Properties

Label 7803.2.a.bp
Level $7803$
Weight $2$
Character orbit 7803.a
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,0,0,-4,0,0,0,0,0,-6,0,0,10,0,0,6,0,0,-22,0,0,4,0,0, -44,0,0,-8,0,0,0,0,0,-26,0,0,30,0,0,18,0,0,-14,0,0,-2,0,0,-40,0,0,-34, 0,0,6,0,0,-32,0,0,24,0,0,-20,0,0,-30,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1168184448.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 11x^{4} + 31x^{2} - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + \beta_{3} q^{5} + ( - \beta_{2} - 1) q^{7} + (\beta_{4} + \beta_{3} + \beta_1) q^{8} + (\beta_{5} + \beta_{2}) q^{10} + ( - \beta_{3} - \beta_1) q^{11} + ( - \beta_{5} - \beta_{2} - 1) q^{13}+ \cdots + (2 \beta_{4} + 5 \beta_{3} + 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 4 q^{7} - 6 q^{13} + 10 q^{16} + 6 q^{19} - 22 q^{22} + 4 q^{25} - 44 q^{28} - 8 q^{31} - 26 q^{37} + 30 q^{40} + 18 q^{43} - 14 q^{46} - 2 q^{49} - 40 q^{52} - 34 q^{55} + 6 q^{58} - 32 q^{61}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 11x^{4} + 31x^{2} - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 8\nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 11\nu^{3} - 25\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} - 8\nu^{2} + 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 8\beta_{2} + 22 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{4} + 11\beta_{3} + 30\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.62065
−1.83024
−0.884545
0.884545
1.83024
2.62065
−2.62065 0 4.86782 −1.94310 0 −3.86782 −7.51555 0 5.09218
1.2 −1.83024 0 1.34976 3.40253 0 −0.349765 1.19008 0 −6.22743
1.3 −0.884545 0 −1.21758 −1.28342 0 2.21758 2.84609 0 1.13524
1.4 0.884545 0 −1.21758 1.28342 0 2.21758 −2.84609 0 1.13524
1.5 1.83024 0 1.34976 −3.40253 0 −0.349765 −1.19008 0 −6.22743
1.6 2.62065 0 4.86782 1.94310 0 −3.86782 7.51555 0 5.09218
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7803.2.a.bp 6
3.b odd 2 1 inner 7803.2.a.bp 6
17.b even 2 1 7803.2.a.bq 6
17.c even 4 2 459.2.d.c 12
51.c odd 2 1 7803.2.a.bq 6
51.f odd 4 2 459.2.d.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
459.2.d.c 12 17.c even 4 2
459.2.d.c 12 51.f odd 4 2
7803.2.a.bp 6 1.a even 1 1 trivial
7803.2.a.bp 6 3.b odd 2 1 inner
7803.2.a.bq 6 17.b even 2 1
7803.2.a.bq 6 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7803))\):

\( T_{2}^{6} - 11T_{2}^{4} + 31T_{2}^{2} - 18 \) Copy content Toggle raw display
\( T_{5}^{6} - 17T_{5}^{4} + 69T_{5}^{2} - 72 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 8T_{7} - 3 \) Copy content Toggle raw display
\( T_{11}^{6} - 28T_{11}^{4} + 161T_{11}^{2} - 242 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 11 T^{4} + \cdots - 18 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 17 T^{4} + \cdots - 72 \) Copy content Toggle raw display
$7$ \( (T^{3} + 2 T^{2} - 8 T - 3)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} - 28 T^{4} + \cdots - 242 \) Copy content Toggle raw display
$13$ \( (T^{3} + 3 T^{2} - 30 T - 68)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 37 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$29$ \( T^{6} - 140 T^{4} + \cdots - 50562 \) Copy content Toggle raw display
$31$ \( (T^{3} + 4 T^{2} + \cdots - 102)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 13 T^{2} + \cdots - 144)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 97 T^{4} + \cdots - 13448 \) Copy content Toggle raw display
$43$ \( (T^{3} - 9 T^{2} + \cdots + 422)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 11 T^{4} + \cdots - 18 \) Copy content Toggle raw display
$53$ \( T^{6} - 237 T^{4} + \cdots - 472392 \) Copy content Toggle raw display
$59$ \( T^{6} - 183 T^{4} + \cdots - 221778 \) Copy content Toggle raw display
$61$ \( (T^{3} + 16 T^{2} + \cdots - 39)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 10 T^{2} + 24 T + 3)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 74 T^{4} + \cdots - 12168 \) Copy content Toggle raw display
$73$ \( (T^{3} + 9 T^{2} - 105 T - 81)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 20 T^{2} + \cdots + 159)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 252 T^{4} + \cdots - 1458 \) Copy content Toggle raw display
$89$ \( T^{6} - 107 T^{4} + \cdots - 162 \) Copy content Toggle raw display
$97$ \( (T^{3} + 8 T^{2} + \cdots - 969)^{2} \) Copy content Toggle raw display
show more
show less