Properties

Label 7803.2.a.by.1.8
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-6,0,12,3,0,3,-18,0,0,-6,0,-3,-3,0,6,0,0,-3,-6,0,-12,3,0, 6,24,0,9,6,0,0,-42,0,0,-33,0,0,-36,0,15,0,0,-3,18,0,12,-24,0,18,-42,0, -12,-48,0,-3,15,0,-12,-18,0,0,-63,0,30,-24,0,12,0,0,51,21,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 6 x^{14} - 3 x^{13} + 76 x^{12} - 69 x^{11} - 354 x^{10} + 523 x^{9} + 720 x^{8} - 1437 x^{7} + \cdots - 51 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.641769\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.641769 q^{2} -1.58813 q^{4} +2.68329 q^{5} +4.44365 q^{7} +2.30275 q^{8} -1.72205 q^{10} -6.33442 q^{11} -5.38327 q^{13} -2.85180 q^{14} +1.69843 q^{16} -3.40555 q^{19} -4.26142 q^{20} +4.06524 q^{22} +2.35045 q^{23} +2.20003 q^{25} +3.45482 q^{26} -7.05711 q^{28} -0.405468 q^{29} +3.62200 q^{31} -5.69550 q^{32} +11.9236 q^{35} +4.96694 q^{37} +2.18558 q^{38} +6.17895 q^{40} -5.68257 q^{41} +5.89136 q^{43} +10.0599 q^{44} -1.50844 q^{46} +1.84042 q^{47} +12.7460 q^{49} -1.41191 q^{50} +8.54935 q^{52} -2.31475 q^{53} -16.9971 q^{55} +10.2326 q^{56} +0.260217 q^{58} +12.6166 q^{59} -9.13811 q^{61} -2.32449 q^{62} +0.258335 q^{64} -14.4449 q^{65} +0.233694 q^{67} -7.65219 q^{70} -9.29208 q^{71} +3.05704 q^{73} -3.18763 q^{74} +5.40847 q^{76} -28.1480 q^{77} -5.59075 q^{79} +4.55738 q^{80} +3.64690 q^{82} -9.49892 q^{83} -3.78089 q^{86} -14.5866 q^{88} +14.3614 q^{89} -23.9214 q^{91} -3.73282 q^{92} -1.18112 q^{94} -9.13807 q^{95} -17.6601 q^{97} -8.18002 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 6 q^{2} + 12 q^{4} + 3 q^{5} + 3 q^{7} - 18 q^{8} - 6 q^{11} - 3 q^{13} - 3 q^{14} + 6 q^{16} - 3 q^{19} - 6 q^{20} - 12 q^{22} + 3 q^{23} + 6 q^{25} + 24 q^{26} + 9 q^{28} + 6 q^{29} - 42 q^{32}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.641769 −0.453799 −0.226900 0.973918i \(-0.572859\pi\)
−0.226900 + 0.973918i \(0.572859\pi\)
\(3\) 0 0
\(4\) −1.58813 −0.794066
\(5\) 2.68329 1.20000 0.600001 0.799999i \(-0.295167\pi\)
0.600001 + 0.799999i \(0.295167\pi\)
\(6\) 0 0
\(7\) 4.44365 1.67954 0.839771 0.542940i \(-0.182689\pi\)
0.839771 + 0.542940i \(0.182689\pi\)
\(8\) 2.30275 0.814146
\(9\) 0 0
\(10\) −1.72205 −0.544560
\(11\) −6.33442 −1.90990 −0.954950 0.296766i \(-0.904092\pi\)
−0.954950 + 0.296766i \(0.904092\pi\)
\(12\) 0 0
\(13\) −5.38327 −1.49305 −0.746526 0.665356i \(-0.768280\pi\)
−0.746526 + 0.665356i \(0.768280\pi\)
\(14\) −2.85180 −0.762175
\(15\) 0 0
\(16\) 1.69843 0.424608
\(17\) 0 0
\(18\) 0 0
\(19\) −3.40555 −0.781287 −0.390643 0.920542i \(-0.627747\pi\)
−0.390643 + 0.920542i \(0.627747\pi\)
\(20\) −4.26142 −0.952882
\(21\) 0 0
\(22\) 4.06524 0.866711
\(23\) 2.35045 0.490102 0.245051 0.969510i \(-0.421195\pi\)
0.245051 + 0.969510i \(0.421195\pi\)
\(24\) 0 0
\(25\) 2.20003 0.440007
\(26\) 3.45482 0.677546
\(27\) 0 0
\(28\) −7.05711 −1.33367
\(29\) −0.405468 −0.0752935 −0.0376467 0.999291i \(-0.511986\pi\)
−0.0376467 + 0.999291i \(0.511986\pi\)
\(30\) 0 0
\(31\) 3.62200 0.650530 0.325265 0.945623i \(-0.394546\pi\)
0.325265 + 0.945623i \(0.394546\pi\)
\(32\) −5.69550 −1.00683
\(33\) 0 0
\(34\) 0 0
\(35\) 11.9236 2.01546
\(36\) 0 0
\(37\) 4.96694 0.816559 0.408280 0.912857i \(-0.366129\pi\)
0.408280 + 0.912857i \(0.366129\pi\)
\(38\) 2.18558 0.354547
\(39\) 0 0
\(40\) 6.17895 0.976977
\(41\) −5.68257 −0.887469 −0.443735 0.896158i \(-0.646347\pi\)
−0.443735 + 0.896158i \(0.646347\pi\)
\(42\) 0 0
\(43\) 5.89136 0.898424 0.449212 0.893425i \(-0.351705\pi\)
0.449212 + 0.893425i \(0.351705\pi\)
\(44\) 10.0599 1.51659
\(45\) 0 0
\(46\) −1.50844 −0.222408
\(47\) 1.84042 0.268452 0.134226 0.990951i \(-0.457145\pi\)
0.134226 + 0.990951i \(0.457145\pi\)
\(48\) 0 0
\(49\) 12.7460 1.82086
\(50\) −1.41191 −0.199675
\(51\) 0 0
\(52\) 8.54935 1.18558
\(53\) −2.31475 −0.317956 −0.158978 0.987282i \(-0.550820\pi\)
−0.158978 + 0.987282i \(0.550820\pi\)
\(54\) 0 0
\(55\) −16.9971 −2.29189
\(56\) 10.2326 1.36739
\(57\) 0 0
\(58\) 0.260217 0.0341681
\(59\) 12.6166 1.64254 0.821270 0.570539i \(-0.193266\pi\)
0.821270 + 0.570539i \(0.193266\pi\)
\(60\) 0 0
\(61\) −9.13811 −1.17002 −0.585008 0.811028i \(-0.698909\pi\)
−0.585008 + 0.811028i \(0.698909\pi\)
\(62\) −2.32449 −0.295210
\(63\) 0 0
\(64\) 0.258335 0.0322919
\(65\) −14.4449 −1.79167
\(66\) 0 0
\(67\) 0.233694 0.0285503 0.0142752 0.999898i \(-0.495456\pi\)
0.0142752 + 0.999898i \(0.495456\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −7.65219 −0.914612
\(71\) −9.29208 −1.10277 −0.551383 0.834252i \(-0.685900\pi\)
−0.551383 + 0.834252i \(0.685900\pi\)
\(72\) 0 0
\(73\) 3.05704 0.357800 0.178900 0.983867i \(-0.442746\pi\)
0.178900 + 0.983867i \(0.442746\pi\)
\(74\) −3.18763 −0.370554
\(75\) 0 0
\(76\) 5.40847 0.620394
\(77\) −28.1480 −3.20776
\(78\) 0 0
\(79\) −5.59075 −0.629008 −0.314504 0.949256i \(-0.601838\pi\)
−0.314504 + 0.949256i \(0.601838\pi\)
\(80\) 4.55738 0.509530
\(81\) 0 0
\(82\) 3.64690 0.402733
\(83\) −9.49892 −1.04264 −0.521321 0.853361i \(-0.674561\pi\)
−0.521321 + 0.853361i \(0.674561\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.78089 −0.407704
\(87\) 0 0
\(88\) −14.5866 −1.55494
\(89\) 14.3614 1.52231 0.761154 0.648571i \(-0.224633\pi\)
0.761154 + 0.648571i \(0.224633\pi\)
\(90\) 0 0
\(91\) −23.9214 −2.50764
\(92\) −3.73282 −0.389174
\(93\) 0 0
\(94\) −1.18112 −0.121823
\(95\) −9.13807 −0.937546
\(96\) 0 0
\(97\) −17.6601 −1.79311 −0.896556 0.442930i \(-0.853939\pi\)
−0.896556 + 0.442930i \(0.853939\pi\)
\(98\) −8.18002 −0.826306
\(99\) 0 0
\(100\) −3.49394 −0.349394
\(101\) −8.30139 −0.826019 −0.413009 0.910727i \(-0.635522\pi\)
−0.413009 + 0.910727i \(0.635522\pi\)
\(102\) 0 0
\(103\) −16.4829 −1.62410 −0.812052 0.583585i \(-0.801650\pi\)
−0.812052 + 0.583585i \(0.801650\pi\)
\(104\) −12.3963 −1.21556
\(105\) 0 0
\(106\) 1.48554 0.144288
\(107\) −5.39238 −0.521301 −0.260651 0.965433i \(-0.583937\pi\)
−0.260651 + 0.965433i \(0.583937\pi\)
\(108\) 0 0
\(109\) 3.67449 0.351952 0.175976 0.984394i \(-0.443692\pi\)
0.175976 + 0.984394i \(0.443692\pi\)
\(110\) 10.9082 1.04006
\(111\) 0 0
\(112\) 7.54724 0.713147
\(113\) 13.0724 1.22975 0.614873 0.788626i \(-0.289207\pi\)
0.614873 + 0.788626i \(0.289207\pi\)
\(114\) 0 0
\(115\) 6.30692 0.588124
\(116\) 0.643936 0.0597880
\(117\) 0 0
\(118\) −8.09694 −0.745383
\(119\) 0 0
\(120\) 0 0
\(121\) 29.1249 2.64772
\(122\) 5.86456 0.530952
\(123\) 0 0
\(124\) −5.75222 −0.516564
\(125\) −7.51312 −0.671994
\(126\) 0 0
\(127\) −4.99469 −0.443207 −0.221604 0.975137i \(-0.571129\pi\)
−0.221604 + 0.975137i \(0.571129\pi\)
\(128\) 11.2252 0.992178
\(129\) 0 0
\(130\) 9.27027 0.813057
\(131\) −12.7397 −1.11307 −0.556535 0.830824i \(-0.687870\pi\)
−0.556535 + 0.830824i \(0.687870\pi\)
\(132\) 0 0
\(133\) −15.1331 −1.31220
\(134\) −0.149978 −0.0129561
\(135\) 0 0
\(136\) 0 0
\(137\) −6.30237 −0.538448 −0.269224 0.963078i \(-0.586767\pi\)
−0.269224 + 0.963078i \(0.586767\pi\)
\(138\) 0 0
\(139\) −11.7494 −0.996573 −0.498287 0.867012i \(-0.666037\pi\)
−0.498287 + 0.867012i \(0.666037\pi\)
\(140\) −18.9363 −1.60041
\(141\) 0 0
\(142\) 5.96337 0.500435
\(143\) 34.0999 2.85158
\(144\) 0 0
\(145\) −1.08799 −0.0903523
\(146\) −1.96192 −0.162369
\(147\) 0 0
\(148\) −7.88816 −0.648402
\(149\) −17.0428 −1.39620 −0.698102 0.715999i \(-0.745972\pi\)
−0.698102 + 0.715999i \(0.745972\pi\)
\(150\) 0 0
\(151\) 5.68000 0.462232 0.231116 0.972926i \(-0.425762\pi\)
0.231116 + 0.972926i \(0.425762\pi\)
\(152\) −7.84214 −0.636081
\(153\) 0 0
\(154\) 18.0645 1.45568
\(155\) 9.71887 0.780638
\(156\) 0 0
\(157\) 12.6032 1.00585 0.502923 0.864331i \(-0.332258\pi\)
0.502923 + 0.864331i \(0.332258\pi\)
\(158\) 3.58797 0.285443
\(159\) 0 0
\(160\) −15.2827 −1.20820
\(161\) 10.4446 0.823147
\(162\) 0 0
\(163\) 20.6595 1.61817 0.809087 0.587689i \(-0.199962\pi\)
0.809087 + 0.587689i \(0.199962\pi\)
\(164\) 9.02468 0.704709
\(165\) 0 0
\(166\) 6.09611 0.473150
\(167\) −15.2557 −1.18052 −0.590260 0.807213i \(-0.700975\pi\)
−0.590260 + 0.807213i \(0.700975\pi\)
\(168\) 0 0
\(169\) 15.9796 1.22920
\(170\) 0 0
\(171\) 0 0
\(172\) −9.35626 −0.713408
\(173\) −6.13201 −0.466208 −0.233104 0.972452i \(-0.574888\pi\)
−0.233104 + 0.972452i \(0.574888\pi\)
\(174\) 0 0
\(175\) 9.77618 0.739010
\(176\) −10.7586 −0.810959
\(177\) 0 0
\(178\) −9.21672 −0.690822
\(179\) −22.1716 −1.65718 −0.828592 0.559853i \(-0.810858\pi\)
−0.828592 + 0.559853i \(0.810858\pi\)
\(180\) 0 0
\(181\) −3.73212 −0.277407 −0.138703 0.990334i \(-0.544293\pi\)
−0.138703 + 0.990334i \(0.544293\pi\)
\(182\) 15.3520 1.13797
\(183\) 0 0
\(184\) 5.41250 0.399014
\(185\) 13.3277 0.979874
\(186\) 0 0
\(187\) 0 0
\(188\) −2.92283 −0.213169
\(189\) 0 0
\(190\) 5.86453 0.425458
\(191\) −6.20059 −0.448659 −0.224329 0.974513i \(-0.572019\pi\)
−0.224329 + 0.974513i \(0.572019\pi\)
\(192\) 0 0
\(193\) −6.58343 −0.473885 −0.236943 0.971524i \(-0.576145\pi\)
−0.236943 + 0.971524i \(0.576145\pi\)
\(194\) 11.3337 0.813713
\(195\) 0 0
\(196\) −20.2424 −1.44589
\(197\) −6.73707 −0.479997 −0.239998 0.970773i \(-0.577147\pi\)
−0.239998 + 0.970773i \(0.577147\pi\)
\(198\) 0 0
\(199\) −6.42392 −0.455380 −0.227690 0.973734i \(-0.573117\pi\)
−0.227690 + 0.973734i \(0.573117\pi\)
\(200\) 5.06613 0.358229
\(201\) 0 0
\(202\) 5.32757 0.374847
\(203\) −1.80176 −0.126459
\(204\) 0 0
\(205\) −15.2480 −1.06497
\(206\) 10.5782 0.737017
\(207\) 0 0
\(208\) −9.14312 −0.633961
\(209\) 21.5722 1.49218
\(210\) 0 0
\(211\) −3.61442 −0.248827 −0.124414 0.992230i \(-0.539705\pi\)
−0.124414 + 0.992230i \(0.539705\pi\)
\(212\) 3.67613 0.252478
\(213\) 0 0
\(214\) 3.46066 0.236566
\(215\) 15.8082 1.07811
\(216\) 0 0
\(217\) 16.0949 1.09259
\(218\) −2.35817 −0.159716
\(219\) 0 0
\(220\) 26.9936 1.81991
\(221\) 0 0
\(222\) 0 0
\(223\) 6.74600 0.451745 0.225873 0.974157i \(-0.427477\pi\)
0.225873 + 0.974157i \(0.427477\pi\)
\(224\) −25.3088 −1.69102
\(225\) 0 0
\(226\) −8.38944 −0.558058
\(227\) −16.6281 −1.10365 −0.551823 0.833961i \(-0.686068\pi\)
−0.551823 + 0.833961i \(0.686068\pi\)
\(228\) 0 0
\(229\) −3.97644 −0.262771 −0.131385 0.991331i \(-0.541943\pi\)
−0.131385 + 0.991331i \(0.541943\pi\)
\(230\) −4.04759 −0.266890
\(231\) 0 0
\(232\) −0.933691 −0.0612998
\(233\) 3.45045 0.226047 0.113023 0.993592i \(-0.463947\pi\)
0.113023 + 0.993592i \(0.463947\pi\)
\(234\) 0 0
\(235\) 4.93837 0.322144
\(236\) −20.0368 −1.30429
\(237\) 0 0
\(238\) 0 0
\(239\) −30.6355 −1.98165 −0.990824 0.135160i \(-0.956845\pi\)
−0.990824 + 0.135160i \(0.956845\pi\)
\(240\) 0 0
\(241\) 12.7141 0.818985 0.409493 0.912313i \(-0.365706\pi\)
0.409493 + 0.912313i \(0.365706\pi\)
\(242\) −18.6915 −1.20153
\(243\) 0 0
\(244\) 14.5125 0.929070
\(245\) 34.2013 2.18504
\(246\) 0 0
\(247\) 18.3330 1.16650
\(248\) 8.34057 0.529626
\(249\) 0 0
\(250\) 4.82169 0.304950
\(251\) 11.8594 0.748556 0.374278 0.927317i \(-0.377891\pi\)
0.374278 + 0.927317i \(0.377891\pi\)
\(252\) 0 0
\(253\) −14.8887 −0.936046
\(254\) 3.20544 0.201127
\(255\) 0 0
\(256\) −7.72066 −0.482542
\(257\) 20.1673 1.25800 0.629000 0.777405i \(-0.283465\pi\)
0.629000 + 0.777405i \(0.283465\pi\)
\(258\) 0 0
\(259\) 22.0713 1.37145
\(260\) 22.9404 1.42270
\(261\) 0 0
\(262\) 8.17593 0.505110
\(263\) −25.4907 −1.57182 −0.785912 0.618338i \(-0.787806\pi\)
−0.785912 + 0.618338i \(0.787806\pi\)
\(264\) 0 0
\(265\) −6.21115 −0.381548
\(266\) 9.71194 0.595477
\(267\) 0 0
\(268\) −0.371138 −0.0226708
\(269\) −5.05965 −0.308492 −0.154246 0.988032i \(-0.549295\pi\)
−0.154246 + 0.988032i \(0.549295\pi\)
\(270\) 0 0
\(271\) −3.07396 −0.186730 −0.0933650 0.995632i \(-0.529762\pi\)
−0.0933650 + 0.995632i \(0.529762\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 4.04467 0.244347
\(275\) −13.9359 −0.840369
\(276\) 0 0
\(277\) −10.7230 −0.644282 −0.322141 0.946692i \(-0.604403\pi\)
−0.322141 + 0.946692i \(0.604403\pi\)
\(278\) 7.54042 0.452244
\(279\) 0 0
\(280\) 27.4571 1.64087
\(281\) −10.0742 −0.600976 −0.300488 0.953786i \(-0.597149\pi\)
−0.300488 + 0.953786i \(0.597149\pi\)
\(282\) 0 0
\(283\) 31.8828 1.89524 0.947618 0.319405i \(-0.103483\pi\)
0.947618 + 0.319405i \(0.103483\pi\)
\(284\) 14.7571 0.875670
\(285\) 0 0
\(286\) −21.8843 −1.29404
\(287\) −25.2514 −1.49054
\(288\) 0 0
\(289\) 0 0
\(290\) 0.698236 0.0410018
\(291\) 0 0
\(292\) −4.85499 −0.284117
\(293\) −0.223998 −0.0130861 −0.00654304 0.999979i \(-0.502083\pi\)
−0.00654304 + 0.999979i \(0.502083\pi\)
\(294\) 0 0
\(295\) 33.8539 1.97105
\(296\) 11.4376 0.664798
\(297\) 0 0
\(298\) 10.9376 0.633596
\(299\) −12.6531 −0.731748
\(300\) 0 0
\(301\) 26.1792 1.50894
\(302\) −3.64525 −0.209761
\(303\) 0 0
\(304\) −5.78409 −0.331740
\(305\) −24.5202 −1.40402
\(306\) 0 0
\(307\) −14.6597 −0.836676 −0.418338 0.908291i \(-0.637387\pi\)
−0.418338 + 0.908291i \(0.637387\pi\)
\(308\) 44.7027 2.54717
\(309\) 0 0
\(310\) −6.23727 −0.354253
\(311\) −33.1970 −1.88243 −0.941215 0.337807i \(-0.890315\pi\)
−0.941215 + 0.337807i \(0.890315\pi\)
\(312\) 0 0
\(313\) 23.9346 1.35287 0.676433 0.736504i \(-0.263525\pi\)
0.676433 + 0.736504i \(0.263525\pi\)
\(314\) −8.08835 −0.456452
\(315\) 0 0
\(316\) 8.87885 0.499474
\(317\) −26.9926 −1.51606 −0.758029 0.652221i \(-0.773837\pi\)
−0.758029 + 0.652221i \(0.773837\pi\)
\(318\) 0 0
\(319\) 2.56840 0.143803
\(320\) 0.693187 0.0387504
\(321\) 0 0
\(322\) −6.70300 −0.373544
\(323\) 0 0
\(324\) 0 0
\(325\) −11.8434 −0.656952
\(326\) −13.2586 −0.734326
\(327\) 0 0
\(328\) −13.0856 −0.722529
\(329\) 8.17817 0.450877
\(330\) 0 0
\(331\) 25.5352 1.40354 0.701770 0.712404i \(-0.252394\pi\)
0.701770 + 0.712404i \(0.252394\pi\)
\(332\) 15.0855 0.827927
\(333\) 0 0
\(334\) 9.79062 0.535719
\(335\) 0.627069 0.0342604
\(336\) 0 0
\(337\) 0.987585 0.0537972 0.0268986 0.999638i \(-0.491437\pi\)
0.0268986 + 0.999638i \(0.491437\pi\)
\(338\) −10.2552 −0.557811
\(339\) 0 0
\(340\) 0 0
\(341\) −22.9433 −1.24245
\(342\) 0 0
\(343\) 25.5334 1.37868
\(344\) 13.5663 0.731448
\(345\) 0 0
\(346\) 3.93533 0.211565
\(347\) 20.5814 1.10487 0.552434 0.833557i \(-0.313699\pi\)
0.552434 + 0.833557i \(0.313699\pi\)
\(348\) 0 0
\(349\) −19.8215 −1.06102 −0.530509 0.847679i \(-0.677999\pi\)
−0.530509 + 0.847679i \(0.677999\pi\)
\(350\) −6.27405 −0.335362
\(351\) 0 0
\(352\) 36.0777 1.92295
\(353\) −14.0227 −0.746355 −0.373177 0.927760i \(-0.621732\pi\)
−0.373177 + 0.927760i \(0.621732\pi\)
\(354\) 0 0
\(355\) −24.9333 −1.32332
\(356\) −22.8079 −1.20881
\(357\) 0 0
\(358\) 14.2290 0.752029
\(359\) 1.22037 0.0644086 0.0322043 0.999481i \(-0.489747\pi\)
0.0322043 + 0.999481i \(0.489747\pi\)
\(360\) 0 0
\(361\) −7.40222 −0.389591
\(362\) 2.39516 0.125887
\(363\) 0 0
\(364\) 37.9904 1.99124
\(365\) 8.20293 0.429361
\(366\) 0 0
\(367\) 16.7935 0.876613 0.438307 0.898825i \(-0.355578\pi\)
0.438307 + 0.898825i \(0.355578\pi\)
\(368\) 3.99207 0.208101
\(369\) 0 0
\(370\) −8.55332 −0.444666
\(371\) −10.2860 −0.534020
\(372\) 0 0
\(373\) −13.2048 −0.683720 −0.341860 0.939751i \(-0.611057\pi\)
−0.341860 + 0.939751i \(0.611057\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.23802 0.218559
\(377\) 2.18274 0.112417
\(378\) 0 0
\(379\) 18.8775 0.969672 0.484836 0.874605i \(-0.338879\pi\)
0.484836 + 0.874605i \(0.338879\pi\)
\(380\) 14.5125 0.744474
\(381\) 0 0
\(382\) 3.97935 0.203601
\(383\) −2.00369 −0.102384 −0.0511919 0.998689i \(-0.516302\pi\)
−0.0511919 + 0.998689i \(0.516302\pi\)
\(384\) 0 0
\(385\) −75.5291 −3.84932
\(386\) 4.22504 0.215049
\(387\) 0 0
\(388\) 28.0466 1.42385
\(389\) −13.0743 −0.662893 −0.331447 0.943474i \(-0.607537\pi\)
−0.331447 + 0.943474i \(0.607537\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 29.3510 1.48245
\(393\) 0 0
\(394\) 4.32364 0.217822
\(395\) −15.0016 −0.754812
\(396\) 0 0
\(397\) 3.60996 0.181179 0.0905895 0.995888i \(-0.471125\pi\)
0.0905895 + 0.995888i \(0.471125\pi\)
\(398\) 4.12267 0.206651
\(399\) 0 0
\(400\) 3.73660 0.186830
\(401\) 27.4185 1.36922 0.684608 0.728912i \(-0.259974\pi\)
0.684608 + 0.728912i \(0.259974\pi\)
\(402\) 0 0
\(403\) −19.4982 −0.971275
\(404\) 13.1837 0.655914
\(405\) 0 0
\(406\) 1.15631 0.0573868
\(407\) −31.4627 −1.55955
\(408\) 0 0
\(409\) −17.4351 −0.862112 −0.431056 0.902325i \(-0.641859\pi\)
−0.431056 + 0.902325i \(0.641859\pi\)
\(410\) 9.78568 0.483280
\(411\) 0 0
\(412\) 26.1770 1.28965
\(413\) 56.0638 2.75872
\(414\) 0 0
\(415\) −25.4883 −1.25117
\(416\) 30.6605 1.50325
\(417\) 0 0
\(418\) −13.8444 −0.677150
\(419\) 19.4358 0.949501 0.474751 0.880120i \(-0.342538\pi\)
0.474751 + 0.880120i \(0.342538\pi\)
\(420\) 0 0
\(421\) −25.0871 −1.22267 −0.611335 0.791372i \(-0.709367\pi\)
−0.611335 + 0.791372i \(0.709367\pi\)
\(422\) 2.31962 0.112918
\(423\) 0 0
\(424\) −5.33030 −0.258862
\(425\) 0 0
\(426\) 0 0
\(427\) −40.6066 −1.96509
\(428\) 8.56382 0.413948
\(429\) 0 0
\(430\) −10.1452 −0.489246
\(431\) 21.4510 1.03326 0.516630 0.856209i \(-0.327186\pi\)
0.516630 + 0.856209i \(0.327186\pi\)
\(432\) 0 0
\(433\) 16.4261 0.789386 0.394693 0.918813i \(-0.370851\pi\)
0.394693 + 0.918813i \(0.370851\pi\)
\(434\) −10.3292 −0.495818
\(435\) 0 0
\(436\) −5.83557 −0.279473
\(437\) −8.00457 −0.382910
\(438\) 0 0
\(439\) 1.02381 0.0488637 0.0244319 0.999701i \(-0.492222\pi\)
0.0244319 + 0.999701i \(0.492222\pi\)
\(440\) −39.1401 −1.86593
\(441\) 0 0
\(442\) 0 0
\(443\) 11.8564 0.563316 0.281658 0.959515i \(-0.409116\pi\)
0.281658 + 0.959515i \(0.409116\pi\)
\(444\) 0 0
\(445\) 38.5359 1.82677
\(446\) −4.32937 −0.205002
\(447\) 0 0
\(448\) 1.14795 0.0542356
\(449\) −15.7799 −0.744701 −0.372350 0.928092i \(-0.621448\pi\)
−0.372350 + 0.928092i \(0.621448\pi\)
\(450\) 0 0
\(451\) 35.9958 1.69498
\(452\) −20.7607 −0.976500
\(453\) 0 0
\(454\) 10.6714 0.500833
\(455\) −64.1880 −3.00918
\(456\) 0 0
\(457\) 9.57499 0.447899 0.223950 0.974601i \(-0.428105\pi\)
0.223950 + 0.974601i \(0.428105\pi\)
\(458\) 2.55196 0.119245
\(459\) 0 0
\(460\) −10.0162 −0.467009
\(461\) −20.3019 −0.945555 −0.472777 0.881182i \(-0.656749\pi\)
−0.472777 + 0.881182i \(0.656749\pi\)
\(462\) 0 0
\(463\) −2.14003 −0.0994556 −0.0497278 0.998763i \(-0.515835\pi\)
−0.0497278 + 0.998763i \(0.515835\pi\)
\(464\) −0.688659 −0.0319702
\(465\) 0 0
\(466\) −2.21439 −0.102580
\(467\) 8.65689 0.400593 0.200296 0.979735i \(-0.435809\pi\)
0.200296 + 0.979735i \(0.435809\pi\)
\(468\) 0 0
\(469\) 1.03846 0.0479515
\(470\) −3.16929 −0.146188
\(471\) 0 0
\(472\) 29.0529 1.33727
\(473\) −37.3184 −1.71590
\(474\) 0 0
\(475\) −7.49232 −0.343771
\(476\) 0 0
\(477\) 0 0
\(478\) 19.6609 0.899270
\(479\) −22.2385 −1.01610 −0.508052 0.861326i \(-0.669634\pi\)
−0.508052 + 0.861326i \(0.669634\pi\)
\(480\) 0 0
\(481\) −26.7384 −1.21917
\(482\) −8.15949 −0.371655
\(483\) 0 0
\(484\) −46.2542 −2.10247
\(485\) −47.3872 −2.15174
\(486\) 0 0
\(487\) 42.3969 1.92119 0.960593 0.277959i \(-0.0896578\pi\)
0.960593 + 0.277959i \(0.0896578\pi\)
\(488\) −21.0428 −0.952563
\(489\) 0 0
\(490\) −21.9493 −0.991570
\(491\) −29.8116 −1.34538 −0.672689 0.739926i \(-0.734861\pi\)
−0.672689 + 0.739926i \(0.734861\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −11.7656 −0.529357
\(495\) 0 0
\(496\) 6.15172 0.276220
\(497\) −41.2908 −1.85214
\(498\) 0 0
\(499\) −35.2350 −1.57733 −0.788667 0.614821i \(-0.789228\pi\)
−0.788667 + 0.614821i \(0.789228\pi\)
\(500\) 11.9318 0.533608
\(501\) 0 0
\(502\) −7.61096 −0.339694
\(503\) −12.8548 −0.573169 −0.286585 0.958055i \(-0.592520\pi\)
−0.286585 + 0.958055i \(0.592520\pi\)
\(504\) 0 0
\(505\) −22.2750 −0.991225
\(506\) 9.55512 0.424777
\(507\) 0 0
\(508\) 7.93224 0.351936
\(509\) −18.7529 −0.831208 −0.415604 0.909546i \(-0.636430\pi\)
−0.415604 + 0.909546i \(0.636430\pi\)
\(510\) 0 0
\(511\) 13.5844 0.600940
\(512\) −17.4956 −0.773201
\(513\) 0 0
\(514\) −12.9427 −0.570879
\(515\) −44.2283 −1.94893
\(516\) 0 0
\(517\) −11.6580 −0.512717
\(518\) −14.1647 −0.622361
\(519\) 0 0
\(520\) −33.2630 −1.45868
\(521\) −12.5246 −0.548714 −0.274357 0.961628i \(-0.588465\pi\)
−0.274357 + 0.961628i \(0.588465\pi\)
\(522\) 0 0
\(523\) 12.0664 0.527628 0.263814 0.964574i \(-0.415020\pi\)
0.263814 + 0.964574i \(0.415020\pi\)
\(524\) 20.2323 0.883852
\(525\) 0 0
\(526\) 16.3591 0.713293
\(527\) 0 0
\(528\) 0 0
\(529\) −17.4754 −0.759800
\(530\) 3.98612 0.173146
\(531\) 0 0
\(532\) 24.0333 1.04198
\(533\) 30.5909 1.32504
\(534\) 0 0
\(535\) −14.4693 −0.625563
\(536\) 0.538140 0.0232441
\(537\) 0 0
\(538\) 3.24713 0.139994
\(539\) −80.7389 −3.47767
\(540\) 0 0
\(541\) −28.0602 −1.20640 −0.603202 0.797589i \(-0.706109\pi\)
−0.603202 + 0.797589i \(0.706109\pi\)
\(542\) 1.97277 0.0847379
\(543\) 0 0
\(544\) 0 0
\(545\) 9.85971 0.422343
\(546\) 0 0
\(547\) −1.62765 −0.0695931 −0.0347965 0.999394i \(-0.511078\pi\)
−0.0347965 + 0.999394i \(0.511078\pi\)
\(548\) 10.0090 0.427563
\(549\) 0 0
\(550\) 8.94365 0.381359
\(551\) 1.38084 0.0588258
\(552\) 0 0
\(553\) −24.8433 −1.05645
\(554\) 6.88168 0.292375
\(555\) 0 0
\(556\) 18.6596 0.791345
\(557\) −7.21691 −0.305790 −0.152895 0.988242i \(-0.548860\pi\)
−0.152895 + 0.988242i \(0.548860\pi\)
\(558\) 0 0
\(559\) −31.7148 −1.34139
\(560\) 20.2514 0.855778
\(561\) 0 0
\(562\) 6.46530 0.272722
\(563\) −4.90951 −0.206911 −0.103456 0.994634i \(-0.532990\pi\)
−0.103456 + 0.994634i \(0.532990\pi\)
\(564\) 0 0
\(565\) 35.0769 1.47570
\(566\) −20.4614 −0.860057
\(567\) 0 0
\(568\) −21.3974 −0.897813
\(569\) 25.2147 1.05706 0.528528 0.848916i \(-0.322744\pi\)
0.528528 + 0.848916i \(0.322744\pi\)
\(570\) 0 0
\(571\) 12.4087 0.519288 0.259644 0.965704i \(-0.416395\pi\)
0.259644 + 0.965704i \(0.416395\pi\)
\(572\) −54.1552 −2.26434
\(573\) 0 0
\(574\) 16.2056 0.676407
\(575\) 5.17106 0.215648
\(576\) 0 0
\(577\) 5.07039 0.211083 0.105542 0.994415i \(-0.466342\pi\)
0.105542 + 0.994415i \(0.466342\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 1.72787 0.0717458
\(581\) −42.2099 −1.75116
\(582\) 0 0
\(583\) 14.6626 0.607264
\(584\) 7.03961 0.291301
\(585\) 0 0
\(586\) 0.143755 0.00593845
\(587\) −18.2018 −0.751270 −0.375635 0.926768i \(-0.622575\pi\)
−0.375635 + 0.926768i \(0.622575\pi\)
\(588\) 0 0
\(589\) −12.3349 −0.508251
\(590\) −21.7264 −0.894462
\(591\) 0 0
\(592\) 8.43600 0.346717
\(593\) 17.5786 0.721865 0.360932 0.932592i \(-0.382459\pi\)
0.360932 + 0.932592i \(0.382459\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 27.0663 1.10868
\(597\) 0 0
\(598\) 8.12037 0.332066
\(599\) 3.12165 0.127547 0.0637736 0.997964i \(-0.479686\pi\)
0.0637736 + 0.997964i \(0.479686\pi\)
\(600\) 0 0
\(601\) −20.5455 −0.838070 −0.419035 0.907970i \(-0.637632\pi\)
−0.419035 + 0.907970i \(0.637632\pi\)
\(602\) −16.8010 −0.684756
\(603\) 0 0
\(604\) −9.02060 −0.367043
\(605\) 78.1505 3.17727
\(606\) 0 0
\(607\) −17.3208 −0.703029 −0.351515 0.936182i \(-0.614333\pi\)
−0.351515 + 0.936182i \(0.614333\pi\)
\(608\) 19.3963 0.786625
\(609\) 0 0
\(610\) 15.7363 0.637144
\(611\) −9.90747 −0.400813
\(612\) 0 0
\(613\) 23.1375 0.934513 0.467256 0.884122i \(-0.345242\pi\)
0.467256 + 0.884122i \(0.345242\pi\)
\(614\) 9.40817 0.379683
\(615\) 0 0
\(616\) −64.8178 −2.61158
\(617\) −21.9578 −0.883989 −0.441994 0.897018i \(-0.645729\pi\)
−0.441994 + 0.897018i \(0.645729\pi\)
\(618\) 0 0
\(619\) 24.9794 1.00400 0.502002 0.864866i \(-0.332597\pi\)
0.502002 + 0.864866i \(0.332597\pi\)
\(620\) −15.4348 −0.619878
\(621\) 0 0
\(622\) 21.3048 0.854245
\(623\) 63.8172 2.55678
\(624\) 0 0
\(625\) −31.1600 −1.24640
\(626\) −15.3605 −0.613929
\(627\) 0 0
\(628\) −20.0156 −0.798708
\(629\) 0 0
\(630\) 0 0
\(631\) 30.7571 1.22442 0.612210 0.790696i \(-0.290281\pi\)
0.612210 + 0.790696i \(0.290281\pi\)
\(632\) −12.8741 −0.512104
\(633\) 0 0
\(634\) 17.3230 0.687985
\(635\) −13.4022 −0.531850
\(636\) 0 0
\(637\) −68.6155 −2.71864
\(638\) −1.64832 −0.0652577
\(639\) 0 0
\(640\) 30.1205 1.19062
\(641\) 15.7700 0.622876 0.311438 0.950266i \(-0.399189\pi\)
0.311438 + 0.950266i \(0.399189\pi\)
\(642\) 0 0
\(643\) 39.1574 1.54422 0.772109 0.635491i \(-0.219202\pi\)
0.772109 + 0.635491i \(0.219202\pi\)
\(644\) −16.5874 −0.653634
\(645\) 0 0
\(646\) 0 0
\(647\) −6.20318 −0.243872 −0.121936 0.992538i \(-0.538910\pi\)
−0.121936 + 0.992538i \(0.538910\pi\)
\(648\) 0 0
\(649\) −79.9188 −3.13709
\(650\) 7.60071 0.298124
\(651\) 0 0
\(652\) −32.8100 −1.28494
\(653\) −17.7568 −0.694879 −0.347439 0.937702i \(-0.612949\pi\)
−0.347439 + 0.937702i \(0.612949\pi\)
\(654\) 0 0
\(655\) −34.1842 −1.33569
\(656\) −9.65146 −0.376826
\(657\) 0 0
\(658\) −5.24850 −0.204608
\(659\) −34.8652 −1.35816 −0.679078 0.734066i \(-0.737620\pi\)
−0.679078 + 0.734066i \(0.737620\pi\)
\(660\) 0 0
\(661\) −5.79174 −0.225273 −0.112636 0.993636i \(-0.535930\pi\)
−0.112636 + 0.993636i \(0.535930\pi\)
\(662\) −16.3877 −0.636925
\(663\) 0 0
\(664\) −21.8737 −0.848863
\(665\) −40.6064 −1.57465
\(666\) 0 0
\(667\) −0.953030 −0.0369015
\(668\) 24.2280 0.937411
\(669\) 0 0
\(670\) −0.402433 −0.0155474
\(671\) 57.8847 2.23461
\(672\) 0 0
\(673\) −23.6619 −0.912099 −0.456050 0.889954i \(-0.650736\pi\)
−0.456050 + 0.889954i \(0.650736\pi\)
\(674\) −0.633802 −0.0244131
\(675\) 0 0
\(676\) −25.3778 −0.976069
\(677\) −30.3751 −1.16741 −0.583706 0.811965i \(-0.698398\pi\)
−0.583706 + 0.811965i \(0.698398\pi\)
\(678\) 0 0
\(679\) −78.4754 −3.01161
\(680\) 0 0
\(681\) 0 0
\(682\) 14.7243 0.563822
\(683\) 13.5599 0.518855 0.259428 0.965763i \(-0.416466\pi\)
0.259428 + 0.965763i \(0.416466\pi\)
\(684\) 0 0
\(685\) −16.9111 −0.646139
\(686\) −16.3866 −0.625642
\(687\) 0 0
\(688\) 10.0061 0.381478
\(689\) 12.4609 0.474724
\(690\) 0 0
\(691\) −25.4881 −0.969615 −0.484807 0.874621i \(-0.661110\pi\)
−0.484807 + 0.874621i \(0.661110\pi\)
\(692\) 9.73844 0.370200
\(693\) 0 0
\(694\) −13.2085 −0.501388
\(695\) −31.5271 −1.19589
\(696\) 0 0
\(697\) 0 0
\(698\) 12.7208 0.481489
\(699\) 0 0
\(700\) −15.5259 −0.586823
\(701\) 16.0986 0.608034 0.304017 0.952667i \(-0.401672\pi\)
0.304017 + 0.952667i \(0.401672\pi\)
\(702\) 0 0
\(703\) −16.9152 −0.637967
\(704\) −1.63640 −0.0616743
\(705\) 0 0
\(706\) 8.99935 0.338695
\(707\) −36.8885 −1.38733
\(708\) 0 0
\(709\) −20.5492 −0.771741 −0.385870 0.922553i \(-0.626099\pi\)
−0.385870 + 0.922553i \(0.626099\pi\)
\(710\) 16.0014 0.600523
\(711\) 0 0
\(712\) 33.0708 1.23938
\(713\) 8.51332 0.318826
\(714\) 0 0
\(715\) 91.4999 3.42190
\(716\) 35.2115 1.31591
\(717\) 0 0
\(718\) −0.783195 −0.0292286
\(719\) −6.56197 −0.244720 −0.122360 0.992486i \(-0.539046\pi\)
−0.122360 + 0.992486i \(0.539046\pi\)
\(720\) 0 0
\(721\) −73.2441 −2.72775
\(722\) 4.75052 0.176796
\(723\) 0 0
\(724\) 5.92711 0.220279
\(725\) −0.892042 −0.0331296
\(726\) 0 0
\(727\) 27.4523 1.01815 0.509076 0.860722i \(-0.329987\pi\)
0.509076 + 0.860722i \(0.329987\pi\)
\(728\) −55.0851 −2.04159
\(729\) 0 0
\(730\) −5.26438 −0.194844
\(731\) 0 0
\(732\) 0 0
\(733\) −2.85412 −0.105419 −0.0527097 0.998610i \(-0.516786\pi\)
−0.0527097 + 0.998610i \(0.516786\pi\)
\(734\) −10.7775 −0.397806
\(735\) 0 0
\(736\) −13.3870 −0.493451
\(737\) −1.48032 −0.0545283
\(738\) 0 0
\(739\) 36.7505 1.35189 0.675944 0.736953i \(-0.263736\pi\)
0.675944 + 0.736953i \(0.263736\pi\)
\(740\) −21.1662 −0.778085
\(741\) 0 0
\(742\) 6.60121 0.242338
\(743\) 24.6098 0.902846 0.451423 0.892310i \(-0.350916\pi\)
0.451423 + 0.892310i \(0.350916\pi\)
\(744\) 0 0
\(745\) −45.7308 −1.67545
\(746\) 8.47444 0.310271
\(747\) 0 0
\(748\) 0 0
\(749\) −23.9619 −0.875548
\(750\) 0 0
\(751\) −24.1092 −0.879759 −0.439879 0.898057i \(-0.644979\pi\)
−0.439879 + 0.898057i \(0.644979\pi\)
\(752\) 3.12582 0.113987
\(753\) 0 0
\(754\) −1.40082 −0.0510147
\(755\) 15.2411 0.554680
\(756\) 0 0
\(757\) 30.6687 1.11467 0.557336 0.830287i \(-0.311824\pi\)
0.557336 + 0.830287i \(0.311824\pi\)
\(758\) −12.1150 −0.440036
\(759\) 0 0
\(760\) −21.0427 −0.763299
\(761\) 26.0947 0.945932 0.472966 0.881081i \(-0.343183\pi\)
0.472966 + 0.881081i \(0.343183\pi\)
\(762\) 0 0
\(763\) 16.3281 0.591119
\(764\) 9.84736 0.356265
\(765\) 0 0
\(766\) 1.28591 0.0464616
\(767\) −67.9186 −2.45240
\(768\) 0 0
\(769\) 2.13990 0.0771669 0.0385834 0.999255i \(-0.487715\pi\)
0.0385834 + 0.999255i \(0.487715\pi\)
\(770\) 48.4722 1.74682
\(771\) 0 0
\(772\) 10.4554 0.376296
\(773\) 10.3940 0.373847 0.186923 0.982374i \(-0.440148\pi\)
0.186923 + 0.982374i \(0.440148\pi\)
\(774\) 0 0
\(775\) 7.96852 0.286238
\(776\) −40.6669 −1.45985
\(777\) 0 0
\(778\) 8.39068 0.300820
\(779\) 19.3523 0.693368
\(780\) 0 0
\(781\) 58.8600 2.10618
\(782\) 0 0
\(783\) 0 0
\(784\) 21.6483 0.773153
\(785\) 33.8180 1.20702
\(786\) 0 0
\(787\) 37.7273 1.34483 0.672417 0.740173i \(-0.265256\pi\)
0.672417 + 0.740173i \(0.265256\pi\)
\(788\) 10.6994 0.381149
\(789\) 0 0
\(790\) 9.62755 0.342533
\(791\) 58.0891 2.06541
\(792\) 0 0
\(793\) 49.1930 1.74689
\(794\) −2.31676 −0.0822188
\(795\) 0 0
\(796\) 10.2020 0.361602
\(797\) −2.08990 −0.0740282 −0.0370141 0.999315i \(-0.511785\pi\)
−0.0370141 + 0.999315i \(0.511785\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −12.5303 −0.443013
\(801\) 0 0
\(802\) −17.5963 −0.621349
\(803\) −19.3646 −0.683362
\(804\) 0 0
\(805\) 28.0258 0.987779
\(806\) 12.5133 0.440764
\(807\) 0 0
\(808\) −19.1160 −0.672500
\(809\) 18.2226 0.640671 0.320336 0.947304i \(-0.396204\pi\)
0.320336 + 0.947304i \(0.396204\pi\)
\(810\) 0 0
\(811\) 35.7235 1.25442 0.627211 0.778850i \(-0.284196\pi\)
0.627211 + 0.778850i \(0.284196\pi\)
\(812\) 2.86143 0.100417
\(813\) 0 0
\(814\) 20.1918 0.707721
\(815\) 55.4353 1.94181
\(816\) 0 0
\(817\) −20.0633 −0.701927
\(818\) 11.1893 0.391226
\(819\) 0 0
\(820\) 24.2158 0.845653
\(821\) −9.02635 −0.315022 −0.157511 0.987517i \(-0.550347\pi\)
−0.157511 + 0.987517i \(0.550347\pi\)
\(822\) 0 0
\(823\) −33.7346 −1.17591 −0.587956 0.808893i \(-0.700067\pi\)
−0.587956 + 0.808893i \(0.700067\pi\)
\(824\) −37.9559 −1.32226
\(825\) 0 0
\(826\) −35.9800 −1.25190
\(827\) 32.2238 1.12053 0.560265 0.828314i \(-0.310699\pi\)
0.560265 + 0.828314i \(0.310699\pi\)
\(828\) 0 0
\(829\) −39.8058 −1.38251 −0.691256 0.722610i \(-0.742942\pi\)
−0.691256 + 0.722610i \(0.742942\pi\)
\(830\) 16.3576 0.567781
\(831\) 0 0
\(832\) −1.39069 −0.0482135
\(833\) 0 0
\(834\) 0 0
\(835\) −40.9354 −1.41663
\(836\) −34.2595 −1.18489
\(837\) 0 0
\(838\) −12.4733 −0.430883
\(839\) −2.30065 −0.0794273 −0.0397137 0.999211i \(-0.512645\pi\)
−0.0397137 + 0.999211i \(0.512645\pi\)
\(840\) 0 0
\(841\) −28.8356 −0.994331
\(842\) 16.1001 0.554847
\(843\) 0 0
\(844\) 5.74018 0.197585
\(845\) 42.8780 1.47505
\(846\) 0 0
\(847\) 129.421 4.44696
\(848\) −3.93145 −0.135006
\(849\) 0 0
\(850\) 0 0
\(851\) 11.6745 0.400197
\(852\) 0 0
\(853\) −42.6432 −1.46007 −0.730037 0.683407i \(-0.760497\pi\)
−0.730037 + 0.683407i \(0.760497\pi\)
\(854\) 26.0601 0.891757
\(855\) 0 0
\(856\) −12.4173 −0.424415
\(857\) −3.79418 −0.129607 −0.0648034 0.997898i \(-0.520642\pi\)
−0.0648034 + 0.997898i \(0.520642\pi\)
\(858\) 0 0
\(859\) −13.2996 −0.453776 −0.226888 0.973921i \(-0.572855\pi\)
−0.226888 + 0.973921i \(0.572855\pi\)
\(860\) −25.1055 −0.856092
\(861\) 0 0
\(862\) −13.7666 −0.468892
\(863\) 10.8826 0.370447 0.185223 0.982696i \(-0.440699\pi\)
0.185223 + 0.982696i \(0.440699\pi\)
\(864\) 0 0
\(865\) −16.4539 −0.559451
\(866\) −10.5417 −0.358223
\(867\) 0 0
\(868\) −25.5608 −0.867592
\(869\) 35.4142 1.20134
\(870\) 0 0
\(871\) −1.25804 −0.0426271
\(872\) 8.46143 0.286540
\(873\) 0 0
\(874\) 5.13708 0.173764
\(875\) −33.3857 −1.12864
\(876\) 0 0
\(877\) −26.4117 −0.891860 −0.445930 0.895068i \(-0.647127\pi\)
−0.445930 + 0.895068i \(0.647127\pi\)
\(878\) −0.657049 −0.0221743
\(879\) 0 0
\(880\) −28.8684 −0.973152
\(881\) 56.5710 1.90593 0.952963 0.303086i \(-0.0980171\pi\)
0.952963 + 0.303086i \(0.0980171\pi\)
\(882\) 0 0
\(883\) 53.5321 1.80150 0.900749 0.434341i \(-0.143019\pi\)
0.900749 + 0.434341i \(0.143019\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −7.60909 −0.255632
\(887\) 48.6230 1.63260 0.816300 0.577628i \(-0.196022\pi\)
0.816300 + 0.577628i \(0.196022\pi\)
\(888\) 0 0
\(889\) −22.1947 −0.744386
\(890\) −24.7311 −0.828989
\(891\) 0 0
\(892\) −10.7135 −0.358716
\(893\) −6.26763 −0.209738
\(894\) 0 0
\(895\) −59.4928 −1.98863
\(896\) 49.8810 1.66641
\(897\) 0 0
\(898\) 10.1271 0.337945
\(899\) −1.46860 −0.0489807
\(900\) 0 0
\(901\) 0 0
\(902\) −23.1010 −0.769179
\(903\) 0 0
\(904\) 30.1024 1.00119
\(905\) −10.0144 −0.332889
\(906\) 0 0
\(907\) 21.5013 0.713939 0.356969 0.934116i \(-0.383810\pi\)
0.356969 + 0.934116i \(0.383810\pi\)
\(908\) 26.4076 0.876368
\(909\) 0 0
\(910\) 41.1939 1.36556
\(911\) −24.3047 −0.805251 −0.402625 0.915365i \(-0.631902\pi\)
−0.402625 + 0.915365i \(0.631902\pi\)
\(912\) 0 0
\(913\) 60.1702 1.99134
\(914\) −6.14493 −0.203256
\(915\) 0 0
\(916\) 6.31512 0.208657
\(917\) −56.6107 −1.86945
\(918\) 0 0
\(919\) −38.3537 −1.26517 −0.632586 0.774490i \(-0.718007\pi\)
−0.632586 + 0.774490i \(0.718007\pi\)
\(920\) 14.5233 0.478818
\(921\) 0 0
\(922\) 13.0291 0.429092
\(923\) 50.0218 1.64649
\(924\) 0 0
\(925\) 10.9274 0.359291
\(926\) 1.37340 0.0451329
\(927\) 0 0
\(928\) 2.30934 0.0758079
\(929\) 21.5943 0.708486 0.354243 0.935153i \(-0.384738\pi\)
0.354243 + 0.935153i \(0.384738\pi\)
\(930\) 0 0
\(931\) −43.4073 −1.42262
\(932\) −5.47977 −0.179496
\(933\) 0 0
\(934\) −5.55572 −0.181789
\(935\) 0 0
\(936\) 0 0
\(937\) −0.378276 −0.0123577 −0.00617887 0.999981i \(-0.501967\pi\)
−0.00617887 + 0.999981i \(0.501967\pi\)
\(938\) −0.666449 −0.0217603
\(939\) 0 0
\(940\) −7.84278 −0.255803
\(941\) −14.8330 −0.483543 −0.241772 0.970333i \(-0.577728\pi\)
−0.241772 + 0.970333i \(0.577728\pi\)
\(942\) 0 0
\(943\) −13.3566 −0.434950
\(944\) 21.4284 0.697435
\(945\) 0 0
\(946\) 23.9498 0.778674
\(947\) 16.3020 0.529743 0.264872 0.964284i \(-0.414670\pi\)
0.264872 + 0.964284i \(0.414670\pi\)
\(948\) 0 0
\(949\) −16.4569 −0.534214
\(950\) 4.80834 0.156003
\(951\) 0 0
\(952\) 0 0
\(953\) 53.8486 1.74433 0.872163 0.489216i \(-0.162717\pi\)
0.872163 + 0.489216i \(0.162717\pi\)
\(954\) 0 0
\(955\) −16.6380 −0.538392
\(956\) 48.6533 1.57356
\(957\) 0 0
\(958\) 14.2720 0.461107
\(959\) −28.0056 −0.904347
\(960\) 0 0
\(961\) −17.8811 −0.576810
\(962\) 17.1599 0.553256
\(963\) 0 0
\(964\) −20.1916 −0.650328
\(965\) −17.6652 −0.568664
\(966\) 0 0
\(967\) 5.19509 0.167063 0.0835315 0.996505i \(-0.473380\pi\)
0.0835315 + 0.996505i \(0.473380\pi\)
\(968\) 67.0675 2.15563
\(969\) 0 0
\(970\) 30.4116 0.976458
\(971\) 28.9362 0.928607 0.464304 0.885676i \(-0.346305\pi\)
0.464304 + 0.885676i \(0.346305\pi\)
\(972\) 0 0
\(973\) −52.2104 −1.67379
\(974\) −27.2090 −0.871833
\(975\) 0 0
\(976\) −15.5205 −0.496798
\(977\) −9.04283 −0.289306 −0.144653 0.989482i \(-0.546207\pi\)
−0.144653 + 0.989482i \(0.546207\pi\)
\(978\) 0 0
\(979\) −90.9714 −2.90746
\(980\) −54.3162 −1.73507
\(981\) 0 0
\(982\) 19.1321 0.610531
\(983\) −5.07951 −0.162011 −0.0810055 0.996714i \(-0.525813\pi\)
−0.0810055 + 0.996714i \(0.525813\pi\)
\(984\) 0 0
\(985\) −18.0775 −0.575997
\(986\) 0 0
\(987\) 0 0
\(988\) −29.1153 −0.926280
\(989\) 13.8473 0.440319
\(990\) 0 0
\(991\) 38.4382 1.22103 0.610515 0.792005i \(-0.290963\pi\)
0.610515 + 0.792005i \(0.290963\pi\)
\(992\) −20.6291 −0.654975
\(993\) 0 0
\(994\) 26.4991 0.840501
\(995\) −17.2372 −0.546457
\(996\) 0 0
\(997\) −14.7949 −0.468559 −0.234280 0.972169i \(-0.575273\pi\)
−0.234280 + 0.972169i \(0.575273\pi\)
\(998\) 22.6127 0.715793
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.by.1.8 yes 15
3.2 odd 2 7803.2.a.bz.1.8 yes 15
17.16 even 2 7803.2.a.bx.1.8 15
51.50 odd 2 7803.2.a.ca.1.8 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7803.2.a.bx.1.8 15 17.16 even 2
7803.2.a.by.1.8 yes 15 1.1 even 1 trivial
7803.2.a.bz.1.8 yes 15 3.2 odd 2
7803.2.a.ca.1.8 yes 15 51.50 odd 2