Properties

Label 1984.4.a.r
Level $1984$
Weight $4$
Character orbit 1984.a
Self dual yes
Analytic conductor $117.060$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,4,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-4,0,-15,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(117.059789451\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 32x^{3} + 19x^{2} + 228x + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{3} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots - 3) q^{5} + ( - \beta_{4} - \beta_{3} + \beta_{2} + 2) q^{7} + (3 \beta_{4} - 3 \beta_{3} + 3 \beta_1 + 7) q^{9} + ( - 5 \beta_{4} - 2 \beta_{2} + \cdots - 18) q^{11}+ \cdots + ( - 65 \beta_{4} + 54 \beta_{3} + \cdots - 822) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{3} - 15 q^{5} + 9 q^{7} + 29 q^{9} - 88 q^{11} + 28 q^{13} - 130 q^{15} + 138 q^{17} + 43 q^{19} - 170 q^{21} + 206 q^{23} + 466 q^{25} - 172 q^{27} - 474 q^{29} - 155 q^{31} - 236 q^{33} + 79 q^{35}+ \cdots - 3988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 32x^{3} + 19x^{2} + 228x + 172 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 10\nu^{3} - 4\nu^{2} + 155\nu - 24 ) / 26 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{4} + 24\nu^{3} + 176\nu^{2} - 463\nu - 1362 ) / 104 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17\nu^{4} - 40\nu^{3} - 432\nu^{2} + 451\nu + 1698 ) / 104 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 5\beta_{3} + 2\beta_{2} + 3\beta _1 + 54 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{4} + 7\beta_{3} - 4\beta_{2} + 21\beta _1 + 60 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 32\beta_{4} + 80\beta_{3} + 16\beta_{2} + 61\beta _1 + 601 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.929505
3.63578
−2.15912
−4.18275
5.63560
0 −8.71716 0 10.4546 0 −5.68067 0 48.9889 0
1.2 0 −5.22185 0 −10.8334 0 25.9132 0 0.267763 0
1.3 0 0.0377000 0 −13.5012 0 −3.86558 0 −26.9986 0
1.4 0 2.52950 0 17.8984 0 6.14402 0 −20.6016 0
1.5 0 7.37181 0 −19.0185 0 −13.5109 0 27.3436 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1984.4.a.r 5
4.b odd 2 1 1984.4.a.s 5
8.b even 2 1 31.4.a.b 5
8.d odd 2 1 496.4.a.i 5
24.h odd 2 1 279.4.a.h 5
40.f even 2 1 775.4.a.f 5
56.h odd 2 1 1519.4.a.c 5
248.g odd 2 1 961.4.a.e 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.4.a.b 5 8.b even 2 1
279.4.a.h 5 24.h odd 2 1
496.4.a.i 5 8.d odd 2 1
775.4.a.f 5 40.f even 2 1
961.4.a.e 5 248.g odd 2 1
1519.4.a.c 5 56.h odd 2 1
1984.4.a.r 5 1.a even 1 1 trivial
1984.4.a.s 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 4T_{3}^{4} - 74T_{3}^{3} - 188T_{3}^{2} + 856T_{3} - 32 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1984))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 4 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$5$ \( T^{5} + 15 T^{4} + \cdots + 520516 \) Copy content Toggle raw display
$7$ \( T^{5} - 9 T^{4} + \cdots + 47236 \) Copy content Toggle raw display
$11$ \( T^{5} + 88 T^{4} + \cdots + 76793648 \) Copy content Toggle raw display
$13$ \( T^{5} - 28 T^{4} + \cdots - 85935616 \) Copy content Toggle raw display
$17$ \( T^{5} - 138 T^{4} + \cdots + 845793728 \) Copy content Toggle raw display
$19$ \( T^{5} - 43 T^{4} + \cdots + 885299824 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 1477525504 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 6492808496 \) Copy content Toggle raw display
$31$ \( (T + 31)^{5} \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 315180705232 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 19192433688 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 154176970896 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 197408306432 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 79406336128 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 19804492743336 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 922927740352 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 22262005628928 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 69573929276736 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 1852644259168 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 59985571648 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 657431598704 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 68090734165536 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 31148274036888 \) Copy content Toggle raw display
show more
show less