Properties

Label 7803.2.a.bs.1.10
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,12,2,0,0,0,0,0,-22,0,0,0,0,16,0,0,-10,-8,0,0,-28,0,8, 0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,-28,0,-8,-76,0,0,0,0,2,0,0,-4,0,0,42,64, 0,0,0,0,0,-52,0,-36,-32,0,18,0,0,-72,50,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 16x^{8} + 86x^{6} - 170x^{4} + 73x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(2.60924\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.60924 q^{2} +4.80812 q^{4} -2.94788 q^{5} +3.30360 q^{7} +7.32705 q^{8} -7.69173 q^{10} -6.06599 q^{11} -1.60601 q^{13} +8.61988 q^{14} +9.50178 q^{16} -0.742135 q^{19} -14.1738 q^{20} -15.8276 q^{22} -4.08401 q^{23} +3.69002 q^{25} -4.19047 q^{26} +15.8841 q^{28} -4.66836 q^{29} -9.07096 q^{31} +10.1383 q^{32} -9.73864 q^{35} -0.500659 q^{37} -1.93641 q^{38} -21.5993 q^{40} +4.53588 q^{41} -5.03817 q^{43} -29.1660 q^{44} -10.6561 q^{46} -7.27488 q^{47} +3.91379 q^{49} +9.62814 q^{50} -7.72191 q^{52} +1.02721 q^{53} +17.8818 q^{55} +24.2057 q^{56} -12.1809 q^{58} -3.06288 q^{59} +7.67019 q^{61} -23.6683 q^{62} +7.44967 q^{64} +4.73434 q^{65} -0.749419 q^{67} -25.4104 q^{70} +14.8158 q^{71} +3.54948 q^{73} -1.30634 q^{74} -3.56828 q^{76} -20.0396 q^{77} -1.15943 q^{79} -28.0101 q^{80} +11.8352 q^{82} +3.75916 q^{83} -13.1458 q^{86} -44.4458 q^{88} -3.43898 q^{89} -5.30563 q^{91} -19.6364 q^{92} -18.9819 q^{94} +2.18773 q^{95} -15.6128 q^{97} +10.2120 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 12 q^{4} + 2 q^{5} - 22 q^{11} + 16 q^{16} - 10 q^{19} - 8 q^{20} - 28 q^{23} + 8 q^{25} - 6 q^{29} - 28 q^{41} - 8 q^{43} - 76 q^{44} + 2 q^{49} - 4 q^{52} + 42 q^{55} + 64 q^{56} - 52 q^{62} - 36 q^{64}+ \cdots - 38 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60924 1.84501 0.922505 0.385986i \(-0.126139\pi\)
0.922505 + 0.385986i \(0.126139\pi\)
\(3\) 0 0
\(4\) 4.80812 2.40406
\(5\) −2.94788 −1.31833 −0.659167 0.751997i \(-0.729091\pi\)
−0.659167 + 0.751997i \(0.729091\pi\)
\(6\) 0 0
\(7\) 3.30360 1.24864 0.624322 0.781167i \(-0.285375\pi\)
0.624322 + 0.781167i \(0.285375\pi\)
\(8\) 7.32705 2.59050
\(9\) 0 0
\(10\) −7.69173 −2.43234
\(11\) −6.06599 −1.82896 −0.914482 0.404627i \(-0.867401\pi\)
−0.914482 + 0.404627i \(0.867401\pi\)
\(12\) 0 0
\(13\) −1.60601 −0.445428 −0.222714 0.974884i \(-0.571492\pi\)
−0.222714 + 0.974884i \(0.571492\pi\)
\(14\) 8.61988 2.30376
\(15\) 0 0
\(16\) 9.50178 2.37545
\(17\) 0 0
\(18\) 0 0
\(19\) −0.742135 −0.170258 −0.0851288 0.996370i \(-0.527130\pi\)
−0.0851288 + 0.996370i \(0.527130\pi\)
\(20\) −14.1738 −3.16935
\(21\) 0 0
\(22\) −15.8276 −3.37445
\(23\) −4.08401 −0.851574 −0.425787 0.904823i \(-0.640003\pi\)
−0.425787 + 0.904823i \(0.640003\pi\)
\(24\) 0 0
\(25\) 3.69002 0.738004
\(26\) −4.19047 −0.821819
\(27\) 0 0
\(28\) 15.8841 3.00182
\(29\) −4.66836 −0.866892 −0.433446 0.901180i \(-0.642703\pi\)
−0.433446 + 0.901180i \(0.642703\pi\)
\(30\) 0 0
\(31\) −9.07096 −1.62919 −0.814596 0.580029i \(-0.803041\pi\)
−0.814596 + 0.580029i \(0.803041\pi\)
\(32\) 10.1383 1.79221
\(33\) 0 0
\(34\) 0 0
\(35\) −9.73864 −1.64613
\(36\) 0 0
\(37\) −0.500659 −0.0823079 −0.0411539 0.999153i \(-0.513103\pi\)
−0.0411539 + 0.999153i \(0.513103\pi\)
\(38\) −1.93641 −0.314127
\(39\) 0 0
\(40\) −21.5993 −3.41515
\(41\) 4.53588 0.708385 0.354193 0.935173i \(-0.384756\pi\)
0.354193 + 0.935173i \(0.384756\pi\)
\(42\) 0 0
\(43\) −5.03817 −0.768313 −0.384157 0.923268i \(-0.625508\pi\)
−0.384157 + 0.923268i \(0.625508\pi\)
\(44\) −29.1660 −4.39694
\(45\) 0 0
\(46\) −10.6561 −1.57116
\(47\) −7.27488 −1.06115 −0.530575 0.847638i \(-0.678024\pi\)
−0.530575 + 0.847638i \(0.678024\pi\)
\(48\) 0 0
\(49\) 3.91379 0.559113
\(50\) 9.62814 1.36162
\(51\) 0 0
\(52\) −7.72191 −1.07084
\(53\) 1.02721 0.141097 0.0705487 0.997508i \(-0.477525\pi\)
0.0705487 + 0.997508i \(0.477525\pi\)
\(54\) 0 0
\(55\) 17.8818 2.41118
\(56\) 24.2057 3.23462
\(57\) 0 0
\(58\) −12.1809 −1.59942
\(59\) −3.06288 −0.398753 −0.199376 0.979923i \(-0.563892\pi\)
−0.199376 + 0.979923i \(0.563892\pi\)
\(60\) 0 0
\(61\) 7.67019 0.982068 0.491034 0.871140i \(-0.336619\pi\)
0.491034 + 0.871140i \(0.336619\pi\)
\(62\) −23.6683 −3.00587
\(63\) 0 0
\(64\) 7.44967 0.931208
\(65\) 4.73434 0.587223
\(66\) 0 0
\(67\) −0.749419 −0.0915561 −0.0457781 0.998952i \(-0.514577\pi\)
−0.0457781 + 0.998952i \(0.514577\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −25.4104 −3.03713
\(71\) 14.8158 1.75832 0.879158 0.476530i \(-0.158106\pi\)
0.879158 + 0.476530i \(0.158106\pi\)
\(72\) 0 0
\(73\) 3.54948 0.415435 0.207717 0.978189i \(-0.433397\pi\)
0.207717 + 0.978189i \(0.433397\pi\)
\(74\) −1.30634 −0.151859
\(75\) 0 0
\(76\) −3.56828 −0.409309
\(77\) −20.0396 −2.28372
\(78\) 0 0
\(79\) −1.15943 −0.130446 −0.0652230 0.997871i \(-0.520776\pi\)
−0.0652230 + 0.997871i \(0.520776\pi\)
\(80\) −28.0101 −3.13163
\(81\) 0 0
\(82\) 11.8352 1.30698
\(83\) 3.75916 0.412622 0.206311 0.978486i \(-0.433854\pi\)
0.206311 + 0.978486i \(0.433854\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −13.1458 −1.41755
\(87\) 0 0
\(88\) −44.4458 −4.73794
\(89\) −3.43898 −0.364531 −0.182265 0.983249i \(-0.558343\pi\)
−0.182265 + 0.983249i \(0.558343\pi\)
\(90\) 0 0
\(91\) −5.30563 −0.556181
\(92\) −19.6364 −2.04724
\(93\) 0 0
\(94\) −18.9819 −1.95783
\(95\) 2.18773 0.224456
\(96\) 0 0
\(97\) −15.6128 −1.58524 −0.792618 0.609719i \(-0.791282\pi\)
−0.792618 + 0.609719i \(0.791282\pi\)
\(98\) 10.2120 1.03157
\(99\) 0 0
\(100\) 17.7421 1.77421
\(101\) 0.786481 0.0782578 0.0391289 0.999234i \(-0.487542\pi\)
0.0391289 + 0.999234i \(0.487542\pi\)
\(102\) 0 0
\(103\) 10.0923 0.994423 0.497211 0.867629i \(-0.334357\pi\)
0.497211 + 0.867629i \(0.334357\pi\)
\(104\) −11.7673 −1.15388
\(105\) 0 0
\(106\) 2.68022 0.260326
\(107\) −16.1738 −1.56358 −0.781789 0.623543i \(-0.785693\pi\)
−0.781789 + 0.623543i \(0.785693\pi\)
\(108\) 0 0
\(109\) −13.3022 −1.27412 −0.637059 0.770815i \(-0.719849\pi\)
−0.637059 + 0.770815i \(0.719849\pi\)
\(110\) 46.6579 4.44866
\(111\) 0 0
\(112\) 31.3901 2.96609
\(113\) −7.32021 −0.688627 −0.344314 0.938855i \(-0.611888\pi\)
−0.344314 + 0.938855i \(0.611888\pi\)
\(114\) 0 0
\(115\) 12.0392 1.12266
\(116\) −22.4460 −2.08406
\(117\) 0 0
\(118\) −7.99178 −0.735703
\(119\) 0 0
\(120\) 0 0
\(121\) 25.7962 2.34511
\(122\) 20.0134 1.81192
\(123\) 0 0
\(124\) −43.6142 −3.91668
\(125\) 3.86167 0.345398
\(126\) 0 0
\(127\) 12.1675 1.07969 0.539846 0.841764i \(-0.318483\pi\)
0.539846 + 0.841764i \(0.318483\pi\)
\(128\) −0.838650 −0.0741269
\(129\) 0 0
\(130\) 12.3530 1.08343
\(131\) 1.98757 0.173654 0.0868272 0.996223i \(-0.472327\pi\)
0.0868272 + 0.996223i \(0.472327\pi\)
\(132\) 0 0
\(133\) −2.45172 −0.212591
\(134\) −1.95541 −0.168922
\(135\) 0 0
\(136\) 0 0
\(137\) −10.8410 −0.926206 −0.463103 0.886304i \(-0.653264\pi\)
−0.463103 + 0.886304i \(0.653264\pi\)
\(138\) 0 0
\(139\) 15.0567 1.27709 0.638546 0.769583i \(-0.279536\pi\)
0.638546 + 0.769583i \(0.279536\pi\)
\(140\) −46.8245 −3.95740
\(141\) 0 0
\(142\) 38.6580 3.24411
\(143\) 9.74206 0.814672
\(144\) 0 0
\(145\) 13.7618 1.14285
\(146\) 9.26143 0.766481
\(147\) 0 0
\(148\) −2.40723 −0.197873
\(149\) −6.94955 −0.569329 −0.284665 0.958627i \(-0.591882\pi\)
−0.284665 + 0.958627i \(0.591882\pi\)
\(150\) 0 0
\(151\) 14.1742 1.15348 0.576740 0.816927i \(-0.304324\pi\)
0.576740 + 0.816927i \(0.304324\pi\)
\(152\) −5.43766 −0.441053
\(153\) 0 0
\(154\) −52.2881 −4.21349
\(155\) 26.7401 2.14782
\(156\) 0 0
\(157\) 9.63833 0.769223 0.384611 0.923079i \(-0.374335\pi\)
0.384611 + 0.923079i \(0.374335\pi\)
\(158\) −3.02523 −0.240674
\(159\) 0 0
\(160\) −29.8865 −2.36274
\(161\) −13.4919 −1.06331
\(162\) 0 0
\(163\) 13.1122 1.02703 0.513514 0.858081i \(-0.328344\pi\)
0.513514 + 0.858081i \(0.328344\pi\)
\(164\) 21.8090 1.70300
\(165\) 0 0
\(166\) 9.80855 0.761291
\(167\) −11.6752 −0.903455 −0.451727 0.892156i \(-0.649192\pi\)
−0.451727 + 0.892156i \(0.649192\pi\)
\(168\) 0 0
\(169\) −10.4207 −0.801594
\(170\) 0 0
\(171\) 0 0
\(172\) −24.2241 −1.84707
\(173\) −22.7218 −1.72751 −0.863754 0.503913i \(-0.831893\pi\)
−0.863754 + 0.503913i \(0.831893\pi\)
\(174\) 0 0
\(175\) 12.1904 0.921504
\(176\) −57.6377 −4.34460
\(177\) 0 0
\(178\) −8.97311 −0.672563
\(179\) −0.531696 −0.0397409 −0.0198704 0.999803i \(-0.506325\pi\)
−0.0198704 + 0.999803i \(0.506325\pi\)
\(180\) 0 0
\(181\) 7.87988 0.585707 0.292853 0.956157i \(-0.405395\pi\)
0.292853 + 0.956157i \(0.405395\pi\)
\(182\) −13.8437 −1.02616
\(183\) 0 0
\(184\) −29.9237 −2.20601
\(185\) 1.47589 0.108509
\(186\) 0 0
\(187\) 0 0
\(188\) −34.9785 −2.55107
\(189\) 0 0
\(190\) 5.70830 0.414124
\(191\) −24.6325 −1.78234 −0.891171 0.453668i \(-0.850115\pi\)
−0.891171 + 0.453668i \(0.850115\pi\)
\(192\) 0 0
\(193\) 2.62349 0.188843 0.0944214 0.995532i \(-0.469900\pi\)
0.0944214 + 0.995532i \(0.469900\pi\)
\(194\) −40.7374 −2.92477
\(195\) 0 0
\(196\) 18.8180 1.34414
\(197\) 11.7379 0.836291 0.418146 0.908380i \(-0.362680\pi\)
0.418146 + 0.908380i \(0.362680\pi\)
\(198\) 0 0
\(199\) 24.5477 1.74014 0.870071 0.492926i \(-0.164073\pi\)
0.870071 + 0.492926i \(0.164073\pi\)
\(200\) 27.0370 1.91180
\(201\) 0 0
\(202\) 2.05212 0.144386
\(203\) −15.4224 −1.08244
\(204\) 0 0
\(205\) −13.3712 −0.933888
\(206\) 26.3332 1.83472
\(207\) 0 0
\(208\) −15.2600 −1.05809
\(209\) 4.50178 0.311395
\(210\) 0 0
\(211\) −22.8230 −1.57120 −0.785599 0.618736i \(-0.787645\pi\)
−0.785599 + 0.618736i \(0.787645\pi\)
\(212\) 4.93893 0.339207
\(213\) 0 0
\(214\) −42.2012 −2.88482
\(215\) 14.8519 1.01289
\(216\) 0 0
\(217\) −29.9668 −2.03428
\(218\) −34.7085 −2.35076
\(219\) 0 0
\(220\) 85.9779 5.79663
\(221\) 0 0
\(222\) 0 0
\(223\) −18.1426 −1.21492 −0.607460 0.794350i \(-0.707812\pi\)
−0.607460 + 0.794350i \(0.707812\pi\)
\(224\) 33.4929 2.23784
\(225\) 0 0
\(226\) −19.1002 −1.27052
\(227\) −1.06204 −0.0704899 −0.0352449 0.999379i \(-0.511221\pi\)
−0.0352449 + 0.999379i \(0.511221\pi\)
\(228\) 0 0
\(229\) −1.11039 −0.0733765 −0.0366882 0.999327i \(-0.511681\pi\)
−0.0366882 + 0.999327i \(0.511681\pi\)
\(230\) 31.4131 2.07132
\(231\) 0 0
\(232\) −34.2053 −2.24569
\(233\) 1.70202 0.111503 0.0557516 0.998445i \(-0.482245\pi\)
0.0557516 + 0.998445i \(0.482245\pi\)
\(234\) 0 0
\(235\) 21.4455 1.39895
\(236\) −14.7267 −0.958626
\(237\) 0 0
\(238\) 0 0
\(239\) 8.14337 0.526751 0.263375 0.964693i \(-0.415164\pi\)
0.263375 + 0.964693i \(0.415164\pi\)
\(240\) 0 0
\(241\) 7.35849 0.474002 0.237001 0.971509i \(-0.423836\pi\)
0.237001 + 0.971509i \(0.423836\pi\)
\(242\) 67.3084 4.32674
\(243\) 0 0
\(244\) 36.8792 2.36095
\(245\) −11.5374 −0.737097
\(246\) 0 0
\(247\) 1.19188 0.0758375
\(248\) −66.4634 −4.22043
\(249\) 0 0
\(250\) 10.0760 0.637263
\(251\) −14.2157 −0.897289 −0.448644 0.893710i \(-0.648093\pi\)
−0.448644 + 0.893710i \(0.648093\pi\)
\(252\) 0 0
\(253\) 24.7735 1.55750
\(254\) 31.7479 1.99204
\(255\) 0 0
\(256\) −17.0876 −1.06797
\(257\) −10.0355 −0.625996 −0.312998 0.949754i \(-0.601333\pi\)
−0.312998 + 0.949754i \(0.601333\pi\)
\(258\) 0 0
\(259\) −1.65398 −0.102773
\(260\) 22.7633 1.41172
\(261\) 0 0
\(262\) 5.18603 0.320394
\(263\) −3.05298 −0.188255 −0.0941274 0.995560i \(-0.530006\pi\)
−0.0941274 + 0.995560i \(0.530006\pi\)
\(264\) 0 0
\(265\) −3.02808 −0.186014
\(266\) −6.39712 −0.392233
\(267\) 0 0
\(268\) −3.60330 −0.220106
\(269\) −0.715832 −0.0436451 −0.0218225 0.999762i \(-0.506947\pi\)
−0.0218225 + 0.999762i \(0.506947\pi\)
\(270\) 0 0
\(271\) −6.48834 −0.394139 −0.197069 0.980390i \(-0.563142\pi\)
−0.197069 + 0.980390i \(0.563142\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −28.2867 −1.70886
\(275\) −22.3836 −1.34978
\(276\) 0 0
\(277\) −8.80232 −0.528880 −0.264440 0.964402i \(-0.585187\pi\)
−0.264440 + 0.964402i \(0.585187\pi\)
\(278\) 39.2865 2.35625
\(279\) 0 0
\(280\) −71.3555 −4.26431
\(281\) 22.4183 1.33737 0.668683 0.743548i \(-0.266858\pi\)
0.668683 + 0.743548i \(0.266858\pi\)
\(282\) 0 0
\(283\) 22.0106 1.30839 0.654197 0.756324i \(-0.273007\pi\)
0.654197 + 0.756324i \(0.273007\pi\)
\(284\) 71.2363 4.22710
\(285\) 0 0
\(286\) 25.4193 1.50308
\(287\) 14.9847 0.884521
\(288\) 0 0
\(289\) 0 0
\(290\) 35.9077 2.10858
\(291\) 0 0
\(292\) 17.0663 0.998730
\(293\) −9.65322 −0.563947 −0.281974 0.959422i \(-0.590989\pi\)
−0.281974 + 0.959422i \(0.590989\pi\)
\(294\) 0 0
\(295\) 9.02901 0.525689
\(296\) −3.66836 −0.213219
\(297\) 0 0
\(298\) −18.1330 −1.05042
\(299\) 6.55897 0.379315
\(300\) 0 0
\(301\) −16.6441 −0.959350
\(302\) 36.9839 2.12818
\(303\) 0 0
\(304\) −7.05161 −0.404437
\(305\) −22.6108 −1.29469
\(306\) 0 0
\(307\) −2.26414 −0.129222 −0.0646108 0.997911i \(-0.520581\pi\)
−0.0646108 + 0.997911i \(0.520581\pi\)
\(308\) −96.3528 −5.49021
\(309\) 0 0
\(310\) 69.7713 3.96275
\(311\) 16.9857 0.963169 0.481584 0.876400i \(-0.340061\pi\)
0.481584 + 0.876400i \(0.340061\pi\)
\(312\) 0 0
\(313\) 2.61460 0.147786 0.0738930 0.997266i \(-0.476458\pi\)
0.0738930 + 0.997266i \(0.476458\pi\)
\(314\) 25.1487 1.41922
\(315\) 0 0
\(316\) −5.57467 −0.313600
\(317\) −17.1609 −0.963853 −0.481927 0.876212i \(-0.660063\pi\)
−0.481927 + 0.876212i \(0.660063\pi\)
\(318\) 0 0
\(319\) 28.3182 1.58551
\(320\) −21.9607 −1.22764
\(321\) 0 0
\(322\) −35.2036 −1.96182
\(323\) 0 0
\(324\) 0 0
\(325\) −5.92622 −0.328728
\(326\) 34.2129 1.89488
\(327\) 0 0
\(328\) 33.2346 1.83507
\(329\) −24.0333 −1.32500
\(330\) 0 0
\(331\) 22.5719 1.24066 0.620332 0.784339i \(-0.286998\pi\)
0.620332 + 0.784339i \(0.286998\pi\)
\(332\) 18.0745 0.991968
\(333\) 0 0
\(334\) −30.4634 −1.66688
\(335\) 2.20920 0.120702
\(336\) 0 0
\(337\) 6.76237 0.368370 0.184185 0.982892i \(-0.441035\pi\)
0.184185 + 0.982892i \(0.441035\pi\)
\(338\) −27.1901 −1.47895
\(339\) 0 0
\(340\) 0 0
\(341\) 55.0243 2.97973
\(342\) 0 0
\(343\) −10.1956 −0.550512
\(344\) −36.9149 −1.99032
\(345\) 0 0
\(346\) −59.2866 −3.18727
\(347\) −10.8097 −0.580294 −0.290147 0.956982i \(-0.593704\pi\)
−0.290147 + 0.956982i \(0.593704\pi\)
\(348\) 0 0
\(349\) −24.9056 −1.33317 −0.666583 0.745430i \(-0.732244\pi\)
−0.666583 + 0.745430i \(0.732244\pi\)
\(350\) 31.8075 1.70018
\(351\) 0 0
\(352\) −61.4988 −3.27790
\(353\) −7.53997 −0.401312 −0.200656 0.979662i \(-0.564307\pi\)
−0.200656 + 0.979662i \(0.564307\pi\)
\(354\) 0 0
\(355\) −43.6754 −2.31805
\(356\) −16.5350 −0.876354
\(357\) 0 0
\(358\) −1.38732 −0.0733223
\(359\) −21.4564 −1.13242 −0.566212 0.824260i \(-0.691592\pi\)
−0.566212 + 0.824260i \(0.691592\pi\)
\(360\) 0 0
\(361\) −18.4492 −0.971012
\(362\) 20.5605 1.08063
\(363\) 0 0
\(364\) −25.5101 −1.33709
\(365\) −10.4634 −0.547682
\(366\) 0 0
\(367\) −8.94128 −0.466731 −0.233365 0.972389i \(-0.574974\pi\)
−0.233365 + 0.972389i \(0.574974\pi\)
\(368\) −38.8053 −2.02287
\(369\) 0 0
\(370\) 3.85094 0.200201
\(371\) 3.39348 0.176181
\(372\) 0 0
\(373\) −23.4331 −1.21332 −0.606659 0.794962i \(-0.707491\pi\)
−0.606659 + 0.794962i \(0.707491\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −53.3035 −2.74892
\(377\) 7.49745 0.386138
\(378\) 0 0
\(379\) 15.7426 0.808642 0.404321 0.914617i \(-0.367508\pi\)
0.404321 + 0.914617i \(0.367508\pi\)
\(380\) 10.5189 0.539606
\(381\) 0 0
\(382\) −64.2719 −3.28844
\(383\) −2.47680 −0.126559 −0.0632793 0.997996i \(-0.520156\pi\)
−0.0632793 + 0.997996i \(0.520156\pi\)
\(384\) 0 0
\(385\) 59.0744 3.01071
\(386\) 6.84530 0.348417
\(387\) 0 0
\(388\) −75.0680 −3.81100
\(389\) 17.9743 0.911332 0.455666 0.890151i \(-0.349401\pi\)
0.455666 + 0.890151i \(0.349401\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 28.6765 1.44838
\(393\) 0 0
\(394\) 30.6270 1.54297
\(395\) 3.41786 0.171971
\(396\) 0 0
\(397\) −12.5443 −0.629580 −0.314790 0.949161i \(-0.601934\pi\)
−0.314790 + 0.949161i \(0.601934\pi\)
\(398\) 64.0509 3.21058
\(399\) 0 0
\(400\) 35.0618 1.75309
\(401\) 14.8389 0.741021 0.370510 0.928828i \(-0.379183\pi\)
0.370510 + 0.928828i \(0.379183\pi\)
\(402\) 0 0
\(403\) 14.5681 0.725688
\(404\) 3.78150 0.188136
\(405\) 0 0
\(406\) −40.2407 −1.99711
\(407\) 3.03699 0.150538
\(408\) 0 0
\(409\) 33.5394 1.65841 0.829207 0.558941i \(-0.188792\pi\)
0.829207 + 0.558941i \(0.188792\pi\)
\(410\) −34.8887 −1.72303
\(411\) 0 0
\(412\) 48.5249 2.39065
\(413\) −10.1185 −0.497900
\(414\) 0 0
\(415\) −11.0816 −0.543973
\(416\) −16.2822 −0.798303
\(417\) 0 0
\(418\) 11.7462 0.574526
\(419\) 34.8073 1.70045 0.850223 0.526423i \(-0.176467\pi\)
0.850223 + 0.526423i \(0.176467\pi\)
\(420\) 0 0
\(421\) −39.1420 −1.90767 −0.953833 0.300337i \(-0.902901\pi\)
−0.953833 + 0.300337i \(0.902901\pi\)
\(422\) −59.5505 −2.89887
\(423\) 0 0
\(424\) 7.52639 0.365514
\(425\) 0 0
\(426\) 0 0
\(427\) 25.3393 1.22625
\(428\) −77.7655 −3.75894
\(429\) 0 0
\(430\) 38.7522 1.86880
\(431\) 18.9548 0.913022 0.456511 0.889718i \(-0.349099\pi\)
0.456511 + 0.889718i \(0.349099\pi\)
\(432\) 0 0
\(433\) 27.9754 1.34441 0.672206 0.740364i \(-0.265347\pi\)
0.672206 + 0.740364i \(0.265347\pi\)
\(434\) −78.1906 −3.75327
\(435\) 0 0
\(436\) −63.9585 −3.06305
\(437\) 3.03088 0.144987
\(438\) 0 0
\(439\) 13.6777 0.652801 0.326400 0.945232i \(-0.394164\pi\)
0.326400 + 0.945232i \(0.394164\pi\)
\(440\) 131.021 6.24618
\(441\) 0 0
\(442\) 0 0
\(443\) −12.4388 −0.590987 −0.295493 0.955345i \(-0.595484\pi\)
−0.295493 + 0.955345i \(0.595484\pi\)
\(444\) 0 0
\(445\) 10.1377 0.480573
\(446\) −47.3384 −2.24154
\(447\) 0 0
\(448\) 24.6107 1.16275
\(449\) 25.9018 1.22238 0.611190 0.791484i \(-0.290691\pi\)
0.611190 + 0.791484i \(0.290691\pi\)
\(450\) 0 0
\(451\) −27.5146 −1.29561
\(452\) −35.1964 −1.65550
\(453\) 0 0
\(454\) −2.77111 −0.130055
\(455\) 15.6404 0.733233
\(456\) 0 0
\(457\) 15.7899 0.738620 0.369310 0.929306i \(-0.379594\pi\)
0.369310 + 0.929306i \(0.379594\pi\)
\(458\) −2.89726 −0.135380
\(459\) 0 0
\(460\) 57.8858 2.69894
\(461\) 5.32484 0.248003 0.124001 0.992282i \(-0.460427\pi\)
0.124001 + 0.992282i \(0.460427\pi\)
\(462\) 0 0
\(463\) −8.50127 −0.395088 −0.197544 0.980294i \(-0.563296\pi\)
−0.197544 + 0.980294i \(0.563296\pi\)
\(464\) −44.3577 −2.05925
\(465\) 0 0
\(466\) 4.44098 0.205725
\(467\) 13.9040 0.643401 0.321701 0.946841i \(-0.395746\pi\)
0.321701 + 0.946841i \(0.395746\pi\)
\(468\) 0 0
\(469\) −2.47578 −0.114321
\(470\) 55.9564 2.58108
\(471\) 0 0
\(472\) −22.4419 −1.03297
\(473\) 30.5615 1.40522
\(474\) 0 0
\(475\) −2.73849 −0.125651
\(476\) 0 0
\(477\) 0 0
\(478\) 21.2480 0.971860
\(479\) 38.7365 1.76991 0.884957 0.465672i \(-0.154187\pi\)
0.884957 + 0.465672i \(0.154187\pi\)
\(480\) 0 0
\(481\) 0.804066 0.0366622
\(482\) 19.2000 0.874538
\(483\) 0 0
\(484\) 124.031 5.63778
\(485\) 46.0246 2.08987
\(486\) 0 0
\(487\) 11.7126 0.530750 0.265375 0.964145i \(-0.414504\pi\)
0.265375 + 0.964145i \(0.414504\pi\)
\(488\) 56.1999 2.54405
\(489\) 0 0
\(490\) −30.1038 −1.35995
\(491\) −19.1773 −0.865460 −0.432730 0.901524i \(-0.642450\pi\)
−0.432730 + 0.901524i \(0.642450\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 3.10990 0.139921
\(495\) 0 0
\(496\) −86.1902 −3.87006
\(497\) 48.9456 2.19551
\(498\) 0 0
\(499\) −31.5002 −1.41014 −0.705071 0.709136i \(-0.749085\pi\)
−0.705071 + 0.709136i \(0.749085\pi\)
\(500\) 18.5674 0.830359
\(501\) 0 0
\(502\) −37.0922 −1.65551
\(503\) 12.5690 0.560425 0.280212 0.959938i \(-0.409595\pi\)
0.280212 + 0.959938i \(0.409595\pi\)
\(504\) 0 0
\(505\) −2.31846 −0.103170
\(506\) 64.6400 2.87360
\(507\) 0 0
\(508\) 58.5028 2.59564
\(509\) −14.9723 −0.663634 −0.331817 0.943344i \(-0.607662\pi\)
−0.331817 + 0.943344i \(0.607662\pi\)
\(510\) 0 0
\(511\) 11.7261 0.518730
\(512\) −42.9082 −1.89629
\(513\) 0 0
\(514\) −26.1849 −1.15497
\(515\) −29.7509 −1.31098
\(516\) 0 0
\(517\) 44.1293 1.94081
\(518\) −4.31562 −0.189618
\(519\) 0 0
\(520\) 34.6888 1.52120
\(521\) −5.88454 −0.257806 −0.128903 0.991657i \(-0.541146\pi\)
−0.128903 + 0.991657i \(0.541146\pi\)
\(522\) 0 0
\(523\) −19.0961 −0.835012 −0.417506 0.908674i \(-0.637096\pi\)
−0.417506 + 0.908674i \(0.637096\pi\)
\(524\) 9.55646 0.417476
\(525\) 0 0
\(526\) −7.96595 −0.347332
\(527\) 0 0
\(528\) 0 0
\(529\) −6.32090 −0.274822
\(530\) −7.90098 −0.343197
\(531\) 0 0
\(532\) −11.7882 −0.511082
\(533\) −7.28468 −0.315535
\(534\) 0 0
\(535\) 47.6784 2.06132
\(536\) −5.49103 −0.237177
\(537\) 0 0
\(538\) −1.86778 −0.0805255
\(539\) −23.7410 −1.02260
\(540\) 0 0
\(541\) 4.09222 0.175938 0.0879692 0.996123i \(-0.471962\pi\)
0.0879692 + 0.996123i \(0.471962\pi\)
\(542\) −16.9296 −0.727190
\(543\) 0 0
\(544\) 0 0
\(545\) 39.2133 1.67971
\(546\) 0 0
\(547\) −33.2481 −1.42159 −0.710794 0.703400i \(-0.751664\pi\)
−0.710794 + 0.703400i \(0.751664\pi\)
\(548\) −52.1247 −2.22666
\(549\) 0 0
\(550\) −58.4041 −2.49036
\(551\) 3.46455 0.147595
\(552\) 0 0
\(553\) −3.83029 −0.162881
\(554\) −22.9673 −0.975788
\(555\) 0 0
\(556\) 72.3944 3.07021
\(557\) 35.9740 1.52427 0.762133 0.647421i \(-0.224152\pi\)
0.762133 + 0.647421i \(0.224152\pi\)
\(558\) 0 0
\(559\) 8.09137 0.342228
\(560\) −92.5344 −3.91029
\(561\) 0 0
\(562\) 58.4948 2.46745
\(563\) −21.9711 −0.925971 −0.462985 0.886366i \(-0.653222\pi\)
−0.462985 + 0.886366i \(0.653222\pi\)
\(564\) 0 0
\(565\) 21.5791 0.907841
\(566\) 57.4309 2.41400
\(567\) 0 0
\(568\) 108.556 4.55493
\(569\) −21.3880 −0.896631 −0.448315 0.893875i \(-0.647976\pi\)
−0.448315 + 0.893875i \(0.647976\pi\)
\(570\) 0 0
\(571\) −30.0947 −1.25942 −0.629712 0.776829i \(-0.716827\pi\)
−0.629712 + 0.776829i \(0.716827\pi\)
\(572\) 46.8410 1.95852
\(573\) 0 0
\(574\) 39.0987 1.63195
\(575\) −15.0701 −0.628465
\(576\) 0 0
\(577\) 21.6490 0.901260 0.450630 0.892711i \(-0.351199\pi\)
0.450630 + 0.892711i \(0.351199\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 66.1683 2.74749
\(581\) 12.4188 0.515218
\(582\) 0 0
\(583\) −6.23101 −0.258062
\(584\) 26.0072 1.07619
\(585\) 0 0
\(586\) −25.1875 −1.04049
\(587\) 42.0603 1.73602 0.868008 0.496551i \(-0.165400\pi\)
0.868008 + 0.496551i \(0.165400\pi\)
\(588\) 0 0
\(589\) 6.73188 0.277382
\(590\) 23.5588 0.969902
\(591\) 0 0
\(592\) −4.75715 −0.195518
\(593\) 32.3349 1.32784 0.663918 0.747806i \(-0.268893\pi\)
0.663918 + 0.747806i \(0.268893\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −33.4143 −1.36870
\(597\) 0 0
\(598\) 17.1139 0.699840
\(599\) 34.4979 1.40955 0.704773 0.709433i \(-0.251049\pi\)
0.704773 + 0.709433i \(0.251049\pi\)
\(600\) 0 0
\(601\) 14.4066 0.587658 0.293829 0.955858i \(-0.405070\pi\)
0.293829 + 0.955858i \(0.405070\pi\)
\(602\) −43.4284 −1.77001
\(603\) 0 0
\(604\) 68.1513 2.77304
\(605\) −76.0441 −3.09163
\(606\) 0 0
\(607\) 43.6878 1.77323 0.886617 0.462504i \(-0.153049\pi\)
0.886617 + 0.462504i \(0.153049\pi\)
\(608\) −7.52399 −0.305138
\(609\) 0 0
\(610\) −58.9971 −2.38872
\(611\) 11.6836 0.472666
\(612\) 0 0
\(613\) −10.1396 −0.409536 −0.204768 0.978811i \(-0.565644\pi\)
−0.204768 + 0.978811i \(0.565644\pi\)
\(614\) −5.90769 −0.238415
\(615\) 0 0
\(616\) −146.831 −5.91600
\(617\) −24.8202 −0.999222 −0.499611 0.866250i \(-0.666524\pi\)
−0.499611 + 0.866250i \(0.666524\pi\)
\(618\) 0 0
\(619\) −28.4588 −1.14386 −0.571929 0.820303i \(-0.693805\pi\)
−0.571929 + 0.820303i \(0.693805\pi\)
\(620\) 128.570 5.16348
\(621\) 0 0
\(622\) 44.3196 1.77706
\(623\) −11.3610 −0.455169
\(624\) 0 0
\(625\) −29.8339 −1.19335
\(626\) 6.82211 0.272667
\(627\) 0 0
\(628\) 46.3423 1.84926
\(629\) 0 0
\(630\) 0 0
\(631\) −28.1728 −1.12154 −0.560772 0.827971i \(-0.689495\pi\)
−0.560772 + 0.827971i \(0.689495\pi\)
\(632\) −8.49520 −0.337921
\(633\) 0 0
\(634\) −44.7769 −1.77832
\(635\) −35.8684 −1.42339
\(636\) 0 0
\(637\) −6.28560 −0.249044
\(638\) 73.8889 2.92529
\(639\) 0 0
\(640\) 2.47224 0.0977240
\(641\) 44.9354 1.77484 0.887421 0.460960i \(-0.152495\pi\)
0.887421 + 0.460960i \(0.152495\pi\)
\(642\) 0 0
\(643\) 2.49228 0.0982857 0.0491429 0.998792i \(-0.484351\pi\)
0.0491429 + 0.998792i \(0.484351\pi\)
\(644\) −64.8708 −2.55627
\(645\) 0 0
\(646\) 0 0
\(647\) −17.6826 −0.695176 −0.347588 0.937647i \(-0.612999\pi\)
−0.347588 + 0.937647i \(0.612999\pi\)
\(648\) 0 0
\(649\) 18.5794 0.729304
\(650\) −15.4629 −0.606506
\(651\) 0 0
\(652\) 63.0451 2.46904
\(653\) −20.6116 −0.806594 −0.403297 0.915069i \(-0.632136\pi\)
−0.403297 + 0.915069i \(0.632136\pi\)
\(654\) 0 0
\(655\) −5.85911 −0.228934
\(656\) 43.0989 1.68273
\(657\) 0 0
\(658\) −62.7087 −2.44464
\(659\) −19.1198 −0.744801 −0.372400 0.928072i \(-0.621465\pi\)
−0.372400 + 0.928072i \(0.621465\pi\)
\(660\) 0 0
\(661\) −10.5164 −0.409041 −0.204521 0.978862i \(-0.565564\pi\)
−0.204521 + 0.978862i \(0.565564\pi\)
\(662\) 58.8955 2.28904
\(663\) 0 0
\(664\) 27.5436 1.06890
\(665\) 7.22738 0.280266
\(666\) 0 0
\(667\) 19.0656 0.738223
\(668\) −56.1358 −2.17196
\(669\) 0 0
\(670\) 5.76433 0.222695
\(671\) −46.5273 −1.79617
\(672\) 0 0
\(673\) −42.6539 −1.64419 −0.822093 0.569353i \(-0.807194\pi\)
−0.822093 + 0.569353i \(0.807194\pi\)
\(674\) 17.6446 0.679646
\(675\) 0 0
\(676\) −50.1041 −1.92708
\(677\) −4.94952 −0.190226 −0.0951128 0.995467i \(-0.530321\pi\)
−0.0951128 + 0.995467i \(0.530321\pi\)
\(678\) 0 0
\(679\) −51.5783 −1.97940
\(680\) 0 0
\(681\) 0 0
\(682\) 143.571 5.49763
\(683\) 16.2603 0.622183 0.311092 0.950380i \(-0.399305\pi\)
0.311092 + 0.950380i \(0.399305\pi\)
\(684\) 0 0
\(685\) 31.9579 1.22105
\(686\) −26.6028 −1.01570
\(687\) 0 0
\(688\) −47.8716 −1.82509
\(689\) −1.64971 −0.0628488
\(690\) 0 0
\(691\) 7.66748 0.291685 0.145842 0.989308i \(-0.453411\pi\)
0.145842 + 0.989308i \(0.453411\pi\)
\(692\) −109.249 −4.15303
\(693\) 0 0
\(694\) −28.2050 −1.07065
\(695\) −44.3854 −1.68363
\(696\) 0 0
\(697\) 0 0
\(698\) −64.9847 −2.45971
\(699\) 0 0
\(700\) 58.6127 2.21535
\(701\) 8.05266 0.304145 0.152072 0.988369i \(-0.451405\pi\)
0.152072 + 0.988369i \(0.451405\pi\)
\(702\) 0 0
\(703\) 0.371557 0.0140135
\(704\) −45.1896 −1.70315
\(705\) 0 0
\(706\) −19.6736 −0.740425
\(707\) 2.59822 0.0977162
\(708\) 0 0
\(709\) −9.11588 −0.342354 −0.171177 0.985240i \(-0.554757\pi\)
−0.171177 + 0.985240i \(0.554757\pi\)
\(710\) −113.959 −4.27682
\(711\) 0 0
\(712\) −25.1976 −0.944319
\(713\) 37.0458 1.38738
\(714\) 0 0
\(715\) −28.7185 −1.07401
\(716\) −2.55646 −0.0955394
\(717\) 0 0
\(718\) −55.9847 −2.08933
\(719\) 22.2728 0.830634 0.415317 0.909677i \(-0.363671\pi\)
0.415317 + 0.909677i \(0.363671\pi\)
\(720\) 0 0
\(721\) 33.3409 1.24168
\(722\) −48.1384 −1.79153
\(723\) 0 0
\(724\) 37.8874 1.40807
\(725\) −17.2263 −0.639770
\(726\) 0 0
\(727\) −10.0870 −0.374106 −0.187053 0.982350i \(-0.559894\pi\)
−0.187053 + 0.982350i \(0.559894\pi\)
\(728\) −38.8746 −1.44079
\(729\) 0 0
\(730\) −27.3016 −1.01048
\(731\) 0 0
\(732\) 0 0
\(733\) −2.27909 −0.0841802 −0.0420901 0.999114i \(-0.513402\pi\)
−0.0420901 + 0.999114i \(0.513402\pi\)
\(734\) −23.3299 −0.861123
\(735\) 0 0
\(736\) −41.4049 −1.52620
\(737\) 4.54597 0.167453
\(738\) 0 0
\(739\) 23.0008 0.846100 0.423050 0.906106i \(-0.360960\pi\)
0.423050 + 0.906106i \(0.360960\pi\)
\(740\) 7.09623 0.260863
\(741\) 0 0
\(742\) 8.85439 0.325055
\(743\) −32.3634 −1.18730 −0.593650 0.804723i \(-0.702314\pi\)
−0.593650 + 0.804723i \(0.702314\pi\)
\(744\) 0 0
\(745\) 20.4865 0.750566
\(746\) −61.1425 −2.23858
\(747\) 0 0
\(748\) 0 0
\(749\) −53.4317 −1.95235
\(750\) 0 0
\(751\) −2.18406 −0.0796974 −0.0398487 0.999206i \(-0.512688\pi\)
−0.0398487 + 0.999206i \(0.512688\pi\)
\(752\) −69.1244 −2.52071
\(753\) 0 0
\(754\) 19.5626 0.712429
\(755\) −41.7839 −1.52067
\(756\) 0 0
\(757\) −4.25848 −0.154777 −0.0773885 0.997001i \(-0.524658\pi\)
−0.0773885 + 0.997001i \(0.524658\pi\)
\(758\) 41.0761 1.49195
\(759\) 0 0
\(760\) 16.0296 0.581455
\(761\) −26.7113 −0.968285 −0.484143 0.874989i \(-0.660868\pi\)
−0.484143 + 0.874989i \(0.660868\pi\)
\(762\) 0 0
\(763\) −43.9451 −1.59092
\(764\) −118.436 −4.28486
\(765\) 0 0
\(766\) −6.46256 −0.233502
\(767\) 4.91902 0.177616
\(768\) 0 0
\(769\) −14.6648 −0.528828 −0.264414 0.964409i \(-0.585178\pi\)
−0.264414 + 0.964409i \(0.585178\pi\)
\(770\) 154.139 5.55479
\(771\) 0 0
\(772\) 12.6140 0.453990
\(773\) −21.0087 −0.755630 −0.377815 0.925881i \(-0.623325\pi\)
−0.377815 + 0.925881i \(0.623325\pi\)
\(774\) 0 0
\(775\) −33.4720 −1.20235
\(776\) −114.396 −4.10656
\(777\) 0 0
\(778\) 46.8992 1.68142
\(779\) −3.36623 −0.120608
\(780\) 0 0
\(781\) −89.8726 −3.21590
\(782\) 0 0
\(783\) 0 0
\(784\) 37.1880 1.32814
\(785\) −28.4127 −1.01409
\(786\) 0 0
\(787\) −13.3134 −0.474572 −0.237286 0.971440i \(-0.576258\pi\)
−0.237286 + 0.971440i \(0.576258\pi\)
\(788\) 56.4373 2.01049
\(789\) 0 0
\(790\) 8.91801 0.317289
\(791\) −24.1831 −0.859850
\(792\) 0 0
\(793\) −12.3184 −0.437441
\(794\) −32.7311 −1.16158
\(795\) 0 0
\(796\) 118.028 4.18341
\(797\) 0.456366 0.0161653 0.00808266 0.999967i \(-0.497427\pi\)
0.00808266 + 0.999967i \(0.497427\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 37.4105 1.32266
\(801\) 0 0
\(802\) 38.7183 1.36719
\(803\) −21.5311 −0.759815
\(804\) 0 0
\(805\) 39.7726 1.40180
\(806\) 38.0116 1.33890
\(807\) 0 0
\(808\) 5.76259 0.202727
\(809\) −49.1828 −1.72918 −0.864588 0.502482i \(-0.832420\pi\)
−0.864588 + 0.502482i \(0.832420\pi\)
\(810\) 0 0
\(811\) 40.2083 1.41191 0.705953 0.708259i \(-0.250519\pi\)
0.705953 + 0.708259i \(0.250519\pi\)
\(812\) −74.1527 −2.60225
\(813\) 0 0
\(814\) 7.92423 0.277744
\(815\) −38.6533 −1.35397
\(816\) 0 0
\(817\) 3.73900 0.130811
\(818\) 87.5122 3.05979
\(819\) 0 0
\(820\) −64.2905 −2.24512
\(821\) −13.2638 −0.462908 −0.231454 0.972846i \(-0.574348\pi\)
−0.231454 + 0.972846i \(0.574348\pi\)
\(822\) 0 0
\(823\) 29.0218 1.01164 0.505819 0.862640i \(-0.331190\pi\)
0.505819 + 0.862640i \(0.331190\pi\)
\(824\) 73.9467 2.57606
\(825\) 0 0
\(826\) −26.4017 −0.918631
\(827\) −6.98830 −0.243007 −0.121504 0.992591i \(-0.538772\pi\)
−0.121504 + 0.992591i \(0.538772\pi\)
\(828\) 0 0
\(829\) 52.8012 1.83386 0.916931 0.399046i \(-0.130658\pi\)
0.916931 + 0.399046i \(0.130658\pi\)
\(830\) −28.9145 −1.00364
\(831\) 0 0
\(832\) −11.9643 −0.414786
\(833\) 0 0
\(834\) 0 0
\(835\) 34.4172 1.19106
\(836\) 21.6451 0.748612
\(837\) 0 0
\(838\) 90.8204 3.13734
\(839\) −23.9485 −0.826795 −0.413398 0.910551i \(-0.635658\pi\)
−0.413398 + 0.910551i \(0.635658\pi\)
\(840\) 0 0
\(841\) −7.20644 −0.248498
\(842\) −102.131 −3.51966
\(843\) 0 0
\(844\) −109.736 −3.77725
\(845\) 30.7191 1.05677
\(846\) 0 0
\(847\) 85.2203 2.92820
\(848\) 9.76028 0.335169
\(849\) 0 0
\(850\) 0 0
\(851\) 2.04470 0.0700912
\(852\) 0 0
\(853\) 47.1238 1.61349 0.806744 0.590901i \(-0.201228\pi\)
0.806744 + 0.590901i \(0.201228\pi\)
\(854\) 66.1162 2.26245
\(855\) 0 0
\(856\) −118.506 −4.05046
\(857\) −21.8156 −0.745206 −0.372603 0.927991i \(-0.621535\pi\)
−0.372603 + 0.927991i \(0.621535\pi\)
\(858\) 0 0
\(859\) −12.6749 −0.432461 −0.216230 0.976342i \(-0.569376\pi\)
−0.216230 + 0.976342i \(0.569376\pi\)
\(860\) 71.4099 2.43506
\(861\) 0 0
\(862\) 49.4576 1.68453
\(863\) 26.0408 0.886439 0.443220 0.896413i \(-0.353836\pi\)
0.443220 + 0.896413i \(0.353836\pi\)
\(864\) 0 0
\(865\) 66.9813 2.27743
\(866\) 72.9945 2.48045
\(867\) 0 0
\(868\) −144.084 −4.89053
\(869\) 7.03308 0.238581
\(870\) 0 0
\(871\) 1.20358 0.0407817
\(872\) −97.4657 −3.30061
\(873\) 0 0
\(874\) 7.90830 0.267502
\(875\) 12.7574 0.431280
\(876\) 0 0
\(877\) 19.4601 0.657120 0.328560 0.944483i \(-0.393437\pi\)
0.328560 + 0.944483i \(0.393437\pi\)
\(878\) 35.6884 1.20442
\(879\) 0 0
\(880\) 169.909 5.72764
\(881\) −0.550997 −0.0185636 −0.00928179 0.999957i \(-0.502955\pi\)
−0.00928179 + 0.999957i \(0.502955\pi\)
\(882\) 0 0
\(883\) −7.74903 −0.260776 −0.130388 0.991463i \(-0.541622\pi\)
−0.130388 + 0.991463i \(0.541622\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −32.4559 −1.09038
\(887\) 38.2265 1.28352 0.641760 0.766905i \(-0.278204\pi\)
0.641760 + 0.766905i \(0.278204\pi\)
\(888\) 0 0
\(889\) 40.1966 1.34815
\(890\) 26.4517 0.886662
\(891\) 0 0
\(892\) −87.2319 −2.92074
\(893\) 5.39895 0.180669
\(894\) 0 0
\(895\) 1.56738 0.0523917
\(896\) −2.77057 −0.0925581
\(897\) 0 0
\(898\) 67.5839 2.25530
\(899\) 42.3465 1.41233
\(900\) 0 0
\(901\) 0 0
\(902\) −71.7920 −2.39041
\(903\) 0 0
\(904\) −53.6356 −1.78389
\(905\) −23.2290 −0.772157
\(906\) 0 0
\(907\) −23.5471 −0.781867 −0.390934 0.920419i \(-0.627848\pi\)
−0.390934 + 0.920419i \(0.627848\pi\)
\(908\) −5.10640 −0.169462
\(909\) 0 0
\(910\) 40.8095 1.35282
\(911\) −55.5565 −1.84067 −0.920334 0.391133i \(-0.872083\pi\)
−0.920334 + 0.391133i \(0.872083\pi\)
\(912\) 0 0
\(913\) −22.8030 −0.754670
\(914\) 41.1996 1.36276
\(915\) 0 0
\(916\) −5.33888 −0.176401
\(917\) 6.56613 0.216833
\(918\) 0 0
\(919\) 20.0039 0.659869 0.329935 0.944004i \(-0.392973\pi\)
0.329935 + 0.944004i \(0.392973\pi\)
\(920\) 88.2117 2.90825
\(921\) 0 0
\(922\) 13.8938 0.457567
\(923\) −23.7944 −0.783203
\(924\) 0 0
\(925\) −1.84744 −0.0607435
\(926\) −22.1818 −0.728940
\(927\) 0 0
\(928\) −47.3292 −1.55366
\(929\) 23.9928 0.787177 0.393588 0.919287i \(-0.371233\pi\)
0.393588 + 0.919287i \(0.371233\pi\)
\(930\) 0 0
\(931\) −2.90456 −0.0951931
\(932\) 8.18353 0.268061
\(933\) 0 0
\(934\) 36.2789 1.18708
\(935\) 0 0
\(936\) 0 0
\(937\) 13.6857 0.447093 0.223547 0.974693i \(-0.428236\pi\)
0.223547 + 0.974693i \(0.428236\pi\)
\(938\) −6.45991 −0.210923
\(939\) 0 0
\(940\) 103.113 3.36316
\(941\) −26.9334 −0.878002 −0.439001 0.898486i \(-0.644668\pi\)
−0.439001 + 0.898486i \(0.644668\pi\)
\(942\) 0 0
\(943\) −18.5245 −0.603242
\(944\) −29.1028 −0.947215
\(945\) 0 0
\(946\) 79.7421 2.59264
\(947\) 39.4644 1.28242 0.641210 0.767365i \(-0.278433\pi\)
0.641210 + 0.767365i \(0.278433\pi\)
\(948\) 0 0
\(949\) −5.70051 −0.185046
\(950\) −7.14538 −0.231827
\(951\) 0 0
\(952\) 0 0
\(953\) 7.64725 0.247719 0.123859 0.992300i \(-0.460473\pi\)
0.123859 + 0.992300i \(0.460473\pi\)
\(954\) 0 0
\(955\) 72.6136 2.34972
\(956\) 39.1543 1.26634
\(957\) 0 0
\(958\) 101.073 3.26551
\(959\) −35.8142 −1.15650
\(960\) 0 0
\(961\) 51.2822 1.65427
\(962\) 2.09800 0.0676422
\(963\) 0 0
\(964\) 35.3805 1.13953
\(965\) −7.73374 −0.248958
\(966\) 0 0
\(967\) −1.80461 −0.0580323 −0.0290161 0.999579i \(-0.509237\pi\)
−0.0290161 + 0.999579i \(0.509237\pi\)
\(968\) 189.010 6.07501
\(969\) 0 0
\(970\) 120.089 3.85583
\(971\) 22.6386 0.726508 0.363254 0.931690i \(-0.381666\pi\)
0.363254 + 0.931690i \(0.381666\pi\)
\(972\) 0 0
\(973\) 49.7413 1.59463
\(974\) 30.5611 0.979239
\(975\) 0 0
\(976\) 72.8805 2.33285
\(977\) 40.0443 1.28113 0.640566 0.767903i \(-0.278700\pi\)
0.640566 + 0.767903i \(0.278700\pi\)
\(978\) 0 0
\(979\) 20.8608 0.666714
\(980\) −55.4732 −1.77203
\(981\) 0 0
\(982\) −50.0381 −1.59678
\(983\) −4.62495 −0.147513 −0.0737566 0.997276i \(-0.523499\pi\)
−0.0737566 + 0.997276i \(0.523499\pi\)
\(984\) 0 0
\(985\) −34.6020 −1.10251
\(986\) 0 0
\(987\) 0 0
\(988\) 5.73070 0.182318
\(989\) 20.5759 0.654276
\(990\) 0 0
\(991\) −29.3798 −0.933280 −0.466640 0.884447i \(-0.654536\pi\)
−0.466640 + 0.884447i \(0.654536\pi\)
\(992\) −91.9641 −2.91986
\(993\) 0 0
\(994\) 127.711 4.05074
\(995\) −72.3639 −2.29409
\(996\) 0 0
\(997\) −34.0316 −1.07779 −0.538896 0.842373i \(-0.681158\pi\)
−0.538896 + 0.842373i \(0.681158\pi\)
\(998\) −82.1915 −2.60173
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.bs.1.10 10
3.2 odd 2 7803.2.a.br.1.1 10
17.2 even 8 459.2.f.b.55.10 yes 20
17.9 even 8 459.2.f.b.217.1 yes 20
17.16 even 2 7803.2.a.br.1.10 10
51.2 odd 8 459.2.f.b.55.1 20
51.26 odd 8 459.2.f.b.217.10 yes 20
51.50 odd 2 inner 7803.2.a.bs.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.b.55.1 20 51.2 odd 8
459.2.f.b.55.10 yes 20 17.2 even 8
459.2.f.b.217.1 yes 20 17.9 even 8
459.2.f.b.217.10 yes 20 51.26 odd 8
7803.2.a.br.1.1 10 3.2 odd 2
7803.2.a.br.1.10 10 17.16 even 2
7803.2.a.bs.1.1 10 51.50 odd 2 inner
7803.2.a.bs.1.10 10 1.1 even 1 trivial