Properties

Label 777.1.cn.a
Level $777$
Weight $1$
Character orbit 777.cn
Analytic conductor $0.388$
Analytic rank $0$
Dimension $6$
Projective image $D_{18}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [777,1,Mod(95,777)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(777, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 12, 11])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("777.95"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 777.cn (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.387773514816\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{18}^{2} q^{3} + \zeta_{18}^{5} q^{4} - \zeta_{18}^{4} q^{7} + \zeta_{18}^{4} q^{9} + \zeta_{18}^{7} q^{12} + (\zeta_{18}^{4} + \zeta_{18}^{3}) q^{13} - \zeta_{18} q^{16} + ( - \zeta_{18}^{5} - \zeta_{18}^{2}) q^{19} + \cdots + ( - \zeta_{18}^{2} - \zeta_{18}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{13} + 3 q^{21} - 3 q^{27} + 6 q^{28} - 6 q^{36} - 3 q^{37} - 3 q^{39} - 3 q^{48} - 6 q^{52} + 3 q^{64} + 3 q^{67} + 3 q^{75} + 3 q^{79} - 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/777\mathbb{Z}\right)^\times\).

\(n\) \(260\) \(556\) \(631\)
\(\chi(n)\) \(-1\) \(-\zeta_{18}^{3}\) \(-\zeta_{18}^{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1
−0.766044 + 0.642788i
−0.173648 0.984808i
0.939693 0.342020i
−0.766044 0.642788i
0.939693 + 0.342020i
−0.173648 + 0.984808i
0 0.173648 0.984808i 0.939693 0.342020i 0 0 0.939693 + 0.342020i 0 −0.939693 0.342020i 0
284.1 0 −0.939693 + 0.342020i −0.766044 0.642788i 0 0 −0.766044 + 0.642788i 0 0.766044 0.642788i 0
485.1 0 0.766044 0.642788i −0.173648 0.984808i 0 0 −0.173648 + 0.984808i 0 0.173648 0.984808i 0
548.1 0 0.173648 + 0.984808i 0.939693 + 0.342020i 0 0 0.939693 0.342020i 0 −0.939693 + 0.342020i 0
620.1 0 0.766044 + 0.642788i −0.173648 + 0.984808i 0 0 −0.173648 0.984808i 0 0.173648 + 0.984808i 0
632.1 0 −0.939693 0.342020i −0.766044 + 0.642788i 0 0 −0.766044 0.642788i 0 0.766044 + 0.642788i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
259.bl even 18 1 inner
777.cn odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 777.1.cn.a 6
3.b odd 2 1 CM 777.1.cn.a 6
7.c even 3 1 777.1.ct.a yes 6
21.h odd 6 1 777.1.ct.a yes 6
37.h even 18 1 777.1.ct.a yes 6
111.n odd 18 1 777.1.ct.a yes 6
259.bl even 18 1 inner 777.1.cn.a 6
777.cn odd 18 1 inner 777.1.cn.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
777.1.cn.a 6 1.a even 1 1 trivial
777.1.cn.a 6 3.b odd 2 1 CM
777.1.cn.a 6 259.bl even 18 1 inner
777.1.cn.a 6 777.cn odd 18 1 inner
777.1.ct.a yes 6 7.c even 3 1
777.1.ct.a yes 6 21.h odd 6 1
777.1.ct.a yes 6 37.h even 18 1
777.1.ct.a yes 6 111.n odd 18 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(777, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 9T^{3} + 27 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$37$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} + 6 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{6} - 3 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} - 3 T^{4} + \cdots + 3 \) Copy content Toggle raw display
show more
show less