L(s) = 1 | + (0.5 − 0.866i)3-s − 5-s + (−1.5 − 2.59i)7-s + (−0.499 − 0.866i)9-s + (−3 + 5.19i)11-s + (−2.5 + 2.59i)13-s + (−0.5 + 0.866i)15-s + (−3 − 5.19i)17-s − 3·21-s + (−1 + 1.73i)23-s + 25-s − 0.999·27-s + (−4 + 6.92i)29-s + 3·31-s + (3 + 5.19i)33-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s − 0.447·5-s + (−0.566 − 0.981i)7-s + (−0.166 − 0.288i)9-s + (−0.904 + 1.56i)11-s + (−0.693 + 0.720i)13-s + (−0.129 + 0.223i)15-s + (−0.727 − 1.26i)17-s − 0.654·21-s + (−0.208 + 0.361i)23-s + 0.200·25-s − 0.192·27-s + (−0.742 + 1.28i)29-s + 0.538·31-s + (0.522 + 0.904i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (2.5 - 2.59i)T \) |
good | 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3 - 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4 - 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 3T + 31T^{2} \) |
| 37 | \( 1 + (3 - 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1 - 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.5 + 12.9i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 + 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4 - 6.92i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5T + 73T^{2} \) |
| 79 | \( 1 + 15T + 79T^{2} \) |
| 83 | \( 1 + 8T + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.795253930744951699615387550641, −9.054686324219062133695924526068, −7.81002722897729637007986197791, −7.08354492990191900589221686181, −6.86052594152187956283515096527, −5.10043143192897761373195461623, −4.34606384107066402717759143104, −3.10400929066813954291693373265, −1.91960735220724189863127819868, 0,
2.48850257529594289356702580187, 3.24634243375825799780929306965, 4.38605024292144570781445609224, 5.64949132866934028433229081683, 6.10535413555741795213766257674, 7.63210577271260567895863451874, 8.377989381547274466090696391825, 8.937031556415677912721709545305, 10.00128469514225780138232708133