Properties

Label 7803.2.a.bv.1.5
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12,0,0,-8,0,0,-24,0,0,-4,0,0,20,0,0,-4,0,0,28,0,0,0,0, 0,-48,0,0,-8,0,0,0,0,0,-12,0,0,-44,0,0,-20,0,0,-36,0,0,28,0,0,8,0,0,-4, 0,0,-28,0,0,-48,0,0,40,0,0,-8,0,0,44,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 115x^{8} - 318x^{6} + 395x^{4} - 208x^{2} + 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.934753\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.934753 q^{2} -1.12624 q^{4} -2.13241 q^{5} -2.51416 q^{7} +2.92226 q^{8} +1.99328 q^{10} -0.0514801 q^{11} +1.23986 q^{13} +2.35012 q^{14} -0.479119 q^{16} +0.633442 q^{19} +2.40160 q^{20} +0.0481212 q^{22} -5.12747 q^{23} -0.452827 q^{25} -1.15896 q^{26} +2.83154 q^{28} -1.27046 q^{29} -8.63367 q^{31} -5.39666 q^{32} +5.36122 q^{35} +8.14157 q^{37} -0.592112 q^{38} -6.23146 q^{40} +8.79368 q^{41} +5.62741 q^{43} +0.0579788 q^{44} +4.79292 q^{46} +2.31601 q^{47} -0.679008 q^{49} +0.423282 q^{50} -1.39637 q^{52} +12.2326 q^{53} +0.109777 q^{55} -7.34702 q^{56} +1.18757 q^{58} +1.61825 q^{59} -3.90422 q^{61} +8.07035 q^{62} +6.00278 q^{64} -2.64388 q^{65} +0.733387 q^{67} -5.01141 q^{70} -12.8286 q^{71} +2.40471 q^{73} -7.61036 q^{74} -0.713406 q^{76} +0.129429 q^{77} -1.77525 q^{79} +1.02168 q^{80} -8.21992 q^{82} +11.7205 q^{83} -5.26024 q^{86} -0.150438 q^{88} -8.39229 q^{89} -3.11719 q^{91} +5.77475 q^{92} -2.16490 q^{94} -1.35076 q^{95} +4.92731 q^{97} +0.634705 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 8 q^{7} - 24 q^{10} - 4 q^{13} + 20 q^{16} - 4 q^{19} + 28 q^{22} - 48 q^{28} - 8 q^{31} - 12 q^{37} - 44 q^{40} - 20 q^{43} - 36 q^{46} + 28 q^{49} + 8 q^{52} - 4 q^{55} - 28 q^{58} - 48 q^{61}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.934753 −0.660970 −0.330485 0.943811i \(-0.607212\pi\)
−0.330485 + 0.943811i \(0.607212\pi\)
\(3\) 0 0
\(4\) −1.12624 −0.563118
\(5\) −2.13241 −0.953643 −0.476821 0.879000i \(-0.658211\pi\)
−0.476821 + 0.879000i \(0.658211\pi\)
\(6\) 0 0
\(7\) −2.51416 −0.950262 −0.475131 0.879915i \(-0.657599\pi\)
−0.475131 + 0.879915i \(0.657599\pi\)
\(8\) 2.92226 1.03317
\(9\) 0 0
\(10\) 1.99328 0.630330
\(11\) −0.0514801 −0.0155218 −0.00776092 0.999970i \(-0.502470\pi\)
−0.00776092 + 0.999970i \(0.502470\pi\)
\(12\) 0 0
\(13\) 1.23986 0.343874 0.171937 0.985108i \(-0.444997\pi\)
0.171937 + 0.985108i \(0.444997\pi\)
\(14\) 2.35012 0.628095
\(15\) 0 0
\(16\) −0.479119 −0.119780
\(17\) 0 0
\(18\) 0 0
\(19\) 0.633442 0.145322 0.0726608 0.997357i \(-0.476851\pi\)
0.0726608 + 0.997357i \(0.476851\pi\)
\(20\) 2.40160 0.537014
\(21\) 0 0
\(22\) 0.0481212 0.0102595
\(23\) −5.12747 −1.06915 −0.534576 0.845120i \(-0.679529\pi\)
−0.534576 + 0.845120i \(0.679529\pi\)
\(24\) 0 0
\(25\) −0.452827 −0.0905655
\(26\) −1.15896 −0.227291
\(27\) 0 0
\(28\) 2.83154 0.535110
\(29\) −1.27046 −0.235919 −0.117959 0.993018i \(-0.537635\pi\)
−0.117959 + 0.993018i \(0.537635\pi\)
\(30\) 0 0
\(31\) −8.63367 −1.55065 −0.775327 0.631560i \(-0.782415\pi\)
−0.775327 + 0.631560i \(0.782415\pi\)
\(32\) −5.39666 −0.954004
\(33\) 0 0
\(34\) 0 0
\(35\) 5.36122 0.906211
\(36\) 0 0
\(37\) 8.14157 1.33847 0.669233 0.743052i \(-0.266623\pi\)
0.669233 + 0.743052i \(0.266623\pi\)
\(38\) −0.592112 −0.0960533
\(39\) 0 0
\(40\) −6.23146 −0.985280
\(41\) 8.79368 1.37334 0.686671 0.726968i \(-0.259071\pi\)
0.686671 + 0.726968i \(0.259071\pi\)
\(42\) 0 0
\(43\) 5.62741 0.858173 0.429086 0.903263i \(-0.358836\pi\)
0.429086 + 0.903263i \(0.358836\pi\)
\(44\) 0.0579788 0.00874063
\(45\) 0 0
\(46\) 4.79292 0.706678
\(47\) 2.31601 0.337825 0.168912 0.985631i \(-0.445974\pi\)
0.168912 + 0.985631i \(0.445974\pi\)
\(48\) 0 0
\(49\) −0.679008 −0.0970012
\(50\) 0.423282 0.0598611
\(51\) 0 0
\(52\) −1.39637 −0.193642
\(53\) 12.2326 1.68027 0.840136 0.542376i \(-0.182475\pi\)
0.840136 + 0.542376i \(0.182475\pi\)
\(54\) 0 0
\(55\) 0.109777 0.0148023
\(56\) −7.34702 −0.981787
\(57\) 0 0
\(58\) 1.18757 0.155935
\(59\) 1.61825 0.210678 0.105339 0.994436i \(-0.466407\pi\)
0.105339 + 0.994436i \(0.466407\pi\)
\(60\) 0 0
\(61\) −3.90422 −0.499885 −0.249942 0.968261i \(-0.580412\pi\)
−0.249942 + 0.968261i \(0.580412\pi\)
\(62\) 8.07035 1.02494
\(63\) 0 0
\(64\) 6.00278 0.750348
\(65\) −2.64388 −0.327933
\(66\) 0 0
\(67\) 0.733387 0.0895975 0.0447987 0.998996i \(-0.485735\pi\)
0.0447987 + 0.998996i \(0.485735\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −5.01141 −0.598979
\(71\) −12.8286 −1.52247 −0.761235 0.648476i \(-0.775407\pi\)
−0.761235 + 0.648476i \(0.775407\pi\)
\(72\) 0 0
\(73\) 2.40471 0.281450 0.140725 0.990049i \(-0.455057\pi\)
0.140725 + 0.990049i \(0.455057\pi\)
\(74\) −7.61036 −0.884687
\(75\) 0 0
\(76\) −0.713406 −0.0818333
\(77\) 0.129429 0.0147498
\(78\) 0 0
\(79\) −1.77525 −0.199731 −0.0998657 0.995001i \(-0.531841\pi\)
−0.0998657 + 0.995001i \(0.531841\pi\)
\(80\) 1.02168 0.114227
\(81\) 0 0
\(82\) −8.21992 −0.907739
\(83\) 11.7205 1.28649 0.643247 0.765658i \(-0.277587\pi\)
0.643247 + 0.765658i \(0.277587\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.26024 −0.567227
\(87\) 0 0
\(88\) −0.150438 −0.0160368
\(89\) −8.39229 −0.889580 −0.444790 0.895635i \(-0.646722\pi\)
−0.444790 + 0.895635i \(0.646722\pi\)
\(90\) 0 0
\(91\) −3.11719 −0.326771
\(92\) 5.77475 0.602059
\(93\) 0 0
\(94\) −2.16490 −0.223292
\(95\) −1.35076 −0.138585
\(96\) 0 0
\(97\) 4.92731 0.500293 0.250146 0.968208i \(-0.419521\pi\)
0.250146 + 0.968208i \(0.419521\pi\)
\(98\) 0.634705 0.0641149
\(99\) 0 0
\(100\) 0.509991 0.0509991
\(101\) −10.4205 −1.03688 −0.518438 0.855115i \(-0.673486\pi\)
−0.518438 + 0.855115i \(0.673486\pi\)
\(102\) 0 0
\(103\) 9.39654 0.925868 0.462934 0.886393i \(-0.346797\pi\)
0.462934 + 0.886393i \(0.346797\pi\)
\(104\) 3.62318 0.355282
\(105\) 0 0
\(106\) −11.4344 −1.11061
\(107\) 19.6443 1.89908 0.949542 0.313640i \(-0.101548\pi\)
0.949542 + 0.313640i \(0.101548\pi\)
\(108\) 0 0
\(109\) −16.1580 −1.54766 −0.773829 0.633394i \(-0.781661\pi\)
−0.773829 + 0.633394i \(0.781661\pi\)
\(110\) −0.102614 −0.00978387
\(111\) 0 0
\(112\) 1.20458 0.113822
\(113\) 0.195949 0.0184333 0.00921666 0.999958i \(-0.497066\pi\)
0.00921666 + 0.999958i \(0.497066\pi\)
\(114\) 0 0
\(115\) 10.9339 1.01959
\(116\) 1.43084 0.132850
\(117\) 0 0
\(118\) −1.51266 −0.139252
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9973 −0.999759
\(122\) 3.64949 0.330409
\(123\) 0 0
\(124\) 9.72355 0.873201
\(125\) 11.6277 1.04001
\(126\) 0 0
\(127\) 19.4041 1.72184 0.860920 0.508741i \(-0.169889\pi\)
0.860920 + 0.508741i \(0.169889\pi\)
\(128\) 5.18220 0.458046
\(129\) 0 0
\(130\) 2.47138 0.216754
\(131\) 13.3116 1.16304 0.581519 0.813533i \(-0.302459\pi\)
0.581519 + 0.813533i \(0.302459\pi\)
\(132\) 0 0
\(133\) −1.59257 −0.138094
\(134\) −0.685536 −0.0592213
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5293 0.899577 0.449789 0.893135i \(-0.351499\pi\)
0.449789 + 0.893135i \(0.351499\pi\)
\(138\) 0 0
\(139\) −7.66894 −0.650471 −0.325236 0.945633i \(-0.605444\pi\)
−0.325236 + 0.945633i \(0.605444\pi\)
\(140\) −6.03800 −0.510304
\(141\) 0 0
\(142\) 11.9915 1.00631
\(143\) −0.0638279 −0.00533756
\(144\) 0 0
\(145\) 2.70914 0.224982
\(146\) −2.24781 −0.186030
\(147\) 0 0
\(148\) −9.16933 −0.753715
\(149\) 9.47788 0.776458 0.388229 0.921563i \(-0.373087\pi\)
0.388229 + 0.921563i \(0.373087\pi\)
\(150\) 0 0
\(151\) 17.3658 1.41321 0.706603 0.707610i \(-0.250227\pi\)
0.706603 + 0.707610i \(0.250227\pi\)
\(152\) 1.85108 0.150143
\(153\) 0 0
\(154\) −0.120984 −0.00974919
\(155\) 18.4105 1.47877
\(156\) 0 0
\(157\) −10.1833 −0.812712 −0.406356 0.913715i \(-0.633201\pi\)
−0.406356 + 0.913715i \(0.633201\pi\)
\(158\) 1.65942 0.132016
\(159\) 0 0
\(160\) 11.5079 0.909779
\(161\) 12.8913 1.01598
\(162\) 0 0
\(163\) −18.4347 −1.44392 −0.721960 0.691934i \(-0.756759\pi\)
−0.721960 + 0.691934i \(0.756759\pi\)
\(164\) −9.90377 −0.773354
\(165\) 0 0
\(166\) −10.9558 −0.850335
\(167\) 11.4107 0.882983 0.441492 0.897265i \(-0.354449\pi\)
0.441492 + 0.897265i \(0.354449\pi\)
\(168\) 0 0
\(169\) −11.4628 −0.881751
\(170\) 0 0
\(171\) 0 0
\(172\) −6.33780 −0.483253
\(173\) 15.4099 1.17159 0.585796 0.810459i \(-0.300782\pi\)
0.585796 + 0.810459i \(0.300782\pi\)
\(174\) 0 0
\(175\) 1.13848 0.0860610
\(176\) 0.0246651 0.00185920
\(177\) 0 0
\(178\) 7.84472 0.587986
\(179\) 12.0348 0.899526 0.449763 0.893148i \(-0.351508\pi\)
0.449763 + 0.893148i \(0.351508\pi\)
\(180\) 0 0
\(181\) −11.7291 −0.871815 −0.435908 0.899991i \(-0.643573\pi\)
−0.435908 + 0.899991i \(0.643573\pi\)
\(182\) 2.91381 0.215986
\(183\) 0 0
\(184\) −14.9838 −1.10462
\(185\) −17.3612 −1.27642
\(186\) 0 0
\(187\) 0 0
\(188\) −2.60838 −0.190235
\(189\) 0 0
\(190\) 1.26263 0.0916005
\(191\) −9.72587 −0.703739 −0.351870 0.936049i \(-0.614454\pi\)
−0.351870 + 0.936049i \(0.614454\pi\)
\(192\) 0 0
\(193\) −17.8920 −1.28790 −0.643948 0.765069i \(-0.722705\pi\)
−0.643948 + 0.765069i \(0.722705\pi\)
\(194\) −4.60582 −0.330679
\(195\) 0 0
\(196\) 0.764724 0.0546231
\(197\) 17.0649 1.21583 0.607913 0.794004i \(-0.292007\pi\)
0.607913 + 0.794004i \(0.292007\pi\)
\(198\) 0 0
\(199\) 17.0421 1.20808 0.604042 0.796952i \(-0.293556\pi\)
0.604042 + 0.796952i \(0.293556\pi\)
\(200\) −1.32328 −0.0935700
\(201\) 0 0
\(202\) 9.74057 0.685344
\(203\) 3.19414 0.224185
\(204\) 0 0
\(205\) −18.7517 −1.30968
\(206\) −8.78344 −0.611971
\(207\) 0 0
\(208\) −0.594039 −0.0411892
\(209\) −0.0326097 −0.00225566
\(210\) 0 0
\(211\) 8.90221 0.612854 0.306427 0.951894i \(-0.400867\pi\)
0.306427 + 0.951894i \(0.400867\pi\)
\(212\) −13.7768 −0.946191
\(213\) 0 0
\(214\) −18.3626 −1.25524
\(215\) −12.0000 −0.818390
\(216\) 0 0
\(217\) 21.7064 1.47353
\(218\) 15.1038 1.02296
\(219\) 0 0
\(220\) −0.123634 −0.00833543
\(221\) 0 0
\(222\) 0 0
\(223\) −28.1597 −1.88571 −0.942855 0.333204i \(-0.891870\pi\)
−0.942855 + 0.333204i \(0.891870\pi\)
\(224\) 13.5681 0.906554
\(225\) 0 0
\(226\) −0.183164 −0.0121839
\(227\) 11.6806 0.775265 0.387633 0.921814i \(-0.373293\pi\)
0.387633 + 0.921814i \(0.373293\pi\)
\(228\) 0 0
\(229\) 9.51632 0.628856 0.314428 0.949281i \(-0.398187\pi\)
0.314428 + 0.949281i \(0.398187\pi\)
\(230\) −10.2205 −0.673918
\(231\) 0 0
\(232\) −3.71262 −0.243745
\(233\) −17.2298 −1.12876 −0.564381 0.825514i \(-0.690885\pi\)
−0.564381 + 0.825514i \(0.690885\pi\)
\(234\) 0 0
\(235\) −4.93869 −0.322164
\(236\) −1.82253 −0.118636
\(237\) 0 0
\(238\) 0 0
\(239\) 3.28677 0.212603 0.106302 0.994334i \(-0.466099\pi\)
0.106302 + 0.994334i \(0.466099\pi\)
\(240\) 0 0
\(241\) −1.80700 −0.116399 −0.0581995 0.998305i \(-0.518536\pi\)
−0.0581995 + 0.998305i \(0.518536\pi\)
\(242\) 10.2798 0.660811
\(243\) 0 0
\(244\) 4.39708 0.281494
\(245\) 1.44792 0.0925045
\(246\) 0 0
\(247\) 0.785377 0.0499724
\(248\) −25.2298 −1.60210
\(249\) 0 0
\(250\) −10.8690 −0.687416
\(251\) −1.65010 −0.104153 −0.0520767 0.998643i \(-0.516584\pi\)
−0.0520767 + 0.998643i \(0.516584\pi\)
\(252\) 0 0
\(253\) 0.263963 0.0165952
\(254\) −18.1381 −1.13808
\(255\) 0 0
\(256\) −16.8496 −1.05310
\(257\) −15.2226 −0.949557 −0.474778 0.880105i \(-0.657472\pi\)
−0.474778 + 0.880105i \(0.657472\pi\)
\(258\) 0 0
\(259\) −20.4692 −1.27189
\(260\) 2.97764 0.184665
\(261\) 0 0
\(262\) −12.4430 −0.768734
\(263\) −15.2960 −0.943194 −0.471597 0.881814i \(-0.656322\pi\)
−0.471597 + 0.881814i \(0.656322\pi\)
\(264\) 0 0
\(265\) −26.0848 −1.60238
\(266\) 1.48866 0.0912758
\(267\) 0 0
\(268\) −0.825967 −0.0504540
\(269\) 1.02224 0.0623270 0.0311635 0.999514i \(-0.490079\pi\)
0.0311635 + 0.999514i \(0.490079\pi\)
\(270\) 0 0
\(271\) 0.264346 0.0160579 0.00802893 0.999968i \(-0.497444\pi\)
0.00802893 + 0.999968i \(0.497444\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −9.84228 −0.594594
\(275\) 0.0233116 0.00140574
\(276\) 0 0
\(277\) −4.70468 −0.282677 −0.141338 0.989961i \(-0.545141\pi\)
−0.141338 + 0.989961i \(0.545141\pi\)
\(278\) 7.16857 0.429942
\(279\) 0 0
\(280\) 15.6669 0.936274
\(281\) 27.3390 1.63091 0.815455 0.578821i \(-0.196487\pi\)
0.815455 + 0.578821i \(0.196487\pi\)
\(282\) 0 0
\(283\) −5.19513 −0.308818 −0.154409 0.988007i \(-0.549347\pi\)
−0.154409 + 0.988007i \(0.549347\pi\)
\(284\) 14.4480 0.857331
\(285\) 0 0
\(286\) 0.0596633 0.00352797
\(287\) −22.1087 −1.30504
\(288\) 0 0
\(289\) 0 0
\(290\) −2.53238 −0.148706
\(291\) 0 0
\(292\) −2.70827 −0.158489
\(293\) −34.0196 −1.98745 −0.993724 0.111859i \(-0.964319\pi\)
−0.993724 + 0.111859i \(0.964319\pi\)
\(294\) 0 0
\(295\) −3.45077 −0.200911
\(296\) 23.7918 1.38287
\(297\) 0 0
\(298\) −8.85948 −0.513216
\(299\) −6.35733 −0.367654
\(300\) 0 0
\(301\) −14.1482 −0.815489
\(302\) −16.2327 −0.934087
\(303\) 0 0
\(304\) −0.303494 −0.0174066
\(305\) 8.32540 0.476711
\(306\) 0 0
\(307\) 13.8619 0.791143 0.395571 0.918435i \(-0.370547\pi\)
0.395571 + 0.918435i \(0.370547\pi\)
\(308\) −0.145768 −0.00830589
\(309\) 0 0
\(310\) −17.2093 −0.977423
\(311\) 24.5658 1.39300 0.696500 0.717557i \(-0.254739\pi\)
0.696500 + 0.717557i \(0.254739\pi\)
\(312\) 0 0
\(313\) −30.5328 −1.72581 −0.862907 0.505362i \(-0.831359\pi\)
−0.862907 + 0.505362i \(0.831359\pi\)
\(314\) 9.51883 0.537179
\(315\) 0 0
\(316\) 1.99935 0.112472
\(317\) −26.6677 −1.49781 −0.748904 0.662678i \(-0.769420\pi\)
−0.748904 + 0.662678i \(0.769420\pi\)
\(318\) 0 0
\(319\) 0.0654034 0.00366189
\(320\) −12.8004 −0.715564
\(321\) 0 0
\(322\) −12.0502 −0.671529
\(323\) 0 0
\(324\) 0 0
\(325\) −0.561441 −0.0311431
\(326\) 17.2319 0.954389
\(327\) 0 0
\(328\) 25.6974 1.41890
\(329\) −5.82282 −0.321022
\(330\) 0 0
\(331\) 17.5621 0.965302 0.482651 0.875813i \(-0.339674\pi\)
0.482651 + 0.875813i \(0.339674\pi\)
\(332\) −13.2001 −0.724449
\(333\) 0 0
\(334\) −10.6662 −0.583626
\(335\) −1.56388 −0.0854440
\(336\) 0 0
\(337\) −22.9406 −1.24965 −0.624826 0.780764i \(-0.714830\pi\)
−0.624826 + 0.780764i \(0.714830\pi\)
\(338\) 10.7148 0.582811
\(339\) 0 0
\(340\) 0 0
\(341\) 0.444462 0.0240690
\(342\) 0 0
\(343\) 19.3062 1.04244
\(344\) 16.4448 0.886642
\(345\) 0 0
\(346\) −14.4044 −0.774388
\(347\) 1.39673 0.0749805 0.0374903 0.999297i \(-0.488064\pi\)
0.0374903 + 0.999297i \(0.488064\pi\)
\(348\) 0 0
\(349\) 6.33758 0.339243 0.169621 0.985509i \(-0.445746\pi\)
0.169621 + 0.985509i \(0.445746\pi\)
\(350\) −1.06420 −0.0568838
\(351\) 0 0
\(352\) 0.277821 0.0148079
\(353\) −31.0008 −1.65001 −0.825004 0.565127i \(-0.808827\pi\)
−0.825004 + 0.565127i \(0.808827\pi\)
\(354\) 0 0
\(355\) 27.3558 1.45189
\(356\) 9.45170 0.500939
\(357\) 0 0
\(358\) −11.2496 −0.594560
\(359\) −10.7623 −0.568013 −0.284007 0.958822i \(-0.591664\pi\)
−0.284007 + 0.958822i \(0.591664\pi\)
\(360\) 0 0
\(361\) −18.5988 −0.978882
\(362\) 10.9638 0.576244
\(363\) 0 0
\(364\) 3.51070 0.184011
\(365\) −5.12782 −0.268402
\(366\) 0 0
\(367\) −16.3676 −0.854381 −0.427191 0.904162i \(-0.640497\pi\)
−0.427191 + 0.904162i \(0.640497\pi\)
\(368\) 2.45667 0.128063
\(369\) 0 0
\(370\) 16.2284 0.843675
\(371\) −30.7546 −1.59670
\(372\) 0 0
\(373\) −27.1937 −1.40803 −0.704017 0.710183i \(-0.748612\pi\)
−0.704017 + 0.710183i \(0.748612\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.76799 0.349032
\(377\) −1.57519 −0.0811263
\(378\) 0 0
\(379\) −8.30429 −0.426563 −0.213281 0.976991i \(-0.568415\pi\)
−0.213281 + 0.976991i \(0.568415\pi\)
\(380\) 1.52127 0.0780397
\(381\) 0 0
\(382\) 9.09129 0.465151
\(383\) −14.4740 −0.739585 −0.369792 0.929114i \(-0.620571\pi\)
−0.369792 + 0.929114i \(0.620571\pi\)
\(384\) 0 0
\(385\) −0.275996 −0.0140661
\(386\) 16.7246 0.851261
\(387\) 0 0
\(388\) −5.54932 −0.281724
\(389\) 19.0549 0.966120 0.483060 0.875587i \(-0.339525\pi\)
0.483060 + 0.875587i \(0.339525\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.98424 −0.100219
\(393\) 0 0
\(394\) −15.9515 −0.803625
\(395\) 3.78556 0.190472
\(396\) 0 0
\(397\) 0.288705 0.0144897 0.00724484 0.999974i \(-0.497694\pi\)
0.00724484 + 0.999974i \(0.497694\pi\)
\(398\) −15.9302 −0.798508
\(399\) 0 0
\(400\) 0.216958 0.0108479
\(401\) 16.8676 0.842326 0.421163 0.906985i \(-0.361622\pi\)
0.421163 + 0.906985i \(0.361622\pi\)
\(402\) 0 0
\(403\) −10.7045 −0.533230
\(404\) 11.7359 0.583883
\(405\) 0 0
\(406\) −2.98573 −0.148179
\(407\) −0.419129 −0.0207754
\(408\) 0 0
\(409\) −14.3422 −0.709174 −0.354587 0.935023i \(-0.615379\pi\)
−0.354587 + 0.935023i \(0.615379\pi\)
\(410\) 17.5282 0.865658
\(411\) 0 0
\(412\) −10.5827 −0.521373
\(413\) −4.06853 −0.200199
\(414\) 0 0
\(415\) −24.9930 −1.22686
\(416\) −6.69108 −0.328057
\(417\) 0 0
\(418\) 0.0304820 0.00149092
\(419\) 17.9333 0.876099 0.438049 0.898951i \(-0.355670\pi\)
0.438049 + 0.898951i \(0.355670\pi\)
\(420\) 0 0
\(421\) −24.3033 −1.18447 −0.592235 0.805765i \(-0.701754\pi\)
−0.592235 + 0.805765i \(0.701754\pi\)
\(422\) −8.32137 −0.405078
\(423\) 0 0
\(424\) 35.7467 1.73601
\(425\) 0 0
\(426\) 0 0
\(427\) 9.81583 0.475022
\(428\) −22.1241 −1.06941
\(429\) 0 0
\(430\) 11.2170 0.540932
\(431\) −12.1988 −0.587596 −0.293798 0.955868i \(-0.594919\pi\)
−0.293798 + 0.955868i \(0.594919\pi\)
\(432\) 0 0
\(433\) 28.6849 1.37851 0.689253 0.724521i \(-0.257939\pi\)
0.689253 + 0.724521i \(0.257939\pi\)
\(434\) −20.2901 −0.973958
\(435\) 0 0
\(436\) 18.1978 0.871515
\(437\) −3.24796 −0.155371
\(438\) 0 0
\(439\) −31.7217 −1.51399 −0.756996 0.653420i \(-0.773334\pi\)
−0.756996 + 0.653420i \(0.773334\pi\)
\(440\) 0.320796 0.0152933
\(441\) 0 0
\(442\) 0 0
\(443\) 20.8705 0.991586 0.495793 0.868441i \(-0.334878\pi\)
0.495793 + 0.868441i \(0.334878\pi\)
\(444\) 0 0
\(445\) 17.8958 0.848342
\(446\) 26.3223 1.24640
\(447\) 0 0
\(448\) −15.0920 −0.713028
\(449\) −8.02255 −0.378607 −0.189304 0.981919i \(-0.560623\pi\)
−0.189304 + 0.981919i \(0.560623\pi\)
\(450\) 0 0
\(451\) −0.452700 −0.0213168
\(452\) −0.220685 −0.0103801
\(453\) 0 0
\(454\) −10.9184 −0.512427
\(455\) 6.64714 0.311623
\(456\) 0 0
\(457\) 0.0642173 0.00300396 0.00150198 0.999999i \(-0.499522\pi\)
0.00150198 + 0.999999i \(0.499522\pi\)
\(458\) −8.89541 −0.415655
\(459\) 0 0
\(460\) −12.3141 −0.574149
\(461\) −3.44572 −0.160483 −0.0802416 0.996775i \(-0.525569\pi\)
−0.0802416 + 0.996775i \(0.525569\pi\)
\(462\) 0 0
\(463\) −19.9151 −0.925534 −0.462767 0.886480i \(-0.653143\pi\)
−0.462767 + 0.886480i \(0.653143\pi\)
\(464\) 0.608702 0.0282583
\(465\) 0 0
\(466\) 16.1056 0.746078
\(467\) −11.4241 −0.528646 −0.264323 0.964434i \(-0.585149\pi\)
−0.264323 + 0.964434i \(0.585149\pi\)
\(468\) 0 0
\(469\) −1.84385 −0.0851411
\(470\) 4.61645 0.212941
\(471\) 0 0
\(472\) 4.72894 0.217667
\(473\) −0.289700 −0.0133204
\(474\) 0 0
\(475\) −0.286840 −0.0131611
\(476\) 0 0
\(477\) 0 0
\(478\) −3.07232 −0.140525
\(479\) −25.8162 −1.17957 −0.589786 0.807560i \(-0.700788\pi\)
−0.589786 + 0.807560i \(0.700788\pi\)
\(480\) 0 0
\(481\) 10.0944 0.460264
\(482\) 1.68910 0.0769363
\(483\) 0 0
\(484\) 12.3856 0.562983
\(485\) −10.5071 −0.477101
\(486\) 0 0
\(487\) −38.0584 −1.72459 −0.862294 0.506407i \(-0.830973\pi\)
−0.862294 + 0.506407i \(0.830973\pi\)
\(488\) −11.4092 −0.516468
\(489\) 0 0
\(490\) −1.35345 −0.0611427
\(491\) −21.5889 −0.974295 −0.487147 0.873320i \(-0.661963\pi\)
−0.487147 + 0.873320i \(0.661963\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.734134 −0.0330302
\(495\) 0 0
\(496\) 4.13656 0.185737
\(497\) 32.2530 1.44675
\(498\) 0 0
\(499\) −24.6501 −1.10349 −0.551746 0.834012i \(-0.686038\pi\)
−0.551746 + 0.834012i \(0.686038\pi\)
\(500\) −13.0955 −0.585648
\(501\) 0 0
\(502\) 1.54244 0.0688423
\(503\) −18.4268 −0.821609 −0.410805 0.911723i \(-0.634752\pi\)
−0.410805 + 0.911723i \(0.634752\pi\)
\(504\) 0 0
\(505\) 22.2207 0.988809
\(506\) −0.246740 −0.0109689
\(507\) 0 0
\(508\) −21.8537 −0.969599
\(509\) 5.56944 0.246861 0.123431 0.992353i \(-0.460610\pi\)
0.123431 + 0.992353i \(0.460610\pi\)
\(510\) 0 0
\(511\) −6.04581 −0.267451
\(512\) 5.38586 0.238024
\(513\) 0 0
\(514\) 14.2293 0.627629
\(515\) −20.0373 −0.882947
\(516\) 0 0
\(517\) −0.119228 −0.00524366
\(518\) 19.1337 0.840684
\(519\) 0 0
\(520\) −7.72611 −0.338812
\(521\) −13.4537 −0.589419 −0.294710 0.955587i \(-0.595223\pi\)
−0.294710 + 0.955587i \(0.595223\pi\)
\(522\) 0 0
\(523\) 42.3379 1.85131 0.925655 0.378370i \(-0.123515\pi\)
0.925655 + 0.378370i \(0.123515\pi\)
\(524\) −14.9920 −0.654928
\(525\) 0 0
\(526\) 14.2980 0.623423
\(527\) 0 0
\(528\) 0 0
\(529\) 3.29098 0.143086
\(530\) 24.3829 1.05912
\(531\) 0 0
\(532\) 1.79361 0.0777631
\(533\) 10.9029 0.472257
\(534\) 0 0
\(535\) −41.8897 −1.81105
\(536\) 2.14315 0.0925699
\(537\) 0 0
\(538\) −0.955541 −0.0411963
\(539\) 0.0349554 0.00150564
\(540\) 0 0
\(541\) −26.2172 −1.12716 −0.563582 0.826060i \(-0.690577\pi\)
−0.563582 + 0.826060i \(0.690577\pi\)
\(542\) −0.247098 −0.0106138
\(543\) 0 0
\(544\) 0 0
\(545\) 34.4556 1.47591
\(546\) 0 0
\(547\) 23.2431 0.993803 0.496902 0.867807i \(-0.334471\pi\)
0.496902 + 0.867807i \(0.334471\pi\)
\(548\) −11.8585 −0.506568
\(549\) 0 0
\(550\) −0.0217906 −0.000929154 0
\(551\) −0.804764 −0.0342841
\(552\) 0 0
\(553\) 4.46326 0.189797
\(554\) 4.39772 0.186841
\(555\) 0 0
\(556\) 8.63704 0.366292
\(557\) −10.6676 −0.452003 −0.226001 0.974127i \(-0.572565\pi\)
−0.226001 + 0.974127i \(0.572565\pi\)
\(558\) 0 0
\(559\) 6.97718 0.295103
\(560\) −2.56866 −0.108546
\(561\) 0 0
\(562\) −25.5552 −1.07798
\(563\) −26.8484 −1.13153 −0.565763 0.824568i \(-0.691418\pi\)
−0.565763 + 0.824568i \(0.691418\pi\)
\(564\) 0 0
\(565\) −0.417843 −0.0175788
\(566\) 4.85616 0.204120
\(567\) 0 0
\(568\) −37.4884 −1.57298
\(569\) 43.7194 1.83281 0.916406 0.400249i \(-0.131076\pi\)
0.916406 + 0.400249i \(0.131076\pi\)
\(570\) 0 0
\(571\) −5.22623 −0.218711 −0.109355 0.994003i \(-0.534879\pi\)
−0.109355 + 0.994003i \(0.534879\pi\)
\(572\) 0.0718853 0.00300568
\(573\) 0 0
\(574\) 20.6662 0.862590
\(575\) 2.32186 0.0968283
\(576\) 0 0
\(577\) 7.37007 0.306820 0.153410 0.988163i \(-0.450974\pi\)
0.153410 + 0.988163i \(0.450974\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −3.05114 −0.126692
\(581\) −29.4673 −1.22251
\(582\) 0 0
\(583\) −0.629733 −0.0260809
\(584\) 7.02718 0.290787
\(585\) 0 0
\(586\) 31.8000 1.31364
\(587\) −4.82529 −0.199161 −0.0995806 0.995029i \(-0.531750\pi\)
−0.0995806 + 0.995029i \(0.531750\pi\)
\(588\) 0 0
\(589\) −5.46893 −0.225343
\(590\) 3.22561 0.132796
\(591\) 0 0
\(592\) −3.90078 −0.160321
\(593\) 17.4847 0.718012 0.359006 0.933335i \(-0.383116\pi\)
0.359006 + 0.933335i \(0.383116\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.6743 −0.437238
\(597\) 0 0
\(598\) 5.94253 0.243008
\(599\) −34.7504 −1.41986 −0.709931 0.704271i \(-0.751274\pi\)
−0.709931 + 0.704271i \(0.751274\pi\)
\(600\) 0 0
\(601\) −30.5956 −1.24802 −0.624010 0.781416i \(-0.714498\pi\)
−0.624010 + 0.781416i \(0.714498\pi\)
\(602\) 13.2251 0.539014
\(603\) 0 0
\(604\) −19.5580 −0.795802
\(605\) 23.4509 0.953413
\(606\) 0 0
\(607\) −18.8527 −0.765209 −0.382604 0.923912i \(-0.624973\pi\)
−0.382604 + 0.923912i \(0.624973\pi\)
\(608\) −3.41847 −0.138637
\(609\) 0 0
\(610\) −7.78220 −0.315092
\(611\) 2.87152 0.116169
\(612\) 0 0
\(613\) 27.5903 1.11436 0.557181 0.830391i \(-0.311883\pi\)
0.557181 + 0.830391i \(0.311883\pi\)
\(614\) −12.9575 −0.522922
\(615\) 0 0
\(616\) 0.378225 0.0152391
\(617\) −28.1344 −1.13265 −0.566324 0.824183i \(-0.691635\pi\)
−0.566324 + 0.824183i \(0.691635\pi\)
\(618\) 0 0
\(619\) 6.29344 0.252955 0.126477 0.991969i \(-0.459633\pi\)
0.126477 + 0.991969i \(0.459633\pi\)
\(620\) −20.7346 −0.832722
\(621\) 0 0
\(622\) −22.9630 −0.920732
\(623\) 21.0995 0.845335
\(624\) 0 0
\(625\) −22.5308 −0.901232
\(626\) 28.5406 1.14071
\(627\) 0 0
\(628\) 11.4688 0.457653
\(629\) 0 0
\(630\) 0 0
\(631\) −5.75820 −0.229231 −0.114615 0.993410i \(-0.536564\pi\)
−0.114615 + 0.993410i \(0.536564\pi\)
\(632\) −5.18774 −0.206357
\(633\) 0 0
\(634\) 24.9277 0.990007
\(635\) −41.3776 −1.64202
\(636\) 0 0
\(637\) −0.841873 −0.0333562
\(638\) −0.0611361 −0.00242040
\(639\) 0 0
\(640\) −11.0506 −0.436812
\(641\) −43.3802 −1.71342 −0.856708 0.515802i \(-0.827494\pi\)
−0.856708 + 0.515802i \(0.827494\pi\)
\(642\) 0 0
\(643\) 34.0941 1.34454 0.672269 0.740307i \(-0.265320\pi\)
0.672269 + 0.740307i \(0.265320\pi\)
\(644\) −14.5186 −0.572114
\(645\) 0 0
\(646\) 0 0
\(647\) −25.0959 −0.986623 −0.493312 0.869853i \(-0.664214\pi\)
−0.493312 + 0.869853i \(0.664214\pi\)
\(648\) 0 0
\(649\) −0.0833075 −0.00327011
\(650\) 0.524809 0.0205847
\(651\) 0 0
\(652\) 20.7619 0.813098
\(653\) −10.6508 −0.416797 −0.208398 0.978044i \(-0.566825\pi\)
−0.208398 + 0.978044i \(0.566825\pi\)
\(654\) 0 0
\(655\) −28.3858 −1.10912
\(656\) −4.21322 −0.164499
\(657\) 0 0
\(658\) 5.44290 0.212186
\(659\) 38.7396 1.50908 0.754540 0.656255i \(-0.227860\pi\)
0.754540 + 0.656255i \(0.227860\pi\)
\(660\) 0 0
\(661\) 45.9763 1.78827 0.894135 0.447798i \(-0.147792\pi\)
0.894135 + 0.447798i \(0.147792\pi\)
\(662\) −16.4163 −0.638036
\(663\) 0 0
\(664\) 34.2504 1.32917
\(665\) 3.39602 0.131692
\(666\) 0 0
\(667\) 6.51425 0.252233
\(668\) −12.8511 −0.497224
\(669\) 0 0
\(670\) 1.46184 0.0564759
\(671\) 0.200990 0.00775912
\(672\) 0 0
\(673\) 18.3510 0.707380 0.353690 0.935363i \(-0.384927\pi\)
0.353690 + 0.935363i \(0.384927\pi\)
\(674\) 21.4438 0.825983
\(675\) 0 0
\(676\) 12.9098 0.496530
\(677\) 9.65888 0.371221 0.185610 0.982623i \(-0.440574\pi\)
0.185610 + 0.982623i \(0.440574\pi\)
\(678\) 0 0
\(679\) −12.3880 −0.475410
\(680\) 0 0
\(681\) 0 0
\(682\) −0.415463 −0.0159089
\(683\) −5.72299 −0.218984 −0.109492 0.993988i \(-0.534922\pi\)
−0.109492 + 0.993988i \(0.534922\pi\)
\(684\) 0 0
\(685\) −22.4527 −0.857875
\(686\) −18.0466 −0.689021
\(687\) 0 0
\(688\) −2.69620 −0.102792
\(689\) 15.1666 0.577802
\(690\) 0 0
\(691\) 11.4136 0.434193 0.217096 0.976150i \(-0.430341\pi\)
0.217096 + 0.976150i \(0.430341\pi\)
\(692\) −17.3552 −0.659745
\(693\) 0 0
\(694\) −1.30560 −0.0495599
\(695\) 16.3533 0.620317
\(696\) 0 0
\(697\) 0 0
\(698\) −5.92407 −0.224229
\(699\) 0 0
\(700\) −1.28220 −0.0484625
\(701\) 38.3043 1.44673 0.723367 0.690464i \(-0.242594\pi\)
0.723367 + 0.690464i \(0.242594\pi\)
\(702\) 0 0
\(703\) 5.15722 0.194508
\(704\) −0.309024 −0.0116468
\(705\) 0 0
\(706\) 28.9781 1.09061
\(707\) 26.1987 0.985304
\(708\) 0 0
\(709\) −22.0651 −0.828673 −0.414336 0.910124i \(-0.635986\pi\)
−0.414336 + 0.910124i \(0.635986\pi\)
\(710\) −25.5709 −0.959658
\(711\) 0 0
\(712\) −24.5244 −0.919092
\(713\) 44.2689 1.65788
\(714\) 0 0
\(715\) 0.136107 0.00509012
\(716\) −13.5541 −0.506539
\(717\) 0 0
\(718\) 10.0601 0.375440
\(719\) −43.3181 −1.61549 −0.807746 0.589531i \(-0.799313\pi\)
−0.807746 + 0.589531i \(0.799313\pi\)
\(720\) 0 0
\(721\) −23.6244 −0.879818
\(722\) 17.3852 0.647012
\(723\) 0 0
\(724\) 13.2097 0.490935
\(725\) 0.575299 0.0213661
\(726\) 0 0
\(727\) −0.285170 −0.0105764 −0.00528818 0.999986i \(-0.501683\pi\)
−0.00528818 + 0.999986i \(0.501683\pi\)
\(728\) −9.10925 −0.337611
\(729\) 0 0
\(730\) 4.79325 0.177406
\(731\) 0 0
\(732\) 0 0
\(733\) 17.8571 0.659568 0.329784 0.944056i \(-0.393024\pi\)
0.329784 + 0.944056i \(0.393024\pi\)
\(734\) 15.2997 0.564721
\(735\) 0 0
\(736\) 27.6712 1.01998
\(737\) −0.0377548 −0.00139072
\(738\) 0 0
\(739\) 11.9813 0.440738 0.220369 0.975417i \(-0.429274\pi\)
0.220369 + 0.975417i \(0.429274\pi\)
\(740\) 19.5528 0.718775
\(741\) 0 0
\(742\) 28.7480 1.05537
\(743\) 6.24869 0.229242 0.114621 0.993409i \(-0.463435\pi\)
0.114621 + 0.993409i \(0.463435\pi\)
\(744\) 0 0
\(745\) −20.2107 −0.740464
\(746\) 25.4194 0.930669
\(747\) 0 0
\(748\) 0 0
\(749\) −49.3888 −1.80463
\(750\) 0 0
\(751\) −7.34373 −0.267976 −0.133988 0.990983i \(-0.542778\pi\)
−0.133988 + 0.990983i \(0.542778\pi\)
\(752\) −1.10964 −0.0404646
\(753\) 0 0
\(754\) 1.47241 0.0536221
\(755\) −37.0309 −1.34769
\(756\) 0 0
\(757\) 31.1599 1.13253 0.566264 0.824224i \(-0.308388\pi\)
0.566264 + 0.824224i \(0.308388\pi\)
\(758\) 7.76246 0.281945
\(759\) 0 0
\(760\) −3.94727 −0.143182
\(761\) 32.7906 1.18866 0.594330 0.804222i \(-0.297417\pi\)
0.594330 + 0.804222i \(0.297417\pi\)
\(762\) 0 0
\(763\) 40.6239 1.47068
\(764\) 10.9536 0.396288
\(765\) 0 0
\(766\) 13.5296 0.488844
\(767\) 2.00639 0.0724467
\(768\) 0 0
\(769\) −42.3229 −1.52620 −0.763102 0.646278i \(-0.776325\pi\)
−0.763102 + 0.646278i \(0.776325\pi\)
\(770\) 0.257988 0.00929725
\(771\) 0 0
\(772\) 20.1507 0.725238
\(773\) −47.1035 −1.69420 −0.847098 0.531437i \(-0.821652\pi\)
−0.847098 + 0.531437i \(0.821652\pi\)
\(774\) 0 0
\(775\) 3.90956 0.140436
\(776\) 14.3989 0.516890
\(777\) 0 0
\(778\) −17.8116 −0.638577
\(779\) 5.57029 0.199576
\(780\) 0 0
\(781\) 0.660416 0.0236315
\(782\) 0 0
\(783\) 0 0
\(784\) 0.325326 0.0116188
\(785\) 21.7149 0.775037
\(786\) 0 0
\(787\) 8.28287 0.295252 0.147626 0.989043i \(-0.452837\pi\)
0.147626 + 0.989043i \(0.452837\pi\)
\(788\) −19.2191 −0.684654
\(789\) 0 0
\(790\) −3.53857 −0.125897
\(791\) −0.492646 −0.0175165
\(792\) 0 0
\(793\) −4.84067 −0.171897
\(794\) −0.269868 −0.00957725
\(795\) 0 0
\(796\) −19.1935 −0.680294
\(797\) 21.6186 0.765768 0.382884 0.923796i \(-0.374931\pi\)
0.382884 + 0.923796i \(0.374931\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.44376 0.0863998
\(801\) 0 0
\(802\) −15.7670 −0.556753
\(803\) −0.123794 −0.00436861
\(804\) 0 0
\(805\) −27.4895 −0.968877
\(806\) 10.0061 0.352449
\(807\) 0 0
\(808\) −30.4513 −1.07127
\(809\) −39.2750 −1.38084 −0.690418 0.723411i \(-0.742573\pi\)
−0.690418 + 0.723411i \(0.742573\pi\)
\(810\) 0 0
\(811\) 55.3481 1.94354 0.971768 0.235939i \(-0.0758167\pi\)
0.971768 + 0.235939i \(0.0758167\pi\)
\(812\) −3.59736 −0.126242
\(813\) 0 0
\(814\) 0.391782 0.0137320
\(815\) 39.3104 1.37698
\(816\) 0 0
\(817\) 3.56464 0.124711
\(818\) 13.4064 0.468743
\(819\) 0 0
\(820\) 21.1189 0.737504
\(821\) 12.7592 0.445300 0.222650 0.974898i \(-0.428529\pi\)
0.222650 + 0.974898i \(0.428529\pi\)
\(822\) 0 0
\(823\) 50.1243 1.74722 0.873612 0.486623i \(-0.161772\pi\)
0.873612 + 0.486623i \(0.161772\pi\)
\(824\) 27.4591 0.956584
\(825\) 0 0
\(826\) 3.80307 0.132326
\(827\) 0.250279 0.00870306 0.00435153 0.999991i \(-0.498615\pi\)
0.00435153 + 0.999991i \(0.498615\pi\)
\(828\) 0 0
\(829\) 3.00006 0.104196 0.0520982 0.998642i \(-0.483409\pi\)
0.0520982 + 0.998642i \(0.483409\pi\)
\(830\) 23.3623 0.810916
\(831\) 0 0
\(832\) 7.44259 0.258025
\(833\) 0 0
\(834\) 0 0
\(835\) −24.3322 −0.842051
\(836\) 0.0367262 0.00127020
\(837\) 0 0
\(838\) −16.7632 −0.579075
\(839\) 50.1076 1.72991 0.864954 0.501851i \(-0.167348\pi\)
0.864954 + 0.501851i \(0.167348\pi\)
\(840\) 0 0
\(841\) −27.3859 −0.944342
\(842\) 22.7176 0.782900
\(843\) 0 0
\(844\) −10.0260 −0.345109
\(845\) 24.4433 0.840875
\(846\) 0 0
\(847\) 27.6491 0.950034
\(848\) −5.86085 −0.201262
\(849\) 0 0
\(850\) 0 0
\(851\) −41.7457 −1.43102
\(852\) 0 0
\(853\) −25.7516 −0.881717 −0.440858 0.897577i \(-0.645326\pi\)
−0.440858 + 0.897577i \(0.645326\pi\)
\(854\) −9.17538 −0.313975
\(855\) 0 0
\(856\) 57.4057 1.96209
\(857\) 38.0376 1.29934 0.649670 0.760217i \(-0.274907\pi\)
0.649670 + 0.760217i \(0.274907\pi\)
\(858\) 0 0
\(859\) 14.4106 0.491683 0.245842 0.969310i \(-0.420936\pi\)
0.245842 + 0.969310i \(0.420936\pi\)
\(860\) 13.5148 0.460850
\(861\) 0 0
\(862\) 11.4029 0.388384
\(863\) 12.2991 0.418666 0.209333 0.977844i \(-0.432871\pi\)
0.209333 + 0.977844i \(0.432871\pi\)
\(864\) 0 0
\(865\) −32.8602 −1.11728
\(866\) −26.8133 −0.911152
\(867\) 0 0
\(868\) −24.4466 −0.829770
\(869\) 0.0913901 0.00310020
\(870\) 0 0
\(871\) 0.909294 0.0308103
\(872\) −47.2180 −1.59900
\(873\) 0 0
\(874\) 3.03604 0.102696
\(875\) −29.2338 −0.988282
\(876\) 0 0
\(877\) −15.2249 −0.514108 −0.257054 0.966397i \(-0.582752\pi\)
−0.257054 + 0.966397i \(0.582752\pi\)
\(878\) 29.6519 1.00070
\(879\) 0 0
\(880\) −0.0525961 −0.00177301
\(881\) 5.07852 0.171100 0.0855499 0.996334i \(-0.472735\pi\)
0.0855499 + 0.996334i \(0.472735\pi\)
\(882\) 0 0
\(883\) −45.2155 −1.52162 −0.760811 0.648973i \(-0.775199\pi\)
−0.760811 + 0.648973i \(0.775199\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −19.5087 −0.655409
\(887\) −39.2414 −1.31760 −0.658798 0.752320i \(-0.728935\pi\)
−0.658798 + 0.752320i \(0.728935\pi\)
\(888\) 0 0
\(889\) −48.7851 −1.63620
\(890\) −16.7282 −0.560729
\(891\) 0 0
\(892\) 31.7144 1.06188
\(893\) 1.46706 0.0490933
\(894\) 0 0
\(895\) −25.6632 −0.857826
\(896\) −13.0289 −0.435264
\(897\) 0 0
\(898\) 7.49910 0.250248
\(899\) 10.9687 0.365828
\(900\) 0 0
\(901\) 0 0
\(902\) 0.423162 0.0140898
\(903\) 0 0
\(904\) 0.572613 0.0190448
\(905\) 25.0112 0.831400
\(906\) 0 0
\(907\) −30.4548 −1.01124 −0.505618 0.862757i \(-0.668736\pi\)
−0.505618 + 0.862757i \(0.668736\pi\)
\(908\) −13.1551 −0.436566
\(909\) 0 0
\(910\) −6.21343 −0.205973
\(911\) 10.4870 0.347450 0.173725 0.984794i \(-0.444420\pi\)
0.173725 + 0.984794i \(0.444420\pi\)
\(912\) 0 0
\(913\) −0.603374 −0.0199688
\(914\) −0.0600274 −0.00198553
\(915\) 0 0
\(916\) −10.7176 −0.354120
\(917\) −33.4674 −1.10519
\(918\) 0 0
\(919\) 21.2263 0.700190 0.350095 0.936714i \(-0.386149\pi\)
0.350095 + 0.936714i \(0.386149\pi\)
\(920\) 31.9516 1.05341
\(921\) 0 0
\(922\) 3.22090 0.106075
\(923\) −15.9056 −0.523538
\(924\) 0 0
\(925\) −3.68673 −0.121219
\(926\) 18.6157 0.611751
\(927\) 0 0
\(928\) 6.85625 0.225067
\(929\) −12.3636 −0.405635 −0.202818 0.979217i \(-0.565010\pi\)
−0.202818 + 0.979217i \(0.565010\pi\)
\(930\) 0 0
\(931\) −0.430113 −0.0140964
\(932\) 19.4048 0.635626
\(933\) 0 0
\(934\) 10.6788 0.349420
\(935\) 0 0
\(936\) 0 0
\(937\) 3.45931 0.113011 0.0565054 0.998402i \(-0.482004\pi\)
0.0565054 + 0.998402i \(0.482004\pi\)
\(938\) 1.72355 0.0562758
\(939\) 0 0
\(940\) 5.56213 0.181417
\(941\) 41.0791 1.33914 0.669571 0.742748i \(-0.266478\pi\)
0.669571 + 0.742748i \(0.266478\pi\)
\(942\) 0 0
\(943\) −45.0894 −1.46831
\(944\) −0.775333 −0.0252349
\(945\) 0 0
\(946\) 0.270798 0.00880440
\(947\) 13.6512 0.443606 0.221803 0.975092i \(-0.428806\pi\)
0.221803 + 0.975092i \(0.428806\pi\)
\(948\) 0 0
\(949\) 2.98149 0.0967832
\(950\) 0.268125 0.00869911
\(951\) 0 0
\(952\) 0 0
\(953\) −21.1693 −0.685741 −0.342871 0.939383i \(-0.611399\pi\)
−0.342871 + 0.939383i \(0.611399\pi\)
\(954\) 0 0
\(955\) 20.7395 0.671116
\(956\) −3.70168 −0.119721
\(957\) 0 0
\(958\) 24.1318 0.779662
\(959\) −26.4723 −0.854834
\(960\) 0 0
\(961\) 43.5403 1.40453
\(962\) −9.43575 −0.304221
\(963\) 0 0
\(964\) 2.03511 0.0655464
\(965\) 38.1531 1.22819
\(966\) 0 0
\(967\) 23.5134 0.756139 0.378069 0.925777i \(-0.376588\pi\)
0.378069 + 0.925777i \(0.376588\pi\)
\(968\) −32.1371 −1.03293
\(969\) 0 0
\(970\) 9.82150 0.315349
\(971\) −7.86563 −0.252420 −0.126210 0.992004i \(-0.540281\pi\)
−0.126210 + 0.992004i \(0.540281\pi\)
\(972\) 0 0
\(973\) 19.2809 0.618118
\(974\) 35.5752 1.13990
\(975\) 0 0
\(976\) 1.87059 0.0598760
\(977\) −48.0339 −1.53674 −0.768371 0.640005i \(-0.778932\pi\)
−0.768371 + 0.640005i \(0.778932\pi\)
\(978\) 0 0
\(979\) 0.432036 0.0138079
\(980\) −1.63070 −0.0520910
\(981\) 0 0
\(982\) 20.1803 0.643980
\(983\) −11.5978 −0.369911 −0.184956 0.982747i \(-0.559214\pi\)
−0.184956 + 0.982747i \(0.559214\pi\)
\(984\) 0 0
\(985\) −36.3894 −1.15946
\(986\) 0 0
\(987\) 0 0
\(988\) −0.884520 −0.0281403
\(989\) −28.8544 −0.917517
\(990\) 0 0
\(991\) −36.3964 −1.15617 −0.578084 0.815977i \(-0.696200\pi\)
−0.578084 + 0.815977i \(0.696200\pi\)
\(992\) 46.5930 1.47933
\(993\) 0 0
\(994\) −30.1486 −0.956257
\(995\) −36.3408 −1.15208
\(996\) 0 0
\(997\) 25.1521 0.796574 0.398287 0.917261i \(-0.369605\pi\)
0.398287 + 0.917261i \(0.369605\pi\)
\(998\) 23.0418 0.729375
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.bv.1.5 12
3.2 odd 2 inner 7803.2.a.bv.1.8 12
17.2 even 8 459.2.f.c.55.5 24
17.9 even 8 459.2.f.c.217.8 yes 24
17.16 even 2 7803.2.a.bw.1.5 12
51.2 odd 8 459.2.f.c.55.8 yes 24
51.26 odd 8 459.2.f.c.217.5 yes 24
51.50 odd 2 7803.2.a.bw.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.c.55.5 24 17.2 even 8
459.2.f.c.55.8 yes 24 51.2 odd 8
459.2.f.c.217.5 yes 24 51.26 odd 8
459.2.f.c.217.8 yes 24 17.9 even 8
7803.2.a.bv.1.5 12 1.1 even 1 trivial
7803.2.a.bv.1.8 12 3.2 odd 2 inner
7803.2.a.bw.1.5 12 17.16 even 2
7803.2.a.bw.1.8 12 51.50 odd 2