Properties

Label 775.4.a.f
Level $775$
Weight $4$
Character orbit 775.a
Self dual yes
Analytic conductor $45.726$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,4,Mod(1,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 775.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-3,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7264802544\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 32x^{3} + 19x^{2} + 228x + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{4} - \beta_{3} + \beta_{2}) q^{3} + (\beta_{4} - 2 \beta_{3} + \beta_{2} + \cdots + 7) q^{4} + ( - \beta_{4} - \beta_{3} + 3 \beta_{2} + \cdots + 4) q^{6} + ( - \beta_{3} + 3 \beta_{2} + \beta_1 - 1) q^{7}+ \cdots + ( - 119 \beta_{4} + 83 \beta_{3} + \cdots + 700) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} - 4 q^{3} + 29 q^{4} + 24 q^{6} - 9 q^{7} - 12 q^{8} + 29 q^{9} + 88 q^{11} + 190 q^{12} + 28 q^{13} + 3 q^{14} + 9 q^{16} - 138 q^{17} + 225 q^{18} - 43 q^{19} + 170 q^{21} + 40 q^{22} - 206 q^{23}+ \cdots + 3988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 32x^{3} + 19x^{2} + 228x + 172 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 16\nu^{3} - 56\nu^{2} - 365\nu + 106 ) / 104 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{4} + 24\nu^{3} + 72\nu^{2} - 359\nu - 10 ) / 104 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{4} + 32\nu^{3} + 304\nu^{2} - 457\nu - 1582 ) / 104 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 2\beta_{3} + \beta_{2} + \beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} - 3\beta_{3} + 7\beta_{2} + 23\beta _1 + 23 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 24\beta_{4} - 64\beta_{3} + 48\beta_{2} + 53\beta _1 + 310 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.18275
−2.15912
−0.929505
3.63578
5.63560
−5.18275 2.52950 18.8609 0 −13.1098 −6.14402 −56.2891 −20.6016 0
1.2 −3.15912 0.0377000 1.98006 0 −0.119099 3.86558 19.0177 −26.9986 0
1.3 −1.92951 −8.71716 −4.27701 0 16.8198 5.68067 23.6886 48.9889 0
1.4 2.63578 −5.22185 −1.05267 0 −13.7637 −25.9132 −23.8608 0.267763 0
1.5 4.63560 7.37181 13.4888 0 34.1727 13.5109 25.4436 27.3436 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 775.4.a.f 5
5.b even 2 1 31.4.a.b 5
15.d odd 2 1 279.4.a.h 5
20.d odd 2 1 496.4.a.i 5
35.c odd 2 1 1519.4.a.c 5
40.e odd 2 1 1984.4.a.s 5
40.f even 2 1 1984.4.a.r 5
155.c odd 2 1 961.4.a.e 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.4.a.b 5 5.b even 2 1
279.4.a.h 5 15.d odd 2 1
496.4.a.i 5 20.d odd 2 1
775.4.a.f 5 1.a even 1 1 trivial
961.4.a.e 5 155.c odd 2 1
1519.4.a.c 5 35.c odd 2 1
1984.4.a.r 5 40.f even 2 1
1984.4.a.s 5 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(775))\):

\( T_{2}^{5} + 3T_{2}^{4} - 30T_{2}^{3} - 79T_{2}^{2} + 167T_{2} + 386 \) Copy content Toggle raw display
\( T_{3}^{5} + 4T_{3}^{4} - 74T_{3}^{3} - 188T_{3}^{2} + 856T_{3} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 3 T^{4} + \cdots + 386 \) Copy content Toggle raw display
$3$ \( T^{5} + 4 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 9 T^{4} + \cdots - 47236 \) Copy content Toggle raw display
$11$ \( T^{5} - 88 T^{4} + \cdots - 76793648 \) Copy content Toggle raw display
$13$ \( T^{5} - 28 T^{4} + \cdots - 85935616 \) Copy content Toggle raw display
$17$ \( T^{5} + 138 T^{4} + \cdots - 845793728 \) Copy content Toggle raw display
$19$ \( T^{5} + 43 T^{4} + \cdots - 885299824 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 1477525504 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 6492808496 \) Copy content Toggle raw display
$31$ \( (T + 31)^{5} \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 315180705232 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 19192433688 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 154176970896 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 197408306432 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 79406336128 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 19804492743336 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 922927740352 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 22262005628928 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 69573929276736 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 1852644259168 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 59985571648 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 657431598704 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 68090734165536 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 31148274036888 \) Copy content Toggle raw display
show more
show less