544051\pi\)
\(230\) −31.9789 −2.10862
\(231\) 0 0
\(232\) −1.91694 −0.125853
\(233\) 0.327777 0.0214734 0.0107367 0.999942i \(-0.496582\pi\)
0.0107367 + 0.999942i \(0.496582\pi\)
\(234\) 0 0
\(235\) −10.0581 −0.656115
\(236\) −27.3147 −1.77803
\(237\) 0 0
\(238\) 0 0
\(239\) 19.6419 1.27053 0.635265 0.772294i \(-0.280891\pi\)
0.635265 + 0.772294i \(0.280891\pi\)
\(240\) 0 0
\(241\) −3.24284 −0.208890 −0.104445 0.994531i \(-0.533307\pi\)
−0.104445 + 0.994531i \(0.533307\pi\)
\(242\) −3.40984 −0.219193
\(243\) 0 0
\(244\) −7.71822 −0.494108
\(245\) 57.5375 3.67594
\(246\) 0 0
\(247\) 20.0112 1.27328
\(248\) −12.9726 −0.823762
\(249\) 0 0
\(250\) 50.2093 3.17552
\(251\) 13.8850 0.876416 0.438208 0.898874i \(-0.355613\pi\)
0.438208 + 0.898874i \(0.355613\pi\)
\(252\) 0 0
\(253\) −10.8057 −0.679347
\(254\) −21.3575 −1.34009
\(255\) 0 0
\(256\) −20.2403 −1.26502
\(257\) −17.8327 −1.11238 −0.556188 0.831057i \(-0.687736\pi\)
−0.556188 + 0.831057i \(0.687736\pi\)
\(258\) 0 0
\(259\) 5.09968 0.316879
\(260\) −49.5182 −3.07099
\(261\) 0 0
\(262\) −18.5276 −1.14464
\(263\) −19.4844 −1.20146 −0.600730 0.799452i \(-0.705123\pi\)
−0.600730 + 0.799452i \(0.705123\pi\)
\(264\) 0 0
\(265\) 50.7922 3.12014
\(266\) −58.1431 −3.56498
\(267\) 0 0
\(268\) 34.5110 2.10809
\(269\) −7.32426 −0.446568 −0.223284 0.974753i \(-0.571678\pi\)
−0.223284 + 0.974753i \(0.571678\pi\)
\(270\) 0 0
\(271\) 22.9249 1.39259 0.696293 0.717757i \(-0.254831\pi\)
0.696293 + 0.717757i \(0.254831\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.142752 0.00862394
\(275\) 32.4018 1.95390
\(276\) 0 0
\(277\) −17.0248 −1.02292 −0.511460 0.859307i \(-0.670895\pi\)
−0.511460 + 0.859307i \(0.670895\pi\)
\(278\) −17.2244 −1.03305
\(279\) 0 0
\(280\) 58.9188 3.52107
\(281\) 24.2761 1.44819 0.724097 0.689699i \(-0.242257\pi\)
0.724097 + 0.689699i \(0.242257\pi\)
\(282\) 0 0
\(283\) −4.16919 −0.247832 −0.123916 0.992293i \(-0.539545\pi\)
−0.123916 + 0.992293i \(0.539545\pi\)
\(284\) 39.0076 2.31467
\(285\) 0 0
\(286\) −26.6124 −1.57363
\(287\) −12.1970 −0.719968
\(288\) 0 0
\(289\) 0 0
\(290\) −5.44039 −0.319470
\(291\) 0 0
\(292\) 47.2254 2.76366
\(293\) 15.2384 0.890234 0.445117 0.895472i \(-0.353162\pi\)
0.445117 + 0.895472i \(0.353162\pi\)
\(294\) 0 0
\(295\) −31.7454 −1.84829
\(296\) 3.53106 0.205239
\(297\) 0 0
\(298\) 36.7027 2.12613
\(299\) 12.9996 0.751786
\(300\) 0 0
\(301\) 36.3156 2.09320
\(302\) −45.1227 −2.59652
\(303\) 0 0
\(304\) −3.76008 −0.215655
\(305\) −8.97020 −0.513632
\(306\) 0 0
\(307\) −20.6037 −1.17591 −0.587957 0.808892i \(-0.700068\pi\)
−0.587957 + 0.808892i \(0.700068\pi\)
\(308\) 48.6159 2.77015
\(309\) 0 0
\(310\) −36.8170 −2.09106
\(311\) −11.7004 −0.663470 −0.331735 0.943373i \(-0.607634\pi\)
−0.331735 + 0.943373i \(0.607634\pi\)
\(312\) 0 0
\(313\) 1.92944 0.109059 0.0545293 0.998512i \(-0.482634\pi\)
0.0545293 + 0.998512i \(0.482634\pi\)
\(314\) −47.6701 −2.69018
\(315\) 0 0
\(316\) −3.00297 −0.168930
\(317\) −35.1090 −1.97192 −0.985958 0.166993i \(-0.946594\pi\)
−0.985958 + 0.166993i \(0.946594\pi\)
\(318\) 0 0
\(319\) −1.83831 −0.102926
\(320\) −49.5208 −2.76830
\(321\) 0 0
\(322\) −37.7706 −2.10488
\(323\) 0 0
\(324\) 0 0
\(325\) −38.9805 −2.16225
\(326\) 34.7474 1.92448
\(327\) 0 0
\(328\) −8.44533 −0.466315
\(329\) −11.8797 −0.654949
\(330\) 0 0
\(331\) −8.47141 −0.465631 −0.232815 0.972521i \(-0.574794\pi\)
−0.232815 + 0.972521i \(0.574794\pi\)
\(332\) −24.5173 −1.34556
\(333\) 0 0
\(334\) −51.0683 −2.79433
\(335\) 40.1091 2.19139
\(336\) 0 0
\(337\) −9.19228 −0.500736 −0.250368 0.968151i \(-0.580552\pi\)
−0.250368 + 0.968151i \(0.580552\pi\)
\(338\) 1.84274 0.100232
\(339\) 0 0
\(340\) 0 0
\(341\) −12.4405 −0.673690
\(342\) 0 0
\(343\) 35.4127 1.91211
\(344\) 25.1452 1.35574
\(345\) 0 0
\(346\) −12.2441 −0.658247
\(347\) −7.16878 −0.384840 −0.192420 0.981313i \(-0.561634\pi\)
−0.192420 + 0.981313i \(0.561634\pi\)
\(348\) 0 0
\(349\) −33.4295 −1.78944 −0.894720 0.446627i \(-0.852625\pi\)
−0.894720 + 0.446627i \(0.852625\pi\)
\(350\) 113.259 6.05394
\(351\) 0 0
\(352\) −14.8767 −0.792928
\(353\) −6.05306 −0.322172 −0.161086 0.986940i \(-0.551500\pi\)
−0.161086 + 0.986940i \(0.551500\pi\)
\(354\) 0 0
\(355\) 45.3350 2.40613
\(356\) −25.9236 −1.37395
\(357\) 0 0
\(358\) −9.92627 −0.524620
\(359\) 14.2698 0.753133 0.376566 0.926390i \(-0.377105\pi\)
0.376566 + 0.926390i \(0.377105\pi\)
\(360\) 0 0
\(361\) 10.0308 0.527937
\(362\) 18.3883 0.966466
\(363\) 0 0
\(364\) −58.4866 −3.06553
\(365\) 54.8859 2.87286
\(366\) 0 0
\(367\) −15.0265 −0.784376 −0.392188 0.919885i \(-0.628282\pi\)
−0.392188 + 0.919885i \(0.628282\pi\)
\(368\) −2.44261 −0.127330
\(369\) 0 0
\(370\) 10.0213 0.520984
\(371\) 59.9913 3.11459
\(372\) 0 0
\(373\) 5.28506 0.273650 0.136825 0.990595i \(-0.456310\pi\)
0.136825 + 0.990595i \(0.456310\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.22561 −0.424203
\(377\) 2.21155 0.113901
\(378\) 0 0
\(379\) −27.8889 −1.43255 −0.716277 0.697816i \(-0.754155\pi\)
−0.716277 + 0.697816i \(0.754155\pi\)
\(380\) −71.8373 −3.68518
\(381\) 0 0
\(382\) 9.82544 0.502713
\(383\) −3.76295 −0.192278 −0.0961389 0.995368i \(-0.530649\pi\)
−0.0961389 + 0.995368i \(0.530649\pi\)
\(384\) 0 0
\(385\) 56.5020 2.87961
\(386\) 25.3659 1.29109
\(387\) 0 0
\(388\) −1.78942 −0.0908442
\(389\) 26.6607 1.35175 0.675875 0.737017i \(-0.263766\pi\)
0.675875 + 0.737017i \(0.263766\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 47.0549 2.37663
\(393\) 0 0
\(394\) −32.8960 −1.65728
\(395\) −3.49008 −0.175605
\(396\) 0 0
\(397\) 1.11129 0.0557740 0.0278870 0.999611i \(-0.491122\pi\)
0.0278870 + 0.999611i \(0.491122\pi\)
\(398\) −7.74065 −0.388004
\(399\) 0 0
\(400\) 7.32438 0.366219
\(401\) −26.5399 −1.32534 −0.662670 0.748911i \(-0.730577\pi\)
−0.662670 + 0.748911i \(0.730577\pi\)
\(402\) 0 0
\(403\) 14.9663 0.745526
\(404\) −2.99897 −0.149204
\(405\) 0 0
\(406\) −6.42571 −0.318903
\(407\) 3.38622 0.167849
\(408\) 0 0
\(409\) 35.4537 1.75307 0.876537 0.481334i \(-0.159848\pi\)
0.876537 + 0.481334i \(0.159848\pi\)
\(410\) −23.9683 −1.18371
\(411\) 0 0
\(412\) 13.4944 0.664819
\(413\) −37.4950 −1.84501
\(414\) 0 0
\(415\) −28.4942 −1.39873
\(416\) 17.8971 0.877479
\(417\) 0 0
\(418\) −38.6074 −1.88835
\(419\) 8.59690 0.419986 0.209993 0.977703i \(-0.432656\pi\)
0.209993 + 0.977703i \(0.432656\pi\)
\(420\) 0 0
\(421\) 37.2443 1.81518 0.907588 0.419861i \(-0.137921\pi\)
0.907588 + 0.419861i \(0.137921\pi\)
\(422\) 55.0740 2.68096
\(423\) 0 0
\(424\) 41.5385 2.01729
\(425\) 0 0
\(426\) 0 0
\(427\) −10.5948 −0.512719
\(428\) 25.1296 1.21469
\(429\) 0 0
\(430\) 71.3635 3.44146
\(431\) 30.0833 1.44906 0.724530 0.689243i \(-0.242057\pi\)
0.724530 + 0.689243i \(0.242057\pi\)
\(432\) 0 0
\(433\) −33.7489 −1.62187 −0.810934 0.585138i \(-0.801040\pi\)
−0.810934 + 0.585138i \(0.801040\pi\)
\(434\) −43.4850 −2.08735
\(435\) 0 0
\(436\) −39.2609 −1.88025
\(437\) 18.8589 0.902141
\(438\) 0 0
\(439\) −15.5597 −0.742623 −0.371312 0.928508i \(-0.621092\pi\)
−0.371312 + 0.928508i \(0.621092\pi\)
\(440\) 39.1224 1.86509
\(441\) 0 0
\(442\) 0 0
\(443\) −18.5997 −0.883697 −0.441848 0.897090i \(-0.645677\pi\)
−0.441848 + 0.897090i \(0.645677\pi\)
\(444\) 0 0
\(445\) −30.1287 −1.42824
\(446\) −30.5692 −1.44749
\(447\) 0 0
\(448\) −58.4897 −2.76338
\(449\) 4.94404 0.233324 0.116662 0.993172i \(-0.462781\pi\)
0.116662 + 0.993172i \(0.462781\pi\)
\(450\) 0 0
\(451\) −8.09890 −0.381363
\(452\) −11.5312 −0.542384
\(453\) 0 0
\(454\) −42.7935 −2.00840
\(455\) −67.9738 −3.18666
\(456\) 0 0
\(457\) 17.6650 0.826336 0.413168 0.910655i \(-0.364422\pi\)
0.413168 + 0.910655i \(0.364422\pi\)
\(458\) −9.69028 −0.452797
\(459\) 0 0
\(460\) −46.6666 −2.17584
\(461\) −4.55367 −0.212085 −0.106043 0.994362i \(-0.533818\pi\)
−0.106043 + 0.994362i \(0.533818\pi\)
\(462\) 0 0
\(463\) −3.82572 −0.177796 −0.0888981 0.996041i \(-0.528335\pi\)
−0.0888981 + 0.996041i \(0.528335\pi\)
\(464\) −0.415547 −0.0192913
\(465\) 0 0
\(466\) 0.760768 0.0352419
\(467\) 15.3172 0.708797 0.354399 0.935094i \(-0.384686\pi\)
0.354399 + 0.935094i \(0.384686\pi\)
\(468\) 0 0
\(469\) 47.3734 2.18750
\(470\) −23.3447 −1.07681
\(471\) 0 0
\(472\) −25.9618 −1.19499
\(473\) 24.1138 1.10875
\(474\) 0 0
\(475\) −56.5500 −2.59469
\(476\) 0 0
\(477\) 0 0
\(478\) 45.5888 2.08518
\(479\) −9.47219 −0.432795 −0.216398 0.976305i \(-0.569431\pi\)
−0.216398 + 0.976305i \(0.569431\pi\)
\(480\) 0 0
\(481\) −4.07373 −0.185746
\(482\) −7.52662 −0.342828
\(483\) 0 0
\(484\) −4.97596 −0.226180
\(485\) −2.07969 −0.0944338
\(486\) 0 0
\(487\) 36.5055 1.65422 0.827112 0.562037i \(-0.189982\pi\)
0.827112 + 0.562037i \(0.189982\pi\)
\(488\) −7.33594 −0.332082
\(489\) 0 0
\(490\) 133.544 6.03292
\(491\) 5.20074 0.234706 0.117353 0.993090i \(-0.462559\pi\)
0.117353 + 0.993090i \(0.462559\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 46.4460 2.08970
\(495\) 0 0
\(496\) −2.81215 −0.126269
\(497\) 53.5458 2.40186
\(498\) 0 0
\(499\) −7.74769 −0.346834 −0.173417 0.984848i \(-0.555481\pi\)
−0.173417 + 0.984848i \(0.555481\pi\)
\(500\) 73.2703 3.27675
\(501\) 0 0
\(502\) 32.2271 1.43837
\(503\) 31.6182 1.40979 0.704893 0.709314i \(-0.250995\pi\)
0.704893 + 0.709314i \(0.250995\pi\)
\(504\) 0 0
\(505\) −3.48544 −0.155100
\(506\) −25.0799 −1.11494
\(507\) 0 0
\(508\) −31.1669 −1.38281
\(509\) 15.1531 0.671648 0.335824 0.941925i \(-0.390985\pi\)
0.335824 + 0.941925i \(0.390985\pi\)
\(510\) 0 0
\(511\) 64.8264 2.86775
\(512\) −7.85603 −0.347191
\(513\) 0 0
\(514\) −41.3897 −1.82562
\(515\) 15.6833 0.691089
\(516\) 0 0
\(517\) −7.88820 −0.346922
\(518\) 11.8363 0.520059
\(519\) 0 0
\(520\) −47.0656 −2.06396
\(521\) −0.696974 −0.0305350 −0.0152675 0.999883i \(-0.504860\pi\)
−0.0152675 + 0.999883i \(0.504860\pi\)
\(522\) 0 0
\(523\) 2.66391 0.116484 0.0582422 0.998302i \(-0.481450\pi\)
0.0582422 + 0.998302i \(0.481450\pi\)
\(524\) −27.0372 −1.18113
\(525\) 0 0
\(526\) −45.2232 −1.97183
\(527\) 0 0
\(528\) 0 0
\(529\) −10.7490 −0.467348
\(530\) 117.888 5.12075
\(531\) 0 0
\(532\) −84.8480 −3.67863
\(533\) 9.74326 0.422027
\(534\) 0 0
\(535\) 29.2060 1.26268
\(536\) 32.8017 1.41682
\(537\) 0 0
\(538\) −16.9996 −0.732904
\(539\) 45.1247 1.94366
\(540\) 0 0
\(541\) 38.3164 1.64735 0.823676 0.567061i \(-0.191920\pi\)
0.823676 + 0.567061i \(0.191920\pi\)
\(542\) 53.2085 2.28550
\(543\) 0 0
\(544\) 0 0
\(545\) −45.6294 −1.95455
\(546\) 0 0
\(547\) −46.0911 −1.97071 −0.985356 0.170509i \(-0.945459\pi\)
−0.985356 + 0.170509i \(0.945459\pi\)
\(548\) 0.208317 0.00889886
\(549\) 0 0
\(550\) 75.2045 3.20673
\(551\) 3.20835 0.136680
\(552\) 0 0
\(553\) −4.12218 −0.175293
\(554\) −39.5144 −1.67881
\(555\) 0 0
\(556\) −25.1355 −1.06598
\(557\) 40.8208 1.72963 0.864817 0.502088i \(-0.167435\pi\)
0.864817 + 0.502088i \(0.167435\pi\)
\(558\) 0 0
\(559\) −29.0097 −1.22698
\(560\) 12.7722 0.539723
\(561\) 0 0
\(562\) 56.3448 2.37676
\(563\) 13.3274 0.561682 0.280841 0.959754i \(-0.409387\pi\)
0.280841 + 0.959754i \(0.409387\pi\)
\(564\) 0 0
\(565\) −13.4017 −0.563815
\(566\) −9.67666 −0.406740
\(567\) 0 0
\(568\) 37.0756 1.55566
\(569\) −43.4276 −1.82058 −0.910290 0.413971i \(-0.864141\pi\)
−0.910290 + 0.413971i \(0.864141\pi\)
\(570\) 0 0
\(571\) −43.4628 −1.81886 −0.909431 0.415854i \(-0.863483\pi\)
−0.909431 + 0.415854i \(0.863483\pi\)
\(572\) −38.8354 −1.62379
\(573\) 0 0
\(574\) −28.3093 −1.18161
\(575\) −36.7358 −1.53199
\(576\) 0 0
\(577\) −14.7233 −0.612940 −0.306470 0.951880i \(-0.599148\pi\)
−0.306470 + 0.951880i \(0.599148\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −7.93913 −0.329654
\(581\) −33.6549 −1.39624
\(582\) 0 0
\(583\) 39.8346 1.64978
\(584\) 44.8864 1.85741
\(585\) 0 0
\(586\) 35.3681 1.46104
\(587\) 1.81698 0.0749947 0.0374973 0.999297i \(-0.488061\pi\)
0.0374973 + 0.999297i \(0.488061\pi\)
\(588\) 0 0
\(589\) 21.7120 0.894629
\(590\) −73.6810 −3.03340
\(591\) 0 0
\(592\) 0.765449 0.0314597
\(593\) 45.4079 1.86468 0.932340 0.361582i \(-0.117763\pi\)
0.932340 + 0.361582i \(0.117763\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 53.5602 2.19391
\(597\) 0 0
\(598\) 30.1720 1.23383
\(599\) 18.4863 0.755331 0.377665 0.925942i \(-0.376727\pi\)
0.377665 + 0.925942i \(0.376727\pi\)
\(600\) 0 0
\(601\) 1.08114 0.0441006 0.0220503 0.999757i \(-0.492981\pi\)
0.0220503 + 0.999757i \(0.492981\pi\)
\(602\) 84.2884 3.43534
\(603\) 0 0
\(604\) −65.8474 −2.67929
\(605\) −5.78312 −0.235117
\(606\) 0 0
\(607\) −10.0572 −0.408210 −0.204105 0.978949i \(-0.565428\pi\)
−0.204105 + 0.978949i \(0.565428\pi\)
\(608\) 25.9638 1.05297
\(609\) 0 0
\(610\) −20.8198 −0.842969
\(611\) 9.48977 0.383915
\(612\) 0 0
\(613\) 19.4146 0.784148 0.392074 0.919934i \(-0.371758\pi\)
0.392074 + 0.919934i \(0.371758\pi\)
\(614\) −47.8210 −1.92990
\(615\) 0 0
\(616\) 46.2080 1.86177
\(617\) 28.5208 1.14820 0.574102 0.818784i \(-0.305351\pi\)
0.574102 + 0.818784i \(0.305351\pi\)
\(618\) 0 0
\(619\) 37.3006 1.49924 0.749619 0.661869i \(-0.230237\pi\)
0.749619 + 0.661869i \(0.230237\pi\)
\(620\) −53.7269 −2.15772
\(621\) 0 0
\(622\) −27.1566 −1.08888
\(623\) −35.5855 −1.42570
\(624\) 0 0
\(625\) 32.6781 1.30712
\(626\) 4.47823 0.178986
\(627\) 0 0
\(628\) −69.5648 −2.77594
\(629\) 0 0
\(630\) 0 0
\(631\) −0.834835 −0.0332342 −0.0166171 0.999862i \(-0.505290\pi\)
−0.0166171 + 0.999862i \(0.505290\pi\)
\(632\) −2.85423 −0.113535
\(633\) 0 0
\(634\) −81.4878 −3.23629
\(635\) −36.2226 −1.43745
\(636\) 0 0
\(637\) −54.2866 −2.15091
\(638\) −4.26671 −0.168921
\(639\) 0 0
\(640\) −76.9999 −3.04369
\(641\) −19.5225 −0.771092 −0.385546 0.922689i \(-0.625987\pi\)
−0.385546 + 0.922689i \(0.625987\pi\)
\(642\) 0 0
\(643\) −43.8261 −1.72833 −0.864166 0.503207i \(-0.832153\pi\)
−0.864166 + 0.503207i \(0.832153\pi\)
\(644\) −55.1186 −2.17198
\(645\) 0 0
\(646\) 0 0
\(647\) 34.1353 1.34200 0.670999 0.741459i \(-0.265866\pi\)
0.670999 + 0.741459i \(0.265866\pi\)
\(648\) 0 0
\(649\) −24.8969 −0.977288
\(650\) −90.4736 −3.54867
\(651\) 0 0
\(652\) 50.7067 1.98583
\(653\) −38.0215 −1.48790 −0.743948 0.668237i \(-0.767049\pi\)
−0.743948 + 0.668237i \(0.767049\pi\)
\(654\) 0 0
\(655\) −31.4229 −1.22780
\(656\) −1.83074 −0.0714785
\(657\) 0 0
\(658\) −27.5727 −1.07490
\(659\) −6.44198 −0.250944 −0.125472 0.992097i \(-0.540045\pi\)
−0.125472 + 0.992097i \(0.540045\pi\)
\(660\) 0 0
\(661\) 31.9117 1.24122 0.620611 0.784119i \(-0.286885\pi\)
0.620611 + 0.784119i \(0.286885\pi\)
\(662\) −19.6621 −0.764189
\(663\) 0 0
\(664\) −23.3029 −0.904330
\(665\) −98.6113 −3.82398
\(666\) 0 0
\(667\) 2.08419 0.0807004
\(668\) −74.5237 −2.88341
\(669\) 0 0
\(670\) 93.0930 3.59649
\(671\) −7.03502 −0.271584
\(672\) 0 0
\(673\) 15.5981 0.601262 0.300631 0.953741i \(-0.402803\pi\)
0.300631 + 0.953741i \(0.402803\pi\)
\(674\) −21.3352 −0.821803
\(675\) 0 0
\(676\) 2.68910 0.103427
\(677\) 20.2686 0.778987 0.389493 0.921029i \(-0.372650\pi\)
0.389493 + 0.921029i \(0.372650\pi\)
\(678\) 0 0
\(679\) −2.45635 −0.0942660
\(680\) 0 0
\(681\) 0 0
\(682\) −28.8743 −1.10566
\(683\) −10.0841 −0.385857 −0.192929 0.981213i \(-0.561799\pi\)
−0.192929 + 0.981213i \(0.561799\pi\)
\(684\) 0 0
\(685\) 0.242108 0.00925048
\(686\) 82.1928 3.13814
\(687\) 0 0
\(688\) 5.45088 0.207813
\(689\) −47.9224 −1.82570
\(690\) 0 0
\(691\) 9.51230 0.361865 0.180932 0.983496i \(-0.442088\pi\)
0.180932 + 0.983496i \(0.442088\pi\)
\(692\) −17.8678 −0.679231
\(693\) 0 0
\(694\) −16.6387 −0.631597
\(695\) −29.2127 −1.10810
\(696\) 0 0
\(697\) 0 0
\(698\) −77.5897 −2.93681
\(699\) 0 0
\(700\) 165.278 6.24692
\(701\) 10.7532 0.406143 0.203071 0.979164i \(-0.434908\pi\)
0.203071 + 0.979164i \(0.434908\pi\)
\(702\) 0 0
\(703\) −5.90987 −0.222895
\(704\) −38.8375 −1.46374
\(705\) 0 0
\(706\) −14.0491 −0.528746
\(707\) −4.11669 −0.154824
\(708\) 0 0
\(709\) −19.9245 −0.748280 −0.374140 0.927372i \(-0.622062\pi\)
−0.374140 + 0.927372i \(0.622062\pi\)
\(710\) 105.222 3.94893
\(711\) 0 0
\(712\) −24.6397 −0.923410
\(713\) 14.1045 0.528217
\(714\) 0 0
\(715\) −45.1350 −1.68795
\(716\) −14.4854 −0.541343
\(717\) 0 0
\(718\) 33.1202 1.23604
\(719\) 22.8373 0.851689 0.425844 0.904796i \(-0.359977\pi\)
0.425844 + 0.904796i \(0.359977\pi\)
\(720\) 0 0
\(721\) 18.5238 0.689861
\(722\) 23.2814 0.866445
\(723\) 0 0
\(724\) 26.8339 0.997275
\(725\) −6.24965 −0.232106
\(726\) 0 0
\(727\) 13.8639 0.514185 0.257092 0.966387i \(-0.417236\pi\)
0.257092 + 0.966387i \(0.417236\pi\)
\(728\) −55.5898 −2.06030
\(729\) 0 0
\(730\) 127.390 4.71491
\(731\) 0 0
\(732\) 0 0
\(733\) 11.5792 0.427688 0.213844 0.976868i \(-0.431402\pi\)
0.213844 + 0.976868i \(0.431402\pi\)
\(734\) −34.8764 −1.28731
\(735\) 0 0
\(736\) 16.8665 0.621707
\(737\) 31.4562 1.15870
\(738\) 0 0
\(739\) 23.4221 0.861596 0.430798 0.902448i \(-0.358232\pi\)
0.430798 + 0.902448i \(0.358232\pi\)
\(740\) 14.6241 0.537592
\(741\) 0 0
\(742\) 139.240 5.11165
\(743\) −3.11494 −0.114276 −0.0571380 0.998366i \(-0.518198\pi\)
−0.0571380 + 0.998366i \(0.518198\pi\)
\(744\) 0 0
\(745\) 62.2482 2.28060
\(746\) 12.2666 0.449112
\(747\) 0 0
\(748\) 0 0
\(749\) 34.4956 1.26044
\(750\) 0 0
\(751\) −3.15974 −0.115301 −0.0576503 0.998337i \(-0.518361\pi\)
−0.0576503 + 0.998337i \(0.518361\pi\)
\(752\) −1.78311 −0.0650234
\(753\) 0 0
\(754\) 5.13300 0.186933
\(755\) −76.5286 −2.78516
\(756\) 0 0
\(757\) −42.9618 −1.56147 −0.780737 0.624859i \(-0.785156\pi\)
−0.780737 + 0.624859i \(0.785156\pi\)
\(758\) −64.7299 −2.35110
\(759\) 0 0
\(760\) −68.2793 −2.47675
\(761\) 25.8735 0.937913 0.468957 0.883221i \(-0.344630\pi\)
0.468957 + 0.883221i \(0.344630\pi\)
\(762\) 0 0
\(763\) −53.8935 −1.95108
\(764\) 14.3382 0.518739
\(765\) 0 0
\(766\) −8.73379 −0.315565
\(767\) 29.9518 1.08150
\(768\) 0 0
\(769\) −6.30524 −0.227373 −0.113686 0.993517i \(-0.536266\pi\)
−0.113686 + 0.993517i \(0.536266\pi\)
\(770\) 131.141 4.72599
\(771\) 0 0
\(772\) 37.0164 1.33225
\(773\) 15.5761 0.560234 0.280117 0.959966i \(-0.409627\pi\)
0.280117 + 0.959966i \(0.409627\pi\)
\(774\) 0 0
\(775\) −42.2936 −1.51923
\(776\) −1.70079 −0.0610550
\(777\) 0 0
\(778\) 61.8793 2.21848
\(779\) 14.1348 0.506431
\(780\) 0 0
\(781\) 35.5547 1.27225
\(782\) 0 0
\(783\) 0 0
\(784\) 10.2004 0.364299
\(785\) −80.8490 −2.88563
\(786\) 0 0
\(787\) 32.8050 1.16937 0.584685 0.811260i \(-0.301218\pi\)
0.584685 + 0.811260i \(0.301218\pi\)
\(788\) −48.0051 −1.71011
\(789\) 0 0
\(790\) −8.10047 −0.288202
\(791\) −15.8290 −0.562813
\(792\) 0 0
\(793\) 8.46337 0.300543
\(794\) 2.57930 0.0915359
\(795\) 0 0
\(796\) −11.2959 −0.400373
\(797\) 52.0620 1.84413 0.922065 0.387036i \(-0.126501\pi\)
0.922065 + 0.387036i \(0.126501\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −50.5757 −1.78812
\(801\) 0 0
\(802\) −61.5990 −2.17514
\(803\) 43.0451 1.51903
\(804\) 0 0
\(805\) −64.0594 −2.25780
\(806\) 34.7368 1.22355
\(807\) 0 0
\(808\) −2.85043 −0.100278
\(809\) 33.4067 1.17452 0.587259 0.809399i \(-0.300207\pi\)
0.587259 + 0.809399i \(0.300207\pi\)
\(810\) 0 0
\(811\) 24.4591 0.858875 0.429437 0.903097i \(-0.358712\pi\)
0.429437 + 0.903097i \(0.358712\pi\)
\(812\) −9.37701 −0.329069
\(813\) 0 0
\(814\) 7.85939 0.275472
\(815\) 58.9319 2.06429
\(816\) 0 0
\(817\) −42.0851 −1.47237
\(818\) 82.2879 2.87713
\(819\) 0 0
\(820\) −34.9768 −1.22144
\(821\) 26.1273 0.911848 0.455924 0.890019i \(-0.349309\pi\)
0.455924 + 0.890019i \(0.349309\pi\)
\(822\) 0 0
\(823\) −10.3083 −0.359324 −0.179662 0.983728i \(-0.557500\pi\)
−0.179662 + 0.983728i \(0.557500\pi\)
\(824\) 12.8260 0.446815
\(825\) 0 0
\(826\) −87.0256 −3.02801
\(827\) 21.6599 0.753188 0.376594 0.926378i \(-0.377095\pi\)
0.376594 + 0.926378i \(0.377095\pi\)
\(828\) 0 0
\(829\) −5.51045 −0.191386 −0.0956928 0.995411i \(-0.530507\pi\)
−0.0956928 + 0.995411i \(0.530507\pi\)
\(830\) −66.1350 −2.29558
\(831\) 0 0
\(832\) 46.7229 1.61982
\(833\) 0 0
\(834\) 0 0
\(835\) −86.6124 −2.99734
\(836\) −56.3396 −1.94854
\(837\) 0 0
\(838\) 19.9534 0.689277
\(839\) 43.0316 1.48561 0.742807 0.669505i \(-0.233494\pi\)
0.742807 + 0.669505i \(0.233494\pi\)
\(840\) 0 0
\(841\) −28.6454 −0.987773
\(842\) 86.4439 2.97905
\(843\) 0 0
\(844\) 80.3692 2.76642
\(845\) 3.12531 0.107514
\(846\) 0 0
\(847\) −6.83052 −0.234699
\(848\) 9.00454 0.309217
\(849\) 0 0
\(850\) 0 0
\(851\) −3.83914 −0.131604
\(852\) 0 0
\(853\) 34.5345 1.18244 0.591219 0.806511i \(-0.298647\pi\)
0.591219 + 0.806511i \(0.298647\pi\)
\(854\) −24.5905 −0.841471
\(855\) 0 0
\(856\) 23.8850 0.816373
\(857\) −46.5077 −1.58867 −0.794336 0.607479i \(-0.792181\pi\)
−0.794336 + 0.607479i \(0.792181\pi\)
\(858\) 0 0
\(859\) −41.9890 −1.43265 −0.716323 0.697768i \(-0.754176\pi\)
−0.716323 + 0.697768i \(0.754176\pi\)
\(860\) 104.141 3.55116
\(861\) 0 0
\(862\) 69.8231 2.37818
\(863\) −9.52042 −0.324079 −0.162039 0.986784i \(-0.551807\pi\)
−0.162039 + 0.986784i \(0.551807\pi\)
\(864\) 0 0
\(865\) −20.7661 −0.706070
\(866\) −78.3310 −2.66180
\(867\) 0 0
\(868\) −63.4575 −2.15389
\(869\) −2.73715 −0.0928516
\(870\) 0 0
\(871\) −37.8429 −1.28226
\(872\) −37.3163 −1.26369
\(873\) 0 0
\(874\) 43.7713 1.48059
\(875\) 100.578 3.40017
\(876\) 0 0
\(877\) −23.5649 −0.795729 −0.397865 0.917444i \(-0.630249\pi\)
−0.397865 + 0.917444i \(0.630249\pi\)
\(878\) −36.1140 −1.21879
\(879\) 0 0
\(880\) 8.48080 0.285888
\(881\) 30.3436 1.02230 0.511151 0.859491i \(-0.329219\pi\)
0.511151 + 0.859491i \(0.329219\pi\)
\(882\) 0 0
\(883\) −58.1905 −1.95827 −0.979133 0.203223i \(-0.934858\pi\)
−0.979133 + 0.203223i \(0.934858\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −43.1697 −1.45032
\(887\) 42.4474 1.42524 0.712622 0.701548i \(-0.247507\pi\)
0.712622 + 0.701548i \(0.247507\pi\)
\(888\) 0 0
\(889\) −42.7829 −1.43489
\(890\) −69.9287 −2.34401
\(891\) 0 0
\(892\) −44.6095 −1.49364
\(893\) 13.7670 0.460697
\(894\) 0 0
\(895\) −16.8351 −0.562734
\(896\) −90.9456 −3.03828
\(897\) 0 0
\(898\) 11.4751 0.382929
\(899\) 2.39952 0.0800284
\(900\) 0 0
\(901\) 0 0
\(902\) −18.7975 −0.625889
\(903\) 0 0
\(904\) −10.9601 −0.364528
\(905\) 31.1867 1.03668
\(906\) 0 0
\(907\) −11.6026 −0.385259 −0.192630 0.981272i \(-0.561702\pi\)
−0.192630 + 0.981272i \(0.561702\pi\)
\(908\) −62.4484 −2.07242
\(909\) 0 0
\(910\) −157.767 −5.22992
\(911\) −15.6285 −0.517795 −0.258898 0.965905i \(-0.583359\pi\)
−0.258898 + 0.965905i \(0.583359\pi\)
\(912\) 0 0
\(913\) −22.3471 −0.739580
\(914\) 41.0005 1.35618
\(915\) 0 0
\(916\) −14.1410 −0.467231
\(917\) −37.1141 −1.22561
\(918\) 0 0
\(919\) 0.269292 0.00888313 0.00444157 0.999990i \(-0.498586\pi\)
0.00444157 + 0.999990i \(0.498586\pi\)
\(920\) −44.3553 −1.46235
\(921\) 0 0
\(922\) −10.5690 −0.348073
\(923\) −42.7736 −1.40791
\(924\) 0 0
\(925\) 11.5120 0.378513
\(926\) −8.87948 −0.291798
\(927\) 0 0
\(928\) 2.86940 0.0941928
\(929\) 37.9315 1.24449 0.622246 0.782822i \(-0.286220\pi\)
0.622246 + 0.782822i \(0.286220\pi\)
\(930\) 0 0
\(931\) −78.7550 −2.58109
\(932\) 1.11019 0.0363653
\(933\) 0 0
\(934\) 35.5512 1.16327
\(935\) 0 0
\(936\) 0 0
\(937\) −7.31303 −0.238906 −0.119453 0.992840i \(-0.538114\pi\)
−0.119453 + 0.992840i \(0.538114\pi\)
\(938\) 109.953 3.59010
\(939\) 0 0
\(940\) −34.0668 −1.11114
\(941\) −16.1684 −0.527075 −0.263537 0.964649i \(-0.584889\pi\)
−0.263537 + 0.964649i \(0.584889\pi\)
\(942\) 0 0
\(943\) 9.18218 0.299013
\(944\) −5.62790 −0.183172
\(945\) 0 0
\(946\) 55.9680 1.81968
\(947\) 9.92364 0.322475 0.161237 0.986916i \(-0.448452\pi\)
0.161237 + 0.986916i \(0.448452\pi\)
\(948\) 0 0
\(949\) −51.7848 −1.68100
\(950\) −131.252 −4.25839
\(951\) 0 0
\(952\) 0 0
\(953\) −7.14877 −0.231571 −0.115786 0.993274i \(-0.536939\pi\)
−0.115786 + 0.993274i \(0.536939\pi\)
\(954\) 0 0
\(955\) 16.6641 0.539236
\(956\) 66.5276 2.15166
\(957\) 0 0
\(958\) −21.9849 −0.710300
\(959\) 0.285957 0.00923405
\(960\) 0 0
\(961\) −14.7616 −0.476182
\(962\) −9.45512 −0.304845
\(963\) 0 0
\(964\) −10.9836 −0.353757
\(965\) 43.0209 1.38489
\(966\) 0 0
\(967\) −52.7668 −1.69687 −0.848433 0.529303i \(-0.822454\pi\)
−0.848433 + 0.529303i \(0.822454\pi\)
\(968\) −4.72951 −0.152012
\(969\) 0 0
\(970\) −4.82695 −0.154984
\(971\) 26.0042 0.834515 0.417258 0.908788i \(-0.362991\pi\)
0.417258 + 0.908788i \(0.362991\pi\)
\(972\) 0 0
\(973\) −34.5035 −1.10613
\(974\) 84.7292 2.71490
\(975\) 0 0
\(976\) −1.59026 −0.0509028
\(977\) −36.6925 −1.17390 −0.586949 0.809624i \(-0.699671\pi\)
−0.586949 + 0.809624i \(0.699671\pi\)
\(978\) 0 0
\(979\) −23.6290 −0.755185
\(980\) 194.881 6.22524
\(981\) 0 0
\(982\) 12.0709 0.385197
\(983\) 19.6098 0.625455 0.312727 0.949843i \(-0.398757\pi\)
0.312727 + 0.949843i \(0.398757\pi\)
\(984\) 0 0
\(985\) −55.7920 −1.77768
\(986\) 0 0
\(987\) 0 0
\(988\) 67.7784 2.15632
\(989\) −27.3392 −0.869334
\(990\) 0 0
\(991\) 26.0694 0.828121 0.414060 0.910249i \(-0.364110\pi\)
0.414060 + 0.910249i \(0.364110\pi\)
\(992\) 19.4183 0.616530
\(993\) 0 0
\(994\) 124.280 3.94191
\(995\) −13.1282 −0.416193
\(996\) 0 0
\(997\) −35.8303 −1.13476 −0.567379 0.823457i \(-0.692042\pi\)
−0.567379 + 0.823457i \(0.692042\pi\)
\(998\) −17.9823 −0.569221
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.ca.1.13 yes 15
3.2 odd 2 7803.2.a.bx.1.3 15
17.16 even 2 7803.2.a.bz.1.13 yes 15
51.50 odd 2 7803.2.a.by.1.3 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7803.2.a.bx.1.3 15 3.2 odd 2
7803.2.a.by.1.3 yes 15 51.50 odd 2
7803.2.a.bz.1.13 yes 15 17.16 even 2
7803.2.a.ca.1.13 yes 15 1.1 even 1 trivial