Properties

Label 780.2.q.a
Level $780$
Weight $2$
Character orbit 780.q
Analytic conductor $6.228$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(61,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,-2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} - q^{5} - 3 \zeta_{6} q^{7} - \zeta_{6} q^{9} + (6 \zeta_{6} - 6) q^{11} + (3 \zeta_{6} - 4) q^{13} + (\zeta_{6} - 1) q^{15} - 6 \zeta_{6} q^{17} - 3 q^{21} + (2 \zeta_{6} - 2) q^{23} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 2 q^{5} - 3 q^{7} - q^{9} - 6 q^{11} - 5 q^{13} - q^{15} - 6 q^{17} - 6 q^{21} - 2 q^{23} + 2 q^{25} - 2 q^{27} - 8 q^{29} + 6 q^{31} + 6 q^{33} + 3 q^{35} - 6 q^{37} + 2 q^{39} - 2 q^{41}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 −1.00000 0 −1.50000 2.59808i 0 −0.500000 0.866025i 0
601.1 0 0.500000 + 0.866025i 0 −1.00000 0 −1.50000 + 2.59808i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 780.2.q.a 2
3.b odd 2 1 2340.2.q.d 2
5.b even 2 1 3900.2.q.f 2
5.c odd 4 2 3900.2.by.a 4
13.c even 3 1 inner 780.2.q.a 2
39.i odd 6 1 2340.2.q.d 2
65.n even 6 1 3900.2.q.f 2
65.q odd 12 2 3900.2.by.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
780.2.q.a 2 1.a even 1 1 trivial
780.2.q.a 2 13.c even 3 1 inner
2340.2.q.d 2 3.b odd 2 1
2340.2.q.d 2 39.i odd 6 1
3900.2.q.f 2 5.b even 2 1
3900.2.q.f 2 65.n even 6 1
3900.2.by.a 4 5.c odd 4 2
3900.2.by.a 4 65.q odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 3T_{7} + 9 \) acting on \(S_{2}^{\mathrm{new}}(780, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$13$ \( T^{2} + 5T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$31$ \( (T - 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$73$ \( (T + 5)^{2} \) Copy content Toggle raw display
$79$ \( (T + 15)^{2} \) Copy content Toggle raw display
$83$ \( (T + 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less