Properties

Label 777.1.be.a.137.2
Level $777$
Weight $1$
Character 777.137
Analytic conductor $0.388$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [777,1,Mod(137,777)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(777, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("777.137"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 777.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.387773514816\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.603729.1

Embedding invariants

Embedding label 137.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 777.137
Dual form 777.1.be.a.380.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.00000i q^{5} +(0.500000 + 0.866025i) q^{7} +(0.500000 - 0.866025i) q^{9} +(0.866025 + 0.500000i) q^{11} +(-0.866025 - 0.500000i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-0.500000 - 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} -1.00000i q^{17} -1.00000 q^{19} +(-0.866025 + 0.500000i) q^{20} +(0.866025 + 0.500000i) q^{21} +(-0.866025 + 0.500000i) q^{23} -1.00000i q^{27} +(0.500000 - 0.866025i) q^{28} -2.00000i q^{29} +(-0.500000 + 0.866025i) q^{31} +1.00000 q^{33} +(0.866025 - 0.500000i) q^{35} -1.00000 q^{36} +(-0.500000 + 0.866025i) q^{37} +1.00000i q^{39} +(0.866025 + 0.500000i) q^{41} -1.00000i q^{44} +(-0.866025 - 0.500000i) q^{45} +(-0.866025 + 0.500000i) q^{47} +1.00000i q^{48} +(-0.500000 + 0.866025i) q^{49} +(-0.500000 - 0.866025i) q^{51} +1.00000 q^{52} +1.00000i q^{53} +(0.500000 - 0.866025i) q^{55} +(-0.866025 + 0.500000i) q^{57} +1.00000i q^{59} +(-0.500000 + 0.866025i) q^{60} +1.00000 q^{61} +1.00000 q^{63} +1.00000 q^{64} +(0.866025 + 0.500000i) q^{65} +(-0.866025 + 0.500000i) q^{68} +(-0.500000 + 0.866025i) q^{69} +(0.866025 + 0.500000i) q^{71} +(0.500000 - 0.866025i) q^{73} +(0.500000 + 0.866025i) q^{76} +1.00000i q^{77} +1.00000 q^{79} +(0.866025 + 0.500000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.866025 + 0.500000i) q^{83} -1.00000i q^{84} -1.00000 q^{85} +(-1.00000 - 1.73205i) q^{87} -1.00000 q^{91} +(0.866025 + 0.500000i) q^{92} +1.00000i q^{93} +1.00000i q^{95} +(0.866025 - 0.500000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 2 q^{7} + 2 q^{9} - 2 q^{13} - 2 q^{15} - 2 q^{16} - 4 q^{19} + 2 q^{28} - 2 q^{31} + 4 q^{33} - 4 q^{36} - 2 q^{37} - 2 q^{49} - 2 q^{51} + 4 q^{52} + 2 q^{55} - 2 q^{60} + 4 q^{61} + 4 q^{63}+ \cdots - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/777\mathbb{Z}\right)^\times\).

\(n\) \(260\) \(556\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 0.866025 0.500000i 0.866025 0.500000i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(8\) 0 0
\(9\) 0.500000 0.866025i 0.500000 0.866025i
\(10\) 0 0
\(11\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(12\) −0.866025 0.500000i −0.866025 0.500000i
\(13\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −0.500000 0.866025i −0.500000 0.866025i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(18\) 0 0
\(19\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(21\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(22\) 0 0
\(23\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0.500000 0.866025i 0.500000 0.866025i
\(29\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 1.00000 1.00000
\(34\) 0 0
\(35\) 0.866025 0.500000i 0.866025 0.500000i
\(36\) −1.00000 −1.00000
\(37\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(38\) 0 0
\(39\) 1.00000i 1.00000i
\(40\) 0 0
\(41\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 1.00000i 1.00000i
\(45\) −0.866025 0.500000i −0.866025 0.500000i
\(46\) 0 0
\(47\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000i 1.00000i
\(49\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) −0.500000 0.866025i −0.500000 0.866025i
\(52\) 1.00000 1.00000
\(53\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) 0 0
\(55\) 0.500000 0.866025i 0.500000 0.866025i
\(56\) 0 0
\(57\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(58\) 0 0
\(59\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(61\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) 1.00000 1.00000
\(64\) 1.00000 1.00000
\(65\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(66\) 0 0
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(69\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(70\) 0 0
\(71\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(77\) 1.00000i 1.00000i
\(78\) 0 0
\(79\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0 0
\(83\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(84\) 1.00000i 1.00000i
\(85\) −1.00000 −1.00000
\(86\) 0 0
\(87\) −1.00000 1.73205i −1.00000 1.73205i
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −1.00000 −1.00000
\(92\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(93\) 1.00000i 1.00000i
\(94\) 0 0
\(95\) 1.00000i 1.00000i
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0.866025 0.500000i 0.866025 0.500000i
\(100\) 0 0
\(101\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0.500000 0.866025i 0.500000 0.866025i
\(106\) 0 0
\(107\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(108\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(109\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 1.00000i 1.00000i
\(112\) −1.00000 −1.00000
\(113\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(114\) 0 0
\(115\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(116\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(117\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(118\) 0 0
\(119\) 0.866025 0.500000i 0.866025 0.500000i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1.00000 1.00000
\(124\) 1.00000 1.00000
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) −0.500000 0.866025i −0.500000 0.866025i
\(133\) −0.500000 0.866025i −0.500000 0.866025i
\(134\) 0 0
\(135\) −1.00000 −1.00000
\(136\) 0 0
\(137\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(140\) −0.866025 0.500000i −0.866025 0.500000i
\(141\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(142\) 0 0
\(143\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(144\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(145\) −2.00000 −2.00000
\(146\) 0 0
\(147\) 1.00000i 1.00000i
\(148\) 1.00000 1.00000
\(149\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 0 0
\(153\) −0.866025 0.500000i −0.866025 0.500000i
\(154\) 0 0
\(155\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(156\) 0.866025 0.500000i 0.866025 0.500000i
\(157\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(160\) 0 0
\(161\) −0.866025 0.500000i −0.866025 0.500000i
\(162\) 0 0
\(163\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(164\) 1.00000i 1.00000i
\(165\) 1.00000i 1.00000i
\(166\) 0 0
\(167\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(177\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(178\) 0 0
\(179\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(180\) 1.00000i 1.00000i
\(181\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(182\) 0 0
\(183\) 0.866025 0.500000i 0.866025 0.500000i
\(184\) 0 0
\(185\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(186\) 0 0
\(187\) 0.500000 0.866025i 0.500000 0.866025i
\(188\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(189\) 0.866025 0.500000i 0.866025 0.500000i
\(190\) 0 0
\(191\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.866025 0.500000i 0.866025 0.500000i
\(193\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 1.00000 1.00000
\(196\) 1.00000 1.00000
\(197\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.73205 1.00000i 1.73205 1.00000i
\(204\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(205\) 0.500000 0.866025i 0.500000 0.866025i
\(206\) 0 0
\(207\) 1.00000i 1.00000i
\(208\) −0.500000 0.866025i −0.500000 0.866025i
\(209\) −0.866025 0.500000i −0.866025 0.500000i
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0.866025 0.500000i 0.866025 0.500000i
\(213\) 1.00000 1.00000
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.00000 −1.00000
\(218\) 0 0
\(219\) 1.00000i 1.00000i
\(220\) −1.00000 −1.00000
\(221\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(229\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 0 0
\(231\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(232\) 0 0
\(233\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(236\) 0.866025 0.500000i 0.866025 0.500000i
\(237\) 0.866025 0.500000i 0.866025 0.500000i
\(238\) 0 0
\(239\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 1.00000 1.00000
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 0 0
\(243\) −0.866025 0.500000i −0.866025 0.500000i
\(244\) −0.500000 0.866025i −0.500000 0.866025i
\(245\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(246\) 0 0
\(247\) 0.500000 0.866025i 0.500000 0.866025i
\(248\) 0 0
\(249\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.500000 0.866025i −0.500000 0.866025i
\(253\) −1.00000 −1.00000
\(254\) 0 0
\(255\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) −1.00000 −1.00000
\(260\) 1.00000i 1.00000i
\(261\) −1.73205 1.00000i −1.73205 1.00000i
\(262\) 0 0
\(263\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(264\) 0 0
\(265\) 1.00000 1.00000
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(273\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(274\) 0 0
\(275\) 0 0
\(276\) 1.00000 1.00000
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) 0 0
\(279\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(280\) 0 0
\(281\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 1.00000i 1.00000i
\(285\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(286\) 0 0
\(287\) 1.00000i 1.00000i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 −1.00000
\(293\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) 0 0
\(295\) 1.00000 1.00000
\(296\) 0 0
\(297\) 0.500000 0.866025i 0.500000 0.866025i
\(298\) 0 0
\(299\) 1.00000i 1.00000i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.00000 −1.00000
\(304\) 0.500000 0.866025i 0.500000 0.866025i
\(305\) 1.00000i 1.00000i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0.866025 0.500000i 0.866025 0.500000i
\(309\) −0.866025 0.500000i −0.866025 0.500000i
\(310\) 0 0
\(311\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(314\) 0 0
\(315\) 1.00000i 1.00000i
\(316\) −0.500000 0.866025i −0.500000 0.866025i
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 1.00000 1.73205i 1.00000 1.73205i
\(320\) 1.00000i 1.00000i
\(321\) −0.500000 0.866025i −0.500000 0.866025i
\(322\) 0 0
\(323\) 1.00000i 1.00000i
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.866025 0.500000i 0.866025 0.500000i
\(328\) 0 0
\(329\) −0.866025 0.500000i −0.866025 0.500000i
\(330\) 0 0
\(331\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(332\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(333\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(334\) 0 0
\(335\) 0 0
\(336\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(337\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(338\) 0 0
\(339\) 0.500000 0.866025i 0.500000 0.866025i
\(340\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(341\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(346\) 0 0
\(347\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(349\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(352\) 0 0
\(353\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0.500000 0.866025i 0.500000 0.866025i
\(356\) 0 0
\(357\) 0.500000 0.866025i 0.500000 0.866025i
\(358\) 0 0
\(359\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(365\) −0.866025 0.500000i −0.866025 0.500000i
\(366\) 0 0
\(367\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 1.00000i 1.00000i
\(369\) 0.866025 0.500000i 0.866025 0.500000i
\(370\) 0 0
\(371\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(372\) 0.866025 0.500000i 0.866025 0.500000i
\(373\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.500000 0.866025i
\(376\) 0 0
\(377\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(378\) 0 0
\(379\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(380\) 0.866025 0.500000i 0.866025 0.500000i
\(381\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(382\) 0 0
\(383\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 1.00000 1.00000
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.00000i 1.00000i
\(396\) −0.866025 0.500000i −0.866025 0.500000i
\(397\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) −0.866025 0.500000i −0.866025 0.500000i
\(400\) 0 0
\(401\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) −0.500000 0.866025i −0.500000 0.866025i
\(404\) 1.00000i 1.00000i
\(405\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(406\) 0 0
\(407\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(408\) 0 0
\(409\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) −1.00000 −1.00000
\(412\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(413\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(414\) 0 0
\(415\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(416\) 0 0
\(417\) −0.866025 0.500000i −0.866025 0.500000i
\(418\) 0 0
\(419\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) −1.00000 −1.00000
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 1.00000i 1.00000i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(428\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(429\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(436\) −0.500000 0.866025i −0.500000 0.866025i
\(437\) 0.866025 0.500000i 0.866025 0.500000i
\(438\) 0 0
\(439\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(442\) 0 0
\(443\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(444\) 0.866025 0.500000i 0.866025 0.500000i
\(445\) 0 0
\(446\) 0 0
\(447\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(448\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(449\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(450\) 0 0
\(451\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(452\) −0.866025 0.500000i −0.866025 0.500000i
\(453\) 0 0
\(454\) 0 0
\(455\) 1.00000i 1.00000i
\(456\) 0 0
\(457\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0 0
\(459\) −1.00000 −1.00000
\(460\) 0.500000 0.866025i 0.500000 0.866025i
\(461\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(464\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(465\) 1.00000 1.00000
\(466\) 0 0
\(467\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0.500000 0.866025i 0.500000 0.866025i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.866025 0.500000i −0.866025 0.500000i
\(477\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(478\) 0 0
\(479\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) −0.500000 0.866025i −0.500000 0.866025i
\(482\) 0 0
\(483\) −1.00000 −1.00000
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −0.500000 0.866025i −0.500000 0.866025i
\(493\) −2.00000 −2.00000
\(494\) 0 0
\(495\) −0.500000 0.866025i −0.500000 0.866025i
\(496\) −0.500000 0.866025i −0.500000 0.866025i
\(497\) 1.00000i 1.00000i
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(501\) −1.00000 −1.00000
\(502\) 0 0
\(503\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(506\) 0 0
\(507\) 0 0
\(508\) 0.500000 0.866025i 0.500000 0.866025i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 1.00000 1.00000
\(512\) 0 0
\(513\) 1.00000i 1.00000i
\(514\) 0 0
\(515\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(516\) 0 0
\(517\) −1.00000 −1.00000
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(522\) 0 0
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(528\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(529\) 0 0
\(530\) 0 0
\(531\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(532\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(533\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(534\) 0 0
\(535\) −1.00000 −1.00000
\(536\) 0 0
\(537\) 1.00000 1.00000
\(538\) 0 0
\(539\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(540\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(541\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 1.00000i 1.00000i
\(544\) 0 0
\(545\) 1.00000i 1.00000i
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 1.00000i 1.00000i
\(549\) 0.500000 0.866025i 0.500000 0.866025i
\(550\) 0 0
\(551\) 2.00000i 2.00000i
\(552\) 0 0
\(553\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(554\) 0 0
\(555\) 1.00000 1.00000
\(556\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(557\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.00000i 1.00000i
\(561\) 1.00000i 1.00000i
\(562\) 0 0
\(563\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 1.00000 1.00000
\(565\) −0.500000 0.866025i −0.500000 0.866025i
\(566\) 0 0
\(567\) 0.500000 0.866025i 0.500000 0.866025i
\(568\) 0 0
\(569\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(573\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.500000 0.866025i
\(577\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0 0
\(579\) 1.00000i 1.00000i
\(580\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(581\) −0.866025 0.500000i −0.866025 0.500000i
\(582\) 0 0
\(583\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(584\) 0 0
\(585\) 0.866025 0.500000i 0.866025 0.500000i
\(586\) 0 0
\(587\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0.866025 0.500000i 0.866025 0.500000i
\(589\) 0.500000 0.866025i 0.500000 0.866025i
\(590\) 0 0
\(591\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(592\) −0.500000 0.866025i −0.500000 0.866025i
\(593\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) −0.500000 0.866025i −0.500000 0.866025i
\(596\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(597\) 1.00000i 1.00000i
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 0 0
\(609\) 1.00000 1.73205i 1.00000 1.73205i
\(610\) 0 0
\(611\) 1.00000i 1.00000i
\(612\) 1.00000i 1.00000i
\(613\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0 0
\(615\) 1.00000i 1.00000i
\(616\) 0 0
\(617\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(620\) 1.00000i 1.00000i
\(621\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(622\) 0 0
\(623\) 0 0
\(624\) −0.866025 0.500000i −0.866025 0.500000i
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) −1.00000 −1.00000
\(628\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(629\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(630\) 0 0
\(631\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.866025 0.500000i 0.866025 0.500000i
\(636\) 0.500000 0.866025i 0.500000 0.866025i
\(637\) −0.500000 0.866025i −0.500000 0.866025i
\(638\) 0 0
\(639\) 0.866025 0.500000i 0.866025 0.500000i
\(640\) 0 0
\(641\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(642\) 0 0
\(643\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(644\) 1.00000i 1.00000i
\(645\) 0 0
\(646\) 0 0
\(647\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(650\) 0 0
\(651\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(652\) 0 0
\(653\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(657\) −0.500000 0.866025i −0.500000 0.866025i
\(658\) 0 0
\(659\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(661\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(662\) 0 0
\(663\) 1.00000 1.00000
\(664\) 0 0
\(665\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(666\) 0 0
\(667\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(668\) 1.00000i 1.00000i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(684\) 1.00000 1.00000
\(685\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(686\) 0 0
\(687\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(688\) 0 0
\(689\) −0.866025 0.500000i −0.866025 0.500000i
\(690\) 0 0
\(691\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(694\) 0 0
\(695\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(696\) 0 0
\(697\) 0.500000 0.866025i 0.500000 0.866025i
\(698\) 0 0
\(699\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(700\) 0 0
\(701\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(702\) 0 0
\(703\) 0.500000 0.866025i 0.500000 0.866025i
\(704\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(705\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(706\) 0 0
\(707\) 1.00000i 1.00000i
\(708\) 0.500000 0.866025i 0.500000 0.866025i
\(709\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0.500000 0.866025i 0.500000 0.866025i
\(712\) 0 0
\(713\) 1.00000i 1.00000i
\(714\) 0 0
\(715\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(716\) 1.00000i 1.00000i
\(717\) 0.500000 0.866025i 0.500000 0.866025i
\(718\) 0 0
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0.866025 0.500000i 0.866025 0.500000i
\(721\) 0.500000 0.866025i 0.500000 0.866025i
\(722\) 0 0
\(723\) 0 0
\(724\) −1.00000 −1.00000
\(725\) 0 0
\(726\) 0 0
\(727\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −0.866025 0.500000i −0.866025 0.500000i
\(733\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 1.00000 1.00000
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(740\) 1.00000i 1.00000i
\(741\) 1.00000i 1.00000i
\(742\) 0 0
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(746\) 0 0
\(747\) 1.00000i 1.00000i
\(748\) −1.00000 −1.00000
\(749\) 0.866025 0.500000i 0.866025 0.500000i
\(750\) 0 0
\(751\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(752\) 1.00000i 1.00000i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.866025 0.500000i −0.866025 0.500000i
\(757\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(764\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(765\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(766\) 0 0
\(767\) −0.866025 0.500000i −0.866025 0.500000i
\(768\) −0.866025 0.500000i −0.866025 0.500000i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000 1.00000
\(773\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(778\) 0 0
\(779\) −0.866025 0.500000i −0.866025 0.500000i
\(780\) −0.500000 0.866025i −0.500000 0.866025i
\(781\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(782\) 0 0
\(783\) −2.00000 −2.00000
\(784\) −0.500000 0.866025i −0.500000 0.866025i
\(785\) 1.00000i 1.00000i
\(786\) 0 0
\(787\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(788\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(789\) 1.00000 1.73205i 1.00000 1.73205i
\(790\) 0 0
\(791\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(792\) 0 0
\(793\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(794\) 0 0
\(795\) 0.866025 0.500000i 0.866025 0.500000i
\(796\) 1.00000 1.00000
\(797\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.866025 0.500000i 0.866025 0.500000i
\(804\) 0 0
\(805\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(806\) 0 0
\(807\) −1.00000 −1.00000
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(812\) −1.73205 1.00000i −1.73205 1.00000i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000 1.00000
\(817\) 0 0
\(818\) 0 0
\(819\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(820\) −1.00000 −1.00000
\(821\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(822\) 0 0
\(823\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(828\) 0.866025 0.500000i 0.866025 0.500000i
\(829\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(833\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(834\) 0 0
\(835\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(836\) 1.00000i 1.00000i
\(837\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(838\) 0 0
\(839\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0 0
\(841\) −3.00000 −3.00000
\(842\) 0 0
\(843\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −0.866025 0.500000i −0.866025 0.500000i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.00000i 1.00000i
\(852\) −0.500000 0.866025i −0.500000 0.866025i
\(853\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(856\) 0 0
\(857\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(862\) 0 0
\(863\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(869\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.866025 0.500000i 0.866025 0.500000i
\(876\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(877\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −1.00000 −1.00000
\(880\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(881\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(884\) 1.00000i 1.00000i
\(885\) 0.866025 0.500000i 0.866025 0.500000i
\(886\) 0 0
\(887\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(890\) 0 0
\(891\) 1.00000i 1.00000i
\(892\) 0 0
\(893\) 0.866025 0.500000i 0.866025 0.500000i
\(894\) 0 0
\(895\) 0.500000 0.866025i 0.500000 0.866025i
\(896\) 0 0
\(897\) −0.500000 0.866025i −0.500000 0.866025i
\(898\) 0 0
\(899\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(900\) 0 0
\(901\) 1.00000 1.00000
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.866025 0.500000i −0.866025 0.500000i
\(906\) 0 0
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 1.00000i 1.00000i
\(913\) −1.00000 −1.00000
\(914\) 0 0
\(915\) −0.500000 0.866025i −0.500000 0.866025i
\(916\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(924\) 0.500000 0.866025i 0.500000 0.866025i
\(925\) 0 0
\(926\) 0 0
\(927\) −1.00000 −1.00000
\(928\) 0 0
\(929\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 0.500000 0.866025i 0.500000 0.866025i
\(932\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(933\) −0.500000 0.866025i −0.500000 0.866025i
\(934\) 0 0
\(935\) −0.866025 0.500000i −0.866025 0.500000i
\(936\) 0 0
\(937\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.500000 0.866025i 0.500000 0.866025i
\(941\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) −1.00000 −1.00000
\(944\) −0.866025 0.500000i −0.866025 0.500000i
\(945\) −0.500000 0.866025i −0.500000 0.866025i
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) −0.866025 0.500000i −0.866025 0.500000i
\(949\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(956\) −0.866025 0.500000i −0.866025 0.500000i
\(957\) 2.00000i 2.00000i
\(958\) 0 0
\(959\) 1.00000i 1.00000i
\(960\) −0.500000 0.866025i −0.500000 0.866025i
\(961\) 0 0
\(962\) 0 0
\(963\) −0.866025 0.500000i −0.866025 0.500000i
\(964\) 0 0
\(965\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(966\) 0 0
\(967\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(968\) 0 0
\(969\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 1.00000i 1.00000i
\(973\) 0.500000 0.866025i 0.500000 0.866025i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(977\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.00000i 1.00000i
\(981\) 0.500000 0.866025i 0.500000 0.866025i
\(982\) 0 0
\(983\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(984\) 0 0
\(985\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(986\) 0 0
\(987\) −1.00000 −1.00000
\(988\) −1.00000 −1.00000
\(989\) 0 0
\(990\) 0 0
\(991\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(996\) 1.00000 1.00000
\(997\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 0.866025 + 0.500000i 0.866025 + 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 777.1.be.a.137.2 yes 4
3.2 odd 2 inner 777.1.be.a.137.1 yes 4
7.2 even 3 777.1.t.a.359.2 yes 4
21.2 odd 6 777.1.t.a.359.1 yes 4
37.10 even 3 777.1.t.a.158.2 yes 4
111.47 odd 6 777.1.t.a.158.1 4
259.121 even 3 inner 777.1.be.a.380.1 yes 4
777.380 odd 6 inner 777.1.be.a.380.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
777.1.t.a.158.1 4 111.47 odd 6
777.1.t.a.158.2 yes 4 37.10 even 3
777.1.t.a.359.1 yes 4 21.2 odd 6
777.1.t.a.359.2 yes 4 7.2 even 3
777.1.be.a.137.1 yes 4 3.2 odd 2 inner
777.1.be.a.137.2 yes 4 1.1 even 1 trivial
777.1.be.a.380.1 yes 4 259.121 even 3 inner
777.1.be.a.380.2 yes 4 777.380 odd 6 inner