Properties

Label 775.2.ck.c.49.9
Level $775$
Weight $2$
Character 775.49
Analytic conductor $6.188$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 49.9
Character \(\chi\) \(=\) 775.49
Dual form 775.2.ck.c.174.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04097 + 1.43277i) q^{2} +(0.449533 + 1.00967i) q^{3} +(-0.351182 + 1.08083i) q^{4} +(-0.978673 + 1.69511i) q^{6} +(1.31785 - 1.18660i) q^{7} +(1.45450 - 0.472596i) q^{8} +(1.19004 - 1.32168i) q^{9} +(5.80707 - 1.23433i) q^{11} +(-1.24914 + 0.131290i) q^{12} +(-5.32437 - 0.559613i) q^{13} +(3.07197 + 0.652967i) q^{14} +(4.03002 + 2.92798i) q^{16} +(-1.16563 + 5.48385i) q^{17} +(3.13246 + 0.329234i) q^{18} +(-0.236861 - 2.25358i) q^{19} +(1.79049 + 0.797178i) q^{21} +(7.81349 + 7.03529i) q^{22} +(2.37325 - 0.771116i) q^{23} +(1.13101 + 1.25611i) q^{24} +(-4.74070 - 8.21114i) q^{26} +(5.02280 + 1.63201i) q^{27} +(0.819703 + 1.84108i) q^{28} +(-6.80728 + 4.94578i) q^{29} +(-1.13585 - 5.45067i) q^{31} +5.76333i q^{32} +(3.85673 + 5.30834i) q^{33} +(-9.07049 + 4.03844i) q^{34} +(1.01058 + 1.75038i) q^{36} +(-9.97386 - 5.75841i) q^{37} +(2.98230 - 2.68528i) q^{38} +(-1.82846 - 5.62741i) q^{39} +(-0.000912316 - 0.000406189i) q^{41} +(0.721672 + 3.39520i) q^{42} +(-0.903210 + 0.0949312i) q^{43} +(-0.705239 + 6.70990i) q^{44} +(3.57531 + 2.59762i) q^{46} +(-6.53766 + 8.99832i) q^{47} +(-1.14466 + 5.38521i) q^{48} +(-0.402983 + 3.83413i) q^{49} +(-6.06086 + 1.28828i) q^{51} +(2.47467 - 5.55819i) q^{52} +(3.29826 + 2.96977i) q^{53} +(2.89028 + 8.89538i) q^{54} +(1.35603 - 2.34872i) q^{56} +(2.16889 - 1.25221i) q^{57} +(-14.1723 - 4.60487i) q^{58} +(3.45105 - 1.53651i) q^{59} -10.8733 q^{61} +(6.62719 - 7.30139i) q^{62} -3.15388i q^{63} +(-0.197490 + 0.143485i) q^{64} +(-3.59089 + 11.0516i) q^{66} +(6.83038 - 3.94352i) q^{67} +(-5.51774 - 3.18567i) q^{68} +(1.84543 + 2.04955i) q^{69} +(-0.0413227 + 0.0458935i) q^{71} +(1.10630 - 2.48479i) q^{72} +(0.731122 + 3.43966i) q^{73} +(-2.13199 - 20.2846i) q^{74} +(2.51891 + 0.535412i) q^{76} +(6.18820 - 8.51733i) q^{77} +(6.15942 - 8.47771i) q^{78} +(-4.17103 - 0.886580i) q^{79} +(0.0524211 + 0.498753i) q^{81} +(-0.000367716 - 0.00172997i) q^{82} +(-1.05722 + 2.37455i) q^{83} +(-1.49040 + 1.65525i) q^{84} +(-1.07623 - 1.19527i) q^{86} +(-8.05369 - 4.64980i) q^{87} +(7.86304 - 4.53973i) q^{88} +(2.12519 - 6.54066i) q^{89} +(-7.68077 + 5.58040i) q^{91} +2.83588i q^{92} +(4.99277 - 3.59709i) q^{93} -19.6980 q^{94} +(-5.81905 + 2.59081i) q^{96} +(4.59184 + 1.49198i) q^{97} +(-5.91292 + 3.41382i) q^{98} +(5.27927 - 9.14396i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 20 q^{4} + 8 q^{6} - 4 q^{9} - 56 q^{11} + 12 q^{14} + 16 q^{16} + 26 q^{19} - 16 q^{21} + 164 q^{24} + 64 q^{26} - 84 q^{29} - 20 q^{31} - 64 q^{34} - 26 q^{36} - 74 q^{39} + 72 q^{41} + 112 q^{44}+ \cdots - 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04097 + 1.43277i 0.736076 + 1.01312i 0.998835 + 0.0482603i \(0.0153677\pi\)
−0.262759 + 0.964862i \(0.584632\pi\)
\(3\) 0.449533 + 1.00967i 0.259538 + 0.582932i 0.995571 0.0940138i \(-0.0299698\pi\)
−0.736033 + 0.676946i \(0.763303\pi\)
\(4\) −0.351182 + 1.08083i −0.175591 + 0.540413i
\(5\) 0 0
\(6\) −0.978673 + 1.69511i −0.399541 + 0.692026i
\(7\) 1.31785 1.18660i 0.498101 0.448493i −0.381385 0.924416i \(-0.624553\pi\)
0.879487 + 0.475924i \(0.157886\pi\)
\(8\) 1.45450 0.472596i 0.514243 0.167088i
\(9\) 1.19004 1.32168i 0.396681 0.440559i
\(10\) 0 0
\(11\) 5.80707 1.23433i 1.75090 0.372164i 0.782708 0.622389i \(-0.213838\pi\)
0.968188 + 0.250224i \(0.0805044\pi\)
\(12\) −1.24914 + 0.131290i −0.360597 + 0.0379002i
\(13\) −5.32437 0.559613i −1.47671 0.155209i −0.668330 0.743865i \(-0.732991\pi\)
−0.808384 + 0.588656i \(0.799657\pi\)
\(14\) 3.07197 + 0.652967i 0.821018 + 0.174513i
\(15\) 0 0
\(16\) 4.03002 + 2.92798i 1.00751 + 0.731996i
\(17\) −1.16563 + 5.48385i −0.282706 + 1.33003i 0.575953 + 0.817483i \(0.304631\pi\)
−0.858659 + 0.512547i \(0.828702\pi\)
\(18\) 3.13246 + 0.329234i 0.738327 + 0.0776013i
\(19\) −0.236861 2.25358i −0.0543397 0.517008i −0.987508 0.157568i \(-0.949635\pi\)
0.933168 0.359439i \(-0.117032\pi\)
\(20\) 0 0
\(21\) 1.79049 + 0.797178i 0.390717 + 0.173958i
\(22\) 7.81349 + 7.03529i 1.66584 + 1.49993i
\(23\) 2.37325 0.771116i 0.494857 0.160789i −0.0509474 0.998701i \(-0.516224\pi\)
0.545805 + 0.837912i \(0.316224\pi\)
\(24\) 1.13101 + 1.25611i 0.230867 + 0.256403i
\(25\) 0 0
\(26\) −4.74070 8.21114i −0.929728 1.61034i
\(27\) 5.02280 + 1.63201i 0.966637 + 0.314080i
\(28\) 0.819703 + 1.84108i 0.154909 + 0.347932i
\(29\) −6.80728 + 4.94578i −1.26408 + 0.918408i −0.998950 0.0458051i \(-0.985415\pi\)
−0.265129 + 0.964213i \(0.585415\pi\)
\(30\) 0 0
\(31\) −1.13585 5.45067i −0.204004 0.978970i
\(32\) 5.76333i 1.01882i
\(33\) 3.85673 + 5.30834i 0.671371 + 0.924063i
\(34\) −9.07049 + 4.03844i −1.55558 + 0.692587i
\(35\) 0 0
\(36\) 1.01058 + 1.75038i 0.168430 + 0.291730i
\(37\) −9.97386 5.75841i −1.63969 0.946676i −0.980939 0.194317i \(-0.937751\pi\)
−0.658753 0.752359i \(-0.728916\pi\)
\(38\) 2.98230 2.68528i 0.483794 0.435610i
\(39\) −1.82846 5.62741i −0.292787 0.901106i
\(40\) 0 0
\(41\) −0.000912316 0 0.000406189i −0.000142480 0 6.34361e-5i 0.406665 0.913577i \(-0.366691\pi\)
−0.406808 + 0.913514i \(0.633358\pi\)
\(42\) 0.721672 + 3.39520i 0.111356 + 0.523891i
\(43\) −0.903210 + 0.0949312i −0.137738 + 0.0144769i −0.173147 0.984896i \(-0.555393\pi\)
0.0354084 + 0.999373i \(0.488727\pi\)
\(44\) −0.705239 + 6.70990i −0.106319 + 1.01156i
\(45\) 0 0
\(46\) 3.57531 + 2.59762i 0.527151 + 0.382998i
\(47\) −6.53766 + 8.99832i −0.953616 + 1.31254i −0.00371323 + 0.999993i \(0.501182\pi\)
−0.949903 + 0.312546i \(0.898818\pi\)
\(48\) −1.14466 + 5.38521i −0.165218 + 0.777288i
\(49\) −0.402983 + 3.83413i −0.0575690 + 0.547732i
\(50\) 0 0
\(51\) −6.06086 + 1.28828i −0.848690 + 0.180395i
\(52\) 2.47467 5.55819i 0.343174 0.770782i
\(53\) 3.29826 + 2.96977i 0.453051 + 0.407929i 0.863812 0.503814i \(-0.168070\pi\)
−0.410761 + 0.911743i \(0.634737\pi\)
\(54\) 2.89028 + 8.89538i 0.393318 + 1.21051i
\(55\) 0 0
\(56\) 1.35603 2.34872i 0.181208 0.313861i
\(57\) 2.16889 1.25221i 0.287277 0.165860i
\(58\) −14.1723 4.60487i −1.86092 0.604649i
\(59\) 3.45105 1.53651i 0.449289 0.200036i −0.169603 0.985512i \(-0.554249\pi\)
0.618892 + 0.785476i \(0.287582\pi\)
\(60\) 0 0
\(61\) −10.8733 −1.39219 −0.696093 0.717952i \(-0.745080\pi\)
−0.696093 + 0.717952i \(0.745080\pi\)
\(62\) 6.62719 7.30139i 0.841653 0.927278i
\(63\) 3.15388i 0.397351i
\(64\) −0.197490 + 0.143485i −0.0246863 + 0.0179356i
\(65\) 0 0
\(66\) −3.59089 + 11.0516i −0.442008 + 1.36036i
\(67\) 6.83038 3.94352i 0.834464 0.481778i −0.0209149 0.999781i \(-0.506658\pi\)
0.855379 + 0.518003i \(0.173325\pi\)
\(68\) −5.51774 3.18567i −0.669125 0.386319i
\(69\) 1.84543 + 2.04955i 0.222163 + 0.246737i
\(70\) 0 0
\(71\) −0.0413227 + 0.0458935i −0.00490411 + 0.00544656i −0.745592 0.666403i \(-0.767833\pi\)
0.740688 + 0.671849i \(0.234500\pi\)
\(72\) 1.10630 2.48479i 0.130379 0.292835i
\(73\) 0.731122 + 3.43966i 0.0855714 + 0.402582i 0.999998 0.00217085i \(-0.000691004\pi\)
−0.914426 + 0.404753i \(0.867358\pi\)
\(74\) −2.13199 20.2846i −0.247839 2.35803i
\(75\) 0 0
\(76\) 2.51891 + 0.535412i 0.288939 + 0.0614160i
\(77\) 6.18820 8.51733i 0.705211 0.970639i
\(78\) 6.15942 8.47771i 0.697417 0.959912i
\(79\) −4.17103 0.886580i −0.469278 0.0997480i −0.0327976 0.999462i \(-0.510442\pi\)
−0.436480 + 0.899714i \(0.643775\pi\)
\(80\) 0 0
\(81\) 0.0524211 + 0.498753i 0.00582456 + 0.0554170i
\(82\) −0.000367716 0.00172997i −4.06075e−5 0.000191043i
\(83\) −1.05722 + 2.37455i −0.116045 + 0.260641i −0.962225 0.272257i \(-0.912230\pi\)
0.846180 + 0.532897i \(0.178897\pi\)
\(84\) −1.49040 + 1.65525i −0.162616 + 0.180603i
\(85\) 0 0
\(86\) −1.07623 1.19527i −0.116053 0.128890i
\(87\) −8.05369 4.64980i −0.863446 0.498511i
\(88\) 7.86304 4.53973i 0.838203 0.483937i
\(89\) 2.12519 6.54066i 0.225269 0.693308i −0.772995 0.634413i \(-0.781242\pi\)
0.998264 0.0588956i \(-0.0187579\pi\)
\(90\) 0 0
\(91\) −7.68077 + 5.58040i −0.805163 + 0.584985i
\(92\) 2.83588i 0.295660i
\(93\) 4.99277 3.59709i 0.517726 0.373001i
\(94\) −19.6980 −2.03170
\(95\) 0 0
\(96\) −5.81905 + 2.59081i −0.593905 + 0.264423i
\(97\) 4.59184 + 1.49198i 0.466231 + 0.151487i 0.532706 0.846301i \(-0.321175\pi\)
−0.0664751 + 0.997788i \(0.521175\pi\)
\(98\) −5.91292 + 3.41382i −0.597295 + 0.344848i
\(99\) 5.27927 9.14396i 0.530587 0.919003i
\(100\) 0 0
\(101\) −0.784682 2.41500i −0.0780788 0.240302i 0.904397 0.426692i \(-0.140321\pi\)
−0.982476 + 0.186390i \(0.940321\pi\)
\(102\) −8.15497 7.34277i −0.807462 0.727042i
\(103\) −1.38038 + 3.10039i −0.136013 + 0.305490i −0.968692 0.248266i \(-0.920139\pi\)
0.832679 + 0.553756i \(0.186806\pi\)
\(104\) −8.00876 + 1.70232i −0.785324 + 0.166926i
\(105\) 0 0
\(106\) −0.821610 + 7.81709i −0.0798018 + 0.759263i
\(107\) −0.845812 + 3.97923i −0.0817678 + 0.384687i −0.999934 0.0115088i \(-0.996337\pi\)
0.918166 + 0.396196i \(0.129670\pi\)
\(108\) −3.52783 + 4.85564i −0.339465 + 0.467234i
\(109\) 9.56853 + 6.95194i 0.916499 + 0.665875i 0.942650 0.333783i \(-0.108325\pi\)
−0.0261514 + 0.999658i \(0.508325\pi\)
\(110\) 0 0
\(111\) 1.33050 12.6589i 0.126286 1.20153i
\(112\) 8.78532 0.923374i 0.830135 0.0872507i
\(113\) 0.0792398 + 0.372794i 0.00745425 + 0.0350695i 0.981718 0.190344i \(-0.0609602\pi\)
−0.974263 + 0.225413i \(0.927627\pi\)
\(114\) 4.05188 + 1.80402i 0.379494 + 0.168962i
\(115\) 0 0
\(116\) −2.95493 9.09435i −0.274359 0.844390i
\(117\) −7.07585 + 6.37112i −0.654163 + 0.589011i
\(118\) 5.79390 + 3.34511i 0.533372 + 0.307942i
\(119\) 4.97101 + 8.61004i 0.455692 + 0.789281i
\(120\) 0 0
\(121\) 22.1494 9.86157i 2.01359 0.896506i
\(122\) −11.3188 15.5790i −1.02475 1.41045i
\(123\) 0.00110373i 9.95201e-5i
\(124\) 6.29012 + 0.686524i 0.564870 + 0.0616517i
\(125\) 0 0
\(126\) 4.51878 3.28309i 0.402565 0.292481i
\(127\) 0.866326 + 1.94580i 0.0768740 + 0.172662i 0.947894 0.318585i \(-0.103208\pi\)
−0.871020 + 0.491247i \(0.836541\pi\)
\(128\) 10.5513 + 3.42834i 0.932616 + 0.303025i
\(129\) −0.501872 0.869268i −0.0441874 0.0765348i
\(130\) 0 0
\(131\) −1.83623 2.03934i −0.160432 0.178178i 0.657569 0.753394i \(-0.271585\pi\)
−0.818002 + 0.575216i \(0.804918\pi\)
\(132\) −7.09180 + 2.30427i −0.617262 + 0.200561i
\(133\) −2.98625 2.68883i −0.258941 0.233151i
\(134\) 12.7604 + 5.68128i 1.10233 + 0.490788i
\(135\) 0 0
\(136\) 0.896238 + 8.52714i 0.0768518 + 0.731196i
\(137\) −6.38748 0.671351i −0.545719 0.0573574i −0.172342 0.985037i \(-0.555134\pi\)
−0.373377 + 0.927680i \(0.621800\pi\)
\(138\) −1.01551 + 4.77760i −0.0864459 + 0.406696i
\(139\) −8.70730 6.32622i −0.738544 0.536583i 0.153711 0.988116i \(-0.450877\pi\)
−0.892255 + 0.451533i \(0.850877\pi\)
\(140\) 0 0
\(141\) −12.0242 2.55582i −1.01262 0.215239i
\(142\) −0.108771 0.0114323i −0.00912783 0.000959373i
\(143\) −31.6097 + 3.32231i −2.64334 + 0.277826i
\(144\) 8.66574 1.84196i 0.722145 0.153497i
\(145\) 0 0
\(146\) −4.16717 + 4.62811i −0.344877 + 0.383025i
\(147\) −4.05235 + 1.31669i −0.334232 + 0.108599i
\(148\) 9.72648 8.75776i 0.799511 0.719883i
\(149\) 6.00653 10.4036i 0.492074 0.852297i −0.507884 0.861425i \(-0.669572\pi\)
0.999958 + 0.00912829i \(0.00290566\pi\)
\(150\) 0 0
\(151\) −4.88874 + 15.0460i −0.397840 + 1.22443i 0.528887 + 0.848692i \(0.322609\pi\)
−0.926727 + 0.375734i \(0.877391\pi\)
\(152\) −1.40955 3.16590i −0.114330 0.256788i
\(153\) 5.86073 + 8.06660i 0.473812 + 0.652146i
\(154\) 18.6451 1.50246
\(155\) 0 0
\(156\) 6.72437 0.538381
\(157\) −11.0944 15.2702i −0.885431 1.21869i −0.974887 0.222700i \(-0.928513\pi\)
0.0894560 0.995991i \(-0.471487\pi\)
\(158\) −3.07165 6.89903i −0.244367 0.548858i
\(159\) −1.51580 + 4.66516i −0.120211 + 0.369971i
\(160\) 0 0
\(161\) 2.21259 3.83232i 0.174376 0.302029i
\(162\) −0.660030 + 0.594294i −0.0518569 + 0.0466921i
\(163\) 14.0692 4.57135i 1.10198 0.358056i 0.299117 0.954216i \(-0.403308\pi\)
0.802865 + 0.596161i \(0.203308\pi\)
\(164\) 0.000759409 0 0.000843409i 5.92998e−5 0 6.58591e-5i
\(165\) 0 0
\(166\) −4.50271 + 0.957081i −0.349478 + 0.0742839i
\(167\) 10.1319 1.06491i 0.784033 0.0824052i 0.295951 0.955203i \(-0.404363\pi\)
0.488082 + 0.872798i \(0.337697\pi\)
\(168\) 2.98101 + 0.313317i 0.229990 + 0.0241729i
\(169\) 15.3198 + 3.25632i 1.17845 + 0.250486i
\(170\) 0 0
\(171\) −3.26038 2.36881i −0.249328 0.181147i
\(172\) 0.214587 1.00955i 0.0163621 0.0769776i
\(173\) −15.1833 1.59583i −1.15437 0.121329i −0.492061 0.870561i \(-0.663756\pi\)
−0.662308 + 0.749232i \(0.730423\pi\)
\(174\) −1.72154 16.3794i −0.130510 1.24172i
\(175\) 0 0
\(176\) 27.0167 + 12.0286i 2.03646 + 0.906691i
\(177\) 3.10272 + 2.79371i 0.233215 + 0.209988i
\(178\) 11.5835 3.76371i 0.868221 0.282102i
\(179\) −9.75887 10.8383i −0.729412 0.810094i 0.258352 0.966051i \(-0.416821\pi\)
−0.987764 + 0.155957i \(0.950154\pi\)
\(180\) 0 0
\(181\) −1.24860 2.16265i −0.0928081 0.160748i 0.815884 0.578216i \(-0.196251\pi\)
−0.908692 + 0.417468i \(0.862918\pi\)
\(182\) −15.9909 5.19575i −1.18532 0.385135i
\(183\) −4.88792 10.9784i −0.361325 0.811550i
\(184\) 3.08747 2.24318i 0.227611 0.165369i
\(185\) 0 0
\(186\) 10.3511 + 3.40904i 0.758981 + 0.249963i
\(187\) 33.2839i 2.43396i
\(188\) −7.42971 10.2261i −0.541867 0.745817i
\(189\) 8.55584 3.80931i 0.622346 0.277086i
\(190\) 0 0
\(191\) −10.3990 18.0116i −0.752445 1.30327i −0.946635 0.322308i \(-0.895541\pi\)
0.194190 0.980964i \(-0.437792\pi\)
\(192\) −0.233651 0.134898i −0.0168623 0.00973545i
\(193\) −2.88096 + 2.59402i −0.207376 + 0.186722i −0.766273 0.642515i \(-0.777891\pi\)
0.558898 + 0.829237i \(0.311224\pi\)
\(194\) 2.64230 + 8.13215i 0.189706 + 0.583855i
\(195\) 0 0
\(196\) −4.00251 1.78203i −0.285893 0.127288i
\(197\) −1.49971 7.05559i −0.106850 0.502690i −0.998728 0.0504146i \(-0.983946\pi\)
0.891878 0.452275i \(-0.149388\pi\)
\(198\) 18.5968 1.95460i 1.32161 0.138907i
\(199\) −1.31261 + 12.4887i −0.0930487 + 0.885299i 0.844057 + 0.536253i \(0.180161\pi\)
−0.937106 + 0.349046i \(0.886506\pi\)
\(200\) 0 0
\(201\) 7.05213 + 5.12367i 0.497419 + 0.361396i
\(202\) 2.64332 3.63821i 0.185983 0.255984i
\(203\) −3.10233 + 14.5953i −0.217741 + 1.02439i
\(204\) 0.736061 7.00316i 0.0515346 0.490319i
\(205\) 0 0
\(206\) −5.87908 + 1.24964i −0.409615 + 0.0870663i
\(207\) 1.80510 4.05433i 0.125463 0.281795i
\(208\) −19.8188 17.8449i −1.37419 1.23732i
\(209\) −4.15714 12.7943i −0.287555 0.885003i
\(210\) 0 0
\(211\) −3.50746 + 6.07510i −0.241463 + 0.418227i −0.961131 0.276092i \(-0.910961\pi\)
0.719668 + 0.694318i \(0.244294\pi\)
\(212\) −4.36810 + 2.52192i −0.300002 + 0.173206i
\(213\) −0.0649132 0.0210916i −0.00444778 0.00144517i
\(214\) −6.58179 + 2.93040i −0.449922 + 0.200318i
\(215\) 0 0
\(216\) 8.07694 0.549566
\(217\) −7.96465 5.83539i −0.540675 0.396132i
\(218\) 20.9463i 1.41866i
\(219\) −3.14425 + 2.28443i −0.212469 + 0.154368i
\(220\) 0 0
\(221\) 9.27507 28.5457i 0.623909 1.92019i
\(222\) 19.5223 11.2712i 1.31025 0.756473i
\(223\) −12.3675 7.14038i −0.828190 0.478155i 0.0250429 0.999686i \(-0.492028\pi\)
−0.853232 + 0.521531i \(0.825361\pi\)
\(224\) 6.83877 + 7.59522i 0.456935 + 0.507477i
\(225\) 0 0
\(226\) −0.451642 + 0.501599i −0.0300428 + 0.0333659i
\(227\) 0.158932 0.356968i 0.0105487 0.0236928i −0.908194 0.418549i \(-0.862539\pi\)
0.918743 + 0.394856i \(0.129206\pi\)
\(228\) 0.591747 + 2.78395i 0.0391894 + 0.184372i
\(229\) 1.30739 + 12.4390i 0.0863950 + 0.821994i 0.948822 + 0.315812i \(0.102277\pi\)
−0.862427 + 0.506182i \(0.831056\pi\)
\(230\) 0 0
\(231\) 11.3815 + 2.41921i 0.748846 + 0.159172i
\(232\) −7.56383 + 10.4107i −0.496590 + 0.683498i
\(233\) −0.0672991 + 0.0926292i −0.00440891 + 0.00606834i −0.811216 0.584747i \(-0.801194\pi\)
0.806807 + 0.590815i \(0.201194\pi\)
\(234\) −16.4941 3.50593i −1.07825 0.229190i
\(235\) 0 0
\(236\) 0.448751 + 4.26958i 0.0292112 + 0.277926i
\(237\) −0.979865 4.60990i −0.0636491 0.299445i
\(238\) −7.16155 + 16.0851i −0.464214 + 1.04264i
\(239\) 11.0072 12.2247i 0.711995 0.790751i −0.273242 0.961945i \(-0.588096\pi\)
0.985237 + 0.171194i \(0.0547626\pi\)
\(240\) 0 0
\(241\) 1.20643 + 1.33988i 0.0777130 + 0.0863090i 0.780747 0.624847i \(-0.214839\pi\)
−0.703034 + 0.711156i \(0.748172\pi\)
\(242\) 37.1862 + 21.4695i 2.39042 + 1.38011i
\(243\) 13.2412 7.64479i 0.849421 0.490413i
\(244\) 3.81851 11.7522i 0.244455 0.752355i
\(245\) 0 0
\(246\) 0.00158139 0.00114895i 0.000100826 7.32544e-5i
\(247\) 12.1315i 0.771906i
\(248\) −4.22805 7.39121i −0.268482 0.469342i
\(249\) −2.87276 −0.182054
\(250\) 0 0
\(251\) 12.9739 5.77637i 0.818907 0.364601i 0.0458588 0.998948i \(-0.485398\pi\)
0.773049 + 0.634347i \(0.218731\pi\)
\(252\) 3.40879 + 1.10758i 0.214734 + 0.0697713i
\(253\) 12.8298 7.40730i 0.806604 0.465693i
\(254\) −1.88607 + 3.26676i −0.118342 + 0.204975i
\(255\) 0 0
\(256\) 6.22247 + 19.1508i 0.388904 + 1.19692i
\(257\) −12.6635 11.4023i −0.789927 0.711253i 0.171839 0.985125i \(-0.445029\pi\)
−0.961766 + 0.273872i \(0.911696\pi\)
\(258\) 0.723028 1.62395i 0.0450138 0.101103i
\(259\) −19.9770 + 4.24624i −1.24131 + 0.263849i
\(260\) 0 0
\(261\) −1.56423 + 14.8827i −0.0968237 + 0.921216i
\(262\) 1.01045 4.75379i 0.0624258 0.293690i
\(263\) −2.54309 + 3.50027i −0.156814 + 0.215836i −0.880194 0.474614i \(-0.842588\pi\)
0.723380 + 0.690450i \(0.242588\pi\)
\(264\) 8.11831 + 5.89830i 0.499648 + 0.363015i
\(265\) 0 0
\(266\) 0.743886 7.07760i 0.0456106 0.433956i
\(267\) 7.55923 0.794507i 0.462618 0.0486231i
\(268\) 1.86356 + 8.76735i 0.113835 + 0.535551i
\(269\) 27.6116 + 12.2935i 1.68351 + 0.749546i 0.999804 + 0.0197870i \(0.00629880\pi\)
0.683704 + 0.729759i \(0.260368\pi\)
\(270\) 0 0
\(271\) 5.85583 + 18.0224i 0.355716 + 1.09478i 0.955593 + 0.294690i \(0.0952164\pi\)
−0.599876 + 0.800093i \(0.704784\pi\)
\(272\) −20.7541 + 18.6871i −1.25840 + 1.13307i
\(273\) −9.08711 5.24645i −0.549977 0.317529i
\(274\) −5.68727 9.85065i −0.343581 0.595099i
\(275\) 0 0
\(276\) −2.86329 + 1.27482i −0.172350 + 0.0767351i
\(277\) −3.13043 4.30867i −0.188090 0.258883i 0.704550 0.709654i \(-0.251149\pi\)
−0.892639 + 0.450771i \(0.851149\pi\)
\(278\) 19.0610i 1.14320i
\(279\) −8.55573 4.98531i −0.512218 0.298463i
\(280\) 0 0
\(281\) −21.2629 + 15.4484i −1.26844 + 0.921576i −0.999139 0.0414799i \(-0.986793\pi\)
−0.269301 + 0.963056i \(0.586793\pi\)
\(282\) −8.85492 19.8885i −0.527303 1.18434i
\(283\) −19.0755 6.19800i −1.13392 0.368433i −0.318856 0.947803i \(-0.603299\pi\)
−0.815064 + 0.579370i \(0.803299\pi\)
\(284\) −0.0350912 0.0607797i −0.00208228 0.00360661i
\(285\) 0 0
\(286\) −37.6648 41.8310i −2.22717 2.47352i
\(287\) −0.00168428 0.000547256i −9.94200e−5 3.23035e-5i
\(288\) 7.61726 + 6.85861i 0.448851 + 0.404148i
\(289\) −13.1837 5.86975i −0.775510 0.345279i
\(290\) 0 0
\(291\) 0.557780 + 5.30693i 0.0326977 + 0.311098i
\(292\) −3.97443 0.417730i −0.232586 0.0244458i
\(293\) 0.236573 1.11299i 0.0138208 0.0650216i −0.970697 0.240308i \(-0.922752\pi\)
0.984518 + 0.175286i \(0.0560850\pi\)
\(294\) −6.10488 4.43546i −0.356044 0.258681i
\(295\) 0 0
\(296\) −17.2284 3.66200i −1.00138 0.212850i
\(297\) 31.1821 + 3.27737i 1.80937 + 0.190173i
\(298\) 21.1586 2.22386i 1.22568 0.128825i
\(299\) −13.0676 + 2.77760i −0.755718 + 0.160633i
\(300\) 0 0
\(301\) −1.07765 + 1.19685i −0.0621149 + 0.0689855i
\(302\) −26.6465 + 8.65797i −1.53333 + 0.498210i
\(303\) 2.08561 1.87789i 0.119815 0.107882i
\(304\) 5.64390 9.77552i 0.323700 0.560665i
\(305\) 0 0
\(306\) −5.45675 + 16.7942i −0.311942 + 0.960058i
\(307\) 0.211399 + 0.474811i 0.0120652 + 0.0270989i 0.919478 0.393142i \(-0.128612\pi\)
−0.907412 + 0.420241i \(0.861945\pi\)
\(308\) 7.03257 + 9.67950i 0.400718 + 0.551541i
\(309\) −3.75089 −0.213381
\(310\) 0 0
\(311\) 28.6664 1.62552 0.812761 0.582598i \(-0.197964\pi\)
0.812761 + 0.582598i \(0.197964\pi\)
\(312\) −5.31898 7.32094i −0.301128 0.414467i
\(313\) −7.06589 15.8703i −0.399388 0.897040i −0.995555 0.0941796i \(-0.969977\pi\)
0.596167 0.802860i \(-0.296689\pi\)
\(314\) 10.3297 31.7915i 0.582938 1.79410i
\(315\) 0 0
\(316\) 2.42303 4.19681i 0.136306 0.236089i
\(317\) 16.5270 14.8810i 0.928249 0.835799i −0.0584609 0.998290i \(-0.518619\pi\)
0.986710 + 0.162490i \(0.0519526\pi\)
\(318\) −8.26201 + 2.68449i −0.463310 + 0.150539i
\(319\) −33.4256 + 37.1229i −1.87147 + 2.07848i
\(320\) 0 0
\(321\) −4.39793 + 0.934808i −0.245468 + 0.0521759i
\(322\) 7.79407 0.819190i 0.434346 0.0456517i
\(323\) 12.6344 + 1.32793i 0.702998 + 0.0738880i
\(324\) −0.557475 0.118495i −0.0309708 0.00658305i
\(325\) 0 0
\(326\) 21.1953 + 15.3993i 1.17390 + 0.852886i
\(327\) −2.71778 + 12.7862i −0.150294 + 0.707076i
\(328\) −0.00151893 0.000159646i −8.38687e−5 8.81495e-6i
\(329\) 2.06173 + 19.6160i 0.113667 + 1.08147i
\(330\) 0 0
\(331\) −3.43899 1.53114i −0.189024 0.0841590i 0.310042 0.950723i \(-0.399657\pi\)
−0.499066 + 0.866564i \(0.666324\pi\)
\(332\) −2.19520 1.97657i −0.120477 0.108478i
\(333\) −19.4801 + 6.32946i −1.06750 + 0.346852i
\(334\) 12.0728 + 13.4082i 0.660594 + 0.733664i
\(335\) 0 0
\(336\) 4.88159 + 8.45517i 0.266313 + 0.461267i
\(337\) −16.5129 5.36535i −0.899512 0.292269i −0.177477 0.984125i \(-0.556793\pi\)
−0.722036 + 0.691856i \(0.756793\pi\)
\(338\) 11.2819 + 25.3395i 0.613652 + 1.37829i
\(339\) −0.340777 + 0.247589i −0.0185085 + 0.0134472i
\(340\) 0 0
\(341\) −13.3239 30.2504i −0.721528 1.63815i
\(342\) 7.13724i 0.385938i
\(343\) 11.3149 + 15.5737i 0.610949 + 0.840899i
\(344\) −1.26886 + 0.564931i −0.0684121 + 0.0304590i
\(345\) 0 0
\(346\) −13.5189 23.4155i −0.726782 1.25882i
\(347\) 17.0165 + 9.82450i 0.913495 + 0.527407i 0.881554 0.472083i \(-0.156498\pi\)
0.0319411 + 0.999490i \(0.489831\pi\)
\(348\) 7.85394 7.07172i 0.421015 0.379084i
\(349\) 8.82193 + 27.1511i 0.472227 + 1.45337i 0.849661 + 0.527329i \(0.176807\pi\)
−0.377434 + 0.926037i \(0.623193\pi\)
\(350\) 0 0
\(351\) −25.8299 11.5002i −1.37870 0.613836i
\(352\) 7.11385 + 33.4681i 0.379170 + 1.78385i
\(353\) −4.68678 + 0.492601i −0.249452 + 0.0262185i −0.228429 0.973561i \(-0.573359\pi\)
−0.0210229 + 0.999779i \(0.506692\pi\)
\(354\) −0.772900 + 7.35365i −0.0410792 + 0.390842i
\(355\) 0 0
\(356\) 6.32299 + 4.59392i 0.335118 + 0.243477i
\(357\) −6.45865 + 8.88957i −0.341828 + 0.470486i
\(358\) 5.37015 25.2646i 0.283821 1.33527i
\(359\) −1.09276 + 10.3969i −0.0576738 + 0.548730i 0.927091 + 0.374837i \(0.122301\pi\)
−0.984765 + 0.173893i \(0.944365\pi\)
\(360\) 0 0
\(361\) 13.5623 2.88275i 0.713803 0.151724i
\(362\) 1.79882 4.04021i 0.0945438 0.212349i
\(363\) 19.9138 + 17.9305i 1.04520 + 0.941106i
\(364\) −3.33410 10.2613i −0.174754 0.537839i
\(365\) 0 0
\(366\) 10.6414 18.4315i 0.556236 0.963429i
\(367\) −0.523260 + 0.302104i −0.0273139 + 0.0157697i −0.513595 0.858033i \(-0.671687\pi\)
0.486281 + 0.873803i \(0.338353\pi\)
\(368\) 11.8221 + 3.84122i 0.616268 + 0.200238i
\(369\) −0.00162254 0.000722403i −8.44663e−5 3.76068e-5i
\(370\) 0 0
\(371\) 7.87055 0.408619
\(372\) 2.13446 + 6.65955i 0.110666 + 0.345282i
\(373\) 10.8545i 0.562027i 0.959704 + 0.281014i \(0.0906706\pi\)
−0.959704 + 0.281014i \(0.909329\pi\)
\(374\) −47.6881 + 34.6475i −2.46589 + 1.79158i
\(375\) 0 0
\(376\) −5.25646 + 16.1777i −0.271081 + 0.834302i
\(377\) 39.0122 22.5237i 2.00923 1.16003i
\(378\) 14.3642 + 8.29319i 0.738816 + 0.426556i
\(379\) −8.60177 9.55324i −0.441843 0.490717i 0.480551 0.876967i \(-0.340437\pi\)
−0.922394 + 0.386250i \(0.873770\pi\)
\(380\) 0 0
\(381\) −1.57517 + 1.74940i −0.0806984 + 0.0896247i
\(382\) 14.9814 33.6489i 0.766517 1.72163i
\(383\) −3.46497 16.3014i −0.177051 0.832962i −0.973577 0.228357i \(-0.926665\pi\)
0.796526 0.604604i \(-0.206669\pi\)
\(384\) 1.28169 + 12.1945i 0.0654062 + 0.622299i
\(385\) 0 0
\(386\) −6.71563 1.42745i −0.341816 0.0726553i
\(387\) −0.949390 + 1.30672i −0.0482602 + 0.0664245i
\(388\) −3.22514 + 4.43902i −0.163732 + 0.225357i
\(389\) 20.9614 + 4.45547i 1.06278 + 0.225901i 0.705946 0.708265i \(-0.250522\pi\)
0.356837 + 0.934167i \(0.383855\pi\)
\(390\) 0 0
\(391\) 1.46236 + 13.9134i 0.0739546 + 0.703631i
\(392\) 1.22585 + 5.76719i 0.0619149 + 0.291287i
\(393\) 1.23361 2.77074i 0.0622275 0.139765i
\(394\) 8.54789 9.49340i 0.430637 0.478270i
\(395\) 0 0
\(396\) 8.02905 + 8.91717i 0.403475 + 0.448105i
\(397\) 9.52912 + 5.50164i 0.478253 + 0.276120i 0.719688 0.694297i \(-0.244285\pi\)
−0.241435 + 0.970417i \(0.577618\pi\)
\(398\) −19.2598 + 11.1197i −0.965407 + 0.557378i
\(399\) 1.37241 4.22384i 0.0687064 0.211457i
\(400\) 0 0
\(401\) −29.4214 + 21.3759i −1.46924 + 1.06746i −0.488401 + 0.872619i \(0.662420\pi\)
−0.980834 + 0.194843i \(0.937580\pi\)
\(402\) 15.4377i 0.769961i
\(403\) 2.99739 + 29.6570i 0.149311 + 1.47732i
\(404\) 2.88577 0.143572
\(405\) 0 0
\(406\) −24.1412 + 10.7483i −1.19811 + 0.533431i
\(407\) −65.0266 21.1284i −3.22325 1.04730i
\(408\) −8.20669 + 4.73813i −0.406292 + 0.234573i
\(409\) 13.7039 23.7358i 0.677612 1.17366i −0.298086 0.954539i \(-0.596348\pi\)
0.975698 0.219119i \(-0.0703183\pi\)
\(410\) 0 0
\(411\) −2.19354 6.75103i −0.108199 0.333004i
\(412\) −2.86621 2.58075i −0.141208 0.127144i
\(413\) 2.72476 6.11991i 0.134077 0.301141i
\(414\) 7.68798 1.63413i 0.377844 0.0803132i
\(415\) 0 0
\(416\) 3.22524 30.6861i 0.158130 1.50451i
\(417\) 2.47317 11.6353i 0.121111 0.569785i
\(418\) 14.0039 19.2747i 0.684954 0.942758i
\(419\) −7.42067 5.39143i −0.362524 0.263389i 0.391580 0.920144i \(-0.371929\pi\)
−0.754104 + 0.656755i \(0.771929\pi\)
\(420\) 0 0
\(421\) 2.01849 19.2047i 0.0983753 0.935979i −0.828343 0.560222i \(-0.810716\pi\)
0.926718 0.375757i \(-0.122617\pi\)
\(422\) −12.3554 + 1.29860i −0.601450 + 0.0632150i
\(423\) 4.11277 + 19.3490i 0.199970 + 0.940783i
\(424\) 6.20083 + 2.76079i 0.301139 + 0.134076i
\(425\) 0 0
\(426\) −0.0373532 0.114961i −0.00180977 0.00556990i
\(427\) −14.3294 + 12.9023i −0.693450 + 0.624385i
\(428\) −4.00383 2.31161i −0.193532 0.111736i
\(429\) −17.5640 30.4218i −0.848000 1.46878i
\(430\) 0 0
\(431\) −25.2827 + 11.2566i −1.21782 + 0.542210i −0.912122 0.409918i \(-0.865557\pi\)
−0.305701 + 0.952128i \(0.598891\pi\)
\(432\) 15.4635 + 21.2837i 0.743988 + 1.02401i
\(433\) 25.4725i 1.22413i 0.790808 + 0.612065i \(0.209661\pi\)
−0.790808 + 0.612065i \(0.790339\pi\)
\(434\) 0.0698255 17.4860i 0.00335173 0.839354i
\(435\) 0 0
\(436\) −10.8741 + 7.90052i −0.520777 + 0.378366i
\(437\) −2.29991 5.16568i −0.110019 0.247108i
\(438\) −6.54613 2.12697i −0.312786 0.101630i
\(439\) −1.62684 2.81776i −0.0776447 0.134485i 0.824589 0.565733i \(-0.191407\pi\)
−0.902233 + 0.431248i \(0.858073\pi\)
\(440\) 0 0
\(441\) 4.58791 + 5.09539i 0.218472 + 0.242637i
\(442\) 50.5546 16.4262i 2.40464 0.781313i
\(443\) −25.8230 23.2512i −1.22689 1.10470i −0.991132 0.132885i \(-0.957576\pi\)
−0.235758 0.971812i \(-0.575757\pi\)
\(444\) 13.2148 + 5.88361i 0.627147 + 0.279224i
\(445\) 0 0
\(446\) −2.64366 25.1527i −0.125181 1.19102i
\(447\) 13.2043 + 1.38783i 0.624543 + 0.0656421i
\(448\) −0.0900037 + 0.423434i −0.00425228 + 0.0200054i
\(449\) −3.63361 2.63997i −0.171481 0.124588i 0.498735 0.866755i \(-0.333798\pi\)
−0.670215 + 0.742167i \(0.733798\pi\)
\(450\) 0 0
\(451\) −0.00579925 0.00123267i −0.000273076 5.80441e-5i
\(452\) −0.430753 0.0452740i −0.0202609 0.00212951i
\(453\) −17.3891 + 1.82767i −0.817012 + 0.0858714i
\(454\) 0.676897 0.143879i 0.0317683 0.00675257i
\(455\) 0 0
\(456\) 2.56287 2.84635i 0.120017 0.133293i
\(457\) 7.90953 2.56996i 0.369992 0.120218i −0.118118 0.993000i \(-0.537686\pi\)
0.488111 + 0.872782i \(0.337686\pi\)
\(458\) −16.4613 + 14.8218i −0.769187 + 0.692579i
\(459\) −14.8044 + 25.6420i −0.691010 + 1.19686i
\(460\) 0 0
\(461\) −3.13623 + 9.65232i −0.146069 + 0.449553i −0.997147 0.0754857i \(-0.975949\pi\)
0.851078 + 0.525039i \(0.175949\pi\)
\(462\) 8.38159 + 18.8254i 0.389947 + 0.875835i
\(463\) 13.3302 + 18.3475i 0.619509 + 0.852681i 0.997317 0.0732033i \(-0.0233222\pi\)
−0.377808 + 0.925884i \(0.623322\pi\)
\(464\) −41.9146 −1.94584
\(465\) 0 0
\(466\) −0.202773 −0.00939326
\(467\) 5.85650 + 8.06078i 0.271007 + 0.373009i 0.922729 0.385449i \(-0.125953\pi\)
−0.651723 + 0.758457i \(0.725953\pi\)
\(468\) −4.40117 9.88519i −0.203444 0.456943i
\(469\) 4.32205 13.3019i 0.199574 0.614225i
\(470\) 0 0
\(471\) 10.4305 18.0661i 0.480611 0.832443i
\(472\) 4.29341 3.86580i 0.197620 0.177938i
\(473\) −5.12782 + 1.66613i −0.235778 + 0.0766088i
\(474\) 5.58492 6.20269i 0.256524 0.284899i
\(475\) 0 0
\(476\) −11.0517 + 2.34911i −0.506553 + 0.107671i
\(477\) 7.85015 0.825084i 0.359434 0.0377780i
\(478\) 28.9733 + 3.04522i 1.32521 + 0.139285i
\(479\) 6.30668 + 1.34053i 0.288159 + 0.0612502i 0.349723 0.936853i \(-0.386276\pi\)
−0.0615641 + 0.998103i \(0.519609\pi\)
\(480\) 0 0
\(481\) 49.8820 + 36.2414i 2.27442 + 1.65246i
\(482\) −0.663879 + 3.12331i −0.0302389 + 0.142263i
\(483\) 4.86400 + 0.511227i 0.221320 + 0.0232616i
\(484\) 2.88016 + 27.4029i 0.130916 + 1.24559i
\(485\) 0 0
\(486\) 24.7369 + 11.0136i 1.12209 + 0.499585i
\(487\) 14.5741 + 13.1226i 0.660417 + 0.594642i 0.929655 0.368431i \(-0.120105\pi\)
−0.269238 + 0.963074i \(0.586772\pi\)
\(488\) −15.8152 + 5.13868i −0.715922 + 0.232617i
\(489\) 10.9401 + 12.1502i 0.494728 + 0.549452i
\(490\) 0 0
\(491\) 0.200752 + 0.347712i 0.00905980 + 0.0156920i 0.870520 0.492133i \(-0.163783\pi\)
−0.861460 + 0.507825i \(0.830449\pi\)
\(492\) 0.00119294 0.000387610i 5.37820e−5 1.74748e-5i
\(493\) −19.1872 43.0950i −0.864146 1.94090i
\(494\) −17.3816 + 12.6285i −0.782035 + 0.568182i
\(495\) 0 0
\(496\) 11.3820 25.2921i 0.511067 1.13565i
\(497\) 0.109514i 0.00491239i
\(498\) −2.99045 4.11601i −0.134005 0.184443i
\(499\) 15.8020 7.03551i 0.707395 0.314953i −0.0213170 0.999773i \(-0.506786\pi\)
0.728712 + 0.684820i \(0.240119\pi\)
\(500\) 0 0
\(501\) 5.62985 + 9.75118i 0.251523 + 0.435651i
\(502\) 21.7817 + 12.5757i 0.972163 + 0.561279i
\(503\) 21.2832 19.1635i 0.948971 0.854457i −0.0405016 0.999179i \(-0.512896\pi\)
0.989472 + 0.144722i \(0.0462289\pi\)
\(504\) −1.49051 4.58732i −0.0663926 0.204335i
\(505\) 0 0
\(506\) 23.9684 + 10.6714i 1.06553 + 0.474402i
\(507\) 3.59895 + 16.9317i 0.159835 + 0.751964i
\(508\) −2.40731 + 0.253019i −0.106807 + 0.0112259i
\(509\) −1.76708 + 16.8127i −0.0783246 + 0.745209i 0.882922 + 0.469519i \(0.155573\pi\)
−0.961247 + 0.275689i \(0.911094\pi\)
\(510\) 0 0
\(511\) 5.04501 + 3.66541i 0.223178 + 0.162148i
\(512\) −7.91911 + 10.8997i −0.349978 + 0.481704i
\(513\) 2.48816 11.7059i 0.109855 0.516826i
\(514\) 3.15452 30.0133i 0.139140 1.32383i
\(515\) 0 0
\(516\) 1.11578 0.237165i 0.0491193 0.0104406i
\(517\) −26.8577 + 60.3234i −1.18120 + 2.65302i
\(518\) −26.8793 24.2022i −1.18101 1.06339i
\(519\) −5.21415 16.0475i −0.228876 0.704408i
\(520\) 0 0
\(521\) −15.6859 + 27.1688i −0.687213 + 1.19029i 0.285522 + 0.958372i \(0.407833\pi\)
−0.972736 + 0.231917i \(0.925500\pi\)
\(522\) −22.9518 + 13.2512i −1.00457 + 0.579991i
\(523\) 5.24628 + 1.70462i 0.229404 + 0.0745378i 0.421463 0.906846i \(-0.361517\pi\)
−0.192060 + 0.981383i \(0.561517\pi\)
\(524\) 2.84903 1.26847i 0.124460 0.0554133i
\(525\) 0 0
\(526\) −7.66236 −0.334095
\(527\) 31.2147 + 0.124647i 1.35973 + 0.00542972i
\(528\) 32.6852i 1.42244i
\(529\) −13.5697 + 9.85895i −0.589986 + 0.428650i
\(530\) 0 0
\(531\) 2.07613 6.38968i 0.0900965 0.277289i
\(532\) 3.95488 2.28335i 0.171466 0.0989958i
\(533\) 0.00463019 + 0.00267324i 0.000200556 + 0.000115791i
\(534\) 9.00727 + 10.0036i 0.389783 + 0.432898i
\(535\) 0 0
\(536\) 8.07110 8.96386i 0.348618 0.387180i
\(537\) 6.55617 14.7254i 0.282920 0.635448i
\(538\) 11.1291 + 52.3582i 0.479809 + 2.25732i
\(539\) 2.39243 + 22.7624i 0.103049 + 0.980448i
\(540\) 0 0
\(541\) 8.12757 + 1.72757i 0.349431 + 0.0742740i 0.379284 0.925280i \(-0.376170\pi\)
−0.0298524 + 0.999554i \(0.509504\pi\)
\(542\) −19.7262 + 27.1508i −0.847314 + 1.16623i
\(543\) 1.62227 2.23286i 0.0696181 0.0958211i
\(544\) −31.6053 6.71791i −1.35506 0.288028i
\(545\) 0 0
\(546\) −1.94245 18.4811i −0.0831290 0.790920i
\(547\) −6.64903 31.2812i −0.284292 1.33749i −0.855977 0.517015i \(-0.827043\pi\)
0.571685 0.820473i \(-0.306290\pi\)
\(548\) 2.96878 6.66799i 0.126820 0.284842i
\(549\) −12.9397 + 14.3710i −0.552253 + 0.613339i
\(550\) 0 0
\(551\) 12.7581 + 14.1693i 0.543514 + 0.603633i
\(552\) 3.65278 + 2.10894i 0.155473 + 0.0897623i
\(553\) −6.54882 + 3.78096i −0.278484 + 0.160783i
\(554\) 2.91466 8.97039i 0.123832 0.381115i
\(555\) 0 0
\(556\) 9.89540 7.18943i 0.419658 0.304900i
\(557\) 11.2710i 0.477569i 0.971073 + 0.238785i \(0.0767490\pi\)
−0.971073 + 0.238785i \(0.923251\pi\)
\(558\) −1.76344 17.4480i −0.0746524 0.738631i
\(559\) 4.86215 0.205647
\(560\) 0 0
\(561\) −33.6056 + 14.9622i −1.41883 + 0.631705i
\(562\) −44.2681 14.3836i −1.86734 0.606735i
\(563\) 9.43878 5.44948i 0.397797 0.229668i −0.287736 0.957710i \(-0.592903\pi\)
0.685533 + 0.728042i \(0.259569\pi\)
\(564\) 6.98509 12.0985i 0.294125 0.509440i
\(565\) 0 0
\(566\) −10.9767 33.7827i −0.461384 1.41999i
\(567\) 0.660903 + 0.595080i 0.0277553 + 0.0249910i
\(568\) −0.0384148 + 0.0862811i −0.00161185 + 0.00362027i
\(569\) 12.2494 2.60369i 0.513521 0.109152i 0.0561398 0.998423i \(-0.482121\pi\)
0.457381 + 0.889271i \(0.348787\pi\)
\(570\) 0 0
\(571\) −3.87060 + 36.8263i −0.161980 + 1.54113i 0.547739 + 0.836649i \(0.315489\pi\)
−0.709719 + 0.704485i \(0.751178\pi\)
\(572\) 7.50991 35.3313i 0.314005 1.47728i
\(573\) 13.5110 18.5963i 0.564431 0.776873i
\(574\) −0.00253738 0.00184351i −0.000105908 7.69467e-5i
\(575\) 0 0
\(576\) −0.0453810 + 0.431772i −0.00189088 + 0.0179905i
\(577\) −14.7464 + 1.54991i −0.613900 + 0.0645235i −0.406375 0.913706i \(-0.633207\pi\)
−0.207525 + 0.978230i \(0.566541\pi\)
\(578\) −5.31379 24.9994i −0.221024 1.03984i
\(579\) −3.91419 1.74271i −0.162668 0.0724245i
\(580\) 0 0
\(581\) 1.42438 + 4.38380i 0.0590933 + 0.181871i
\(582\) −7.02298 + 6.32352i −0.291112 + 0.262118i
\(583\) 22.8189 + 13.1745i 0.945063 + 0.545632i
\(584\) 2.68899 + 4.65746i 0.111271 + 0.192727i
\(585\) 0 0
\(586\) 1.84092 0.819632i 0.0760479 0.0338587i
\(587\) −9.20098 12.6641i −0.379765 0.522702i 0.575757 0.817621i \(-0.304707\pi\)
−0.955522 + 0.294919i \(0.904707\pi\)
\(588\) 4.84228i 0.199692i
\(589\) −12.0145 + 3.85078i −0.495049 + 0.158669i
\(590\) 0 0
\(591\) 6.44963 4.68593i 0.265303 0.192754i
\(592\) −23.3343 52.4098i −0.959036 2.15403i
\(593\) 44.2373 + 14.3736i 1.81661 + 0.590251i 0.999913 + 0.0131789i \(0.00419510\pi\)
0.816693 + 0.577072i \(0.195805\pi\)
\(594\) 27.7639 + 48.0885i 1.13917 + 1.97309i
\(595\) 0 0
\(596\) 9.13511 + 10.1456i 0.374189 + 0.415579i
\(597\) −13.1995 + 4.28877i −0.540219 + 0.175528i
\(598\) −17.5826 15.8315i −0.719007 0.647397i
\(599\) −5.10491 2.27285i −0.208581 0.0928662i 0.299787 0.954006i \(-0.403084\pi\)
−0.508368 + 0.861140i \(0.669751\pi\)
\(600\) 0 0
\(601\) −0.682667 6.49514i −0.0278466 0.264942i −0.999583 0.0288741i \(-0.990808\pi\)
0.971736 0.236068i \(-0.0758589\pi\)
\(602\) −2.83662 0.298141i −0.115612 0.0121513i
\(603\) 2.91638 13.7205i 0.118764 0.558742i
\(604\) −14.5453 10.5678i −0.591839 0.429996i
\(605\) 0 0
\(606\) 4.86165 + 1.03337i 0.197491 + 0.0419780i
\(607\) −10.6654 1.12098i −0.432896 0.0454992i −0.114425 0.993432i \(-0.536503\pi\)
−0.318471 + 0.947933i \(0.603169\pi\)
\(608\) 12.9882 1.36511i 0.526739 0.0553625i
\(609\) −16.1310 + 3.42876i −0.653662 + 0.138940i
\(610\) 0 0
\(611\) 39.8445 44.2518i 1.61194 1.79024i
\(612\) −10.7768 + 3.50159i −0.435625 + 0.141543i
\(613\) 33.3503 30.0288i 1.34701 1.21285i 0.390689 0.920523i \(-0.372237\pi\)
0.956318 0.292328i \(-0.0944298\pi\)
\(614\) −0.460235 + 0.797150i −0.0185736 + 0.0321704i
\(615\) 0 0
\(616\) 4.97549 15.3130i 0.200468 0.616977i
\(617\) 6.26687 + 14.0756i 0.252295 + 0.566663i 0.994645 0.103349i \(-0.0329558\pi\)
−0.742351 + 0.670012i \(0.766289\pi\)
\(618\) −3.90456 5.37416i −0.157064 0.216180i
\(619\) 44.9616 1.80716 0.903579 0.428421i \(-0.140930\pi\)
0.903579 + 0.428421i \(0.140930\pi\)
\(620\) 0 0
\(621\) 13.1788 0.528848
\(622\) 29.8408 + 41.0724i 1.19651 + 1.64685i
\(623\) −4.96046 11.1414i −0.198736 0.446369i
\(624\) 9.10823 28.0323i 0.364621 1.12219i
\(625\) 0 0
\(626\) 15.3831 26.6442i 0.614831 1.06492i
\(627\) 11.0493 9.94881i 0.441265 0.397317i
\(628\) 20.4005 6.62854i 0.814070 0.264508i
\(629\) 43.2041 47.9830i 1.72266 1.91321i
\(630\) 0 0
\(631\) 12.5183 2.66085i 0.498347 0.105927i 0.0481207 0.998842i \(-0.484677\pi\)
0.450226 + 0.892915i \(0.351343\pi\)
\(632\) −6.48576 + 0.681681i −0.257990 + 0.0271158i
\(633\) −7.71055 0.810411i −0.306467 0.0322110i
\(634\) 38.5251 + 8.18877i 1.53003 + 0.325218i
\(635\) 0 0
\(636\) −4.50991 3.27664i −0.178829 0.129927i
\(637\) 4.29126 20.1888i 0.170026 0.799909i
\(638\) −87.9836 9.24745i −3.48330 0.366110i
\(639\) 0.0114806 + 0.109231i 0.000454165 + 0.00432109i
\(640\) 0 0
\(641\) 22.1203 + 9.84859i 0.873699 + 0.388996i 0.794068 0.607828i \(-0.207959\pi\)
0.0796310 + 0.996824i \(0.474626\pi\)
\(642\) −5.91747 5.32811i −0.233544 0.210284i
\(643\) 3.23064 1.04970i 0.127404 0.0413960i −0.244621 0.969619i \(-0.578664\pi\)
0.372025 + 0.928223i \(0.378664\pi\)
\(644\) 3.36505 + 3.73727i 0.132601 + 0.147269i
\(645\) 0 0
\(646\) 11.2494 + 19.4846i 0.442602 + 0.766610i
\(647\) −5.62269 1.82692i −0.221051 0.0718238i 0.196398 0.980524i \(-0.437076\pi\)
−0.417449 + 0.908701i \(0.637076\pi\)
\(648\) 0.311955 + 0.700662i 0.0122548 + 0.0275246i
\(649\) 18.1439 13.1823i 0.712211 0.517452i
\(650\) 0 0
\(651\) 2.31143 10.6649i 0.0905922 0.417988i
\(652\) 16.8117i 0.658397i
\(653\) 13.6118 + 18.7351i 0.532671 + 0.733159i 0.987535 0.157402i \(-0.0503118\pi\)
−0.454863 + 0.890561i \(0.650312\pi\)
\(654\) −21.1488 + 9.41604i −0.826982 + 0.368196i
\(655\) 0 0
\(656\) −0.00248734 0.00430820i −9.71142e−5 0.000168207i
\(657\) 5.41618 + 3.12703i 0.211305 + 0.121997i
\(658\) −25.9591 + 23.3737i −1.01199 + 0.911201i
\(659\) 4.86468 + 14.9719i 0.189501 + 0.583224i 0.999997 0.00252045i \(-0.000802286\pi\)
−0.810496 + 0.585744i \(0.800802\pi\)
\(660\) 0 0
\(661\) −12.1194 5.39589i −0.471389 0.209876i 0.157272 0.987555i \(-0.449730\pi\)
−0.628661 + 0.777679i \(0.716397\pi\)
\(662\) −1.38611 6.52116i −0.0538729 0.253452i
\(663\) 32.9912 3.46751i 1.28127 0.134667i
\(664\) −0.415521 + 3.95342i −0.0161253 + 0.153422i
\(665\) 0 0
\(666\) −29.3468 21.3217i −1.13717 0.826199i
\(667\) −12.3416 + 16.9868i −0.477869 + 0.657731i
\(668\) −2.40717 + 11.3248i −0.0931362 + 0.438171i
\(669\) 1.64981 15.6969i 0.0637854 0.606878i
\(670\) 0 0
\(671\) −63.1421 + 13.4213i −2.43757 + 0.518122i
\(672\) −4.59440 + 10.3192i −0.177233 + 0.398071i
\(673\) −0.899983 0.810348i −0.0346918 0.0312366i 0.651602 0.758561i \(-0.274097\pi\)
−0.686294 + 0.727324i \(0.740764\pi\)
\(674\) −9.50205 29.2443i −0.366005 1.12645i
\(675\) 0 0
\(676\) −8.89955 + 15.4145i −0.342290 + 0.592864i
\(677\) −0.421602 + 0.243412i −0.0162035 + 0.00935507i −0.508080 0.861310i \(-0.669645\pi\)
0.491876 + 0.870665i \(0.336311\pi\)
\(678\) −0.709477 0.230523i −0.0272473 0.00885318i
\(679\) 7.82175 3.48247i 0.300171 0.133645i
\(680\) 0 0
\(681\) 0.431864 0.0165491
\(682\) 29.4722 50.5798i 1.12855 1.93680i
\(683\) 46.6720i 1.78586i −0.450200 0.892928i \(-0.648647\pi\)
0.450200 0.892928i \(-0.351353\pi\)
\(684\) 3.70526 2.69203i 0.141674 0.102932i
\(685\) 0 0
\(686\) −10.5350 + 32.4234i −0.402228 + 1.23793i
\(687\) −11.9716 + 6.91179i −0.456744 + 0.263701i
\(688\) −3.91791 2.26201i −0.149369 0.0862383i
\(689\) −15.8992 17.6579i −0.605713 0.672712i
\(690\) 0 0
\(691\) 4.57766 5.08401i 0.174142 0.193405i −0.649755 0.760144i \(-0.725129\pi\)
0.823897 + 0.566739i \(0.191795\pi\)
\(692\) 7.05693 15.8501i 0.268264 0.602532i
\(693\) −3.89293 18.3148i −0.147880 0.695721i
\(694\) 3.63742 + 34.6078i 0.138075 + 1.31369i
\(695\) 0 0
\(696\) −13.9116 2.95700i −0.527317 0.112085i
\(697\) 0.00329090 0.00452954i 0.000124652 0.000171568i
\(698\) −29.7180 + 40.9033i −1.12484 + 1.54821i
\(699\) −0.123778 0.0263098i −0.00468171 0.000995128i
\(700\) 0 0
\(701\) −2.85433 27.1572i −0.107807 1.02571i −0.905990 0.423298i \(-0.860872\pi\)
0.798184 0.602414i \(-0.205794\pi\)
\(702\) −10.4110 48.9797i −0.392936 1.84862i
\(703\) −10.6146 + 23.8409i −0.400339 + 0.899175i
\(704\) −0.969731 + 1.07700i −0.0365481 + 0.0405908i
\(705\) 0 0
\(706\) −5.58458 6.20230i −0.210178 0.233427i
\(707\) −3.89974 2.25151i −0.146665 0.0846769i
\(708\) −4.10913 + 2.37241i −0.154431 + 0.0891606i
\(709\) 9.65169 29.7049i 0.362477 1.11559i −0.589069 0.808083i \(-0.700505\pi\)
0.951546 0.307507i \(-0.0994946\pi\)
\(710\) 0 0
\(711\) −6.13547 + 4.45768i −0.230098 + 0.167176i
\(712\) 10.5177i 0.394169i
\(713\) −6.89875 12.0600i −0.258360 0.451649i
\(714\) −19.4600 −0.728271
\(715\) 0 0
\(716\) 15.1415 6.74142i 0.565864 0.251939i
\(717\) 17.2910 + 5.61818i 0.645744 + 0.209815i
\(718\) −16.0340 + 9.25722i −0.598383 + 0.345476i
\(719\) −5.38949 + 9.33486i −0.200994 + 0.348132i −0.948849 0.315730i \(-0.897750\pi\)
0.747855 + 0.663862i \(0.231084\pi\)
\(720\) 0 0
\(721\) 1.85978 + 5.72381i 0.0692618 + 0.213166i
\(722\) 18.2482 + 16.4308i 0.679128 + 0.611490i
\(723\) −0.810500 + 1.82041i −0.0301428 + 0.0677018i
\(724\) 2.77593 0.590043i 0.103167 0.0219288i
\(725\) 0 0
\(726\) −4.96060 + 47.1970i −0.184105 + 1.75165i
\(727\) 1.83921 8.65279i 0.0682124 0.320914i −0.930791 0.365552i \(-0.880880\pi\)
0.999003 + 0.0446381i \(0.0142135\pi\)
\(728\) −8.53440 + 11.7466i −0.316306 + 0.435358i
\(729\) 14.8882 + 10.8169i 0.551415 + 0.400626i
\(730\) 0 0
\(731\) 0.532219 5.06373i 0.0196848 0.187289i
\(732\) 13.5823 1.42756i 0.502018 0.0527642i
\(733\) 0.493635 + 2.32237i 0.0182328 + 0.0857787i 0.986323 0.164822i \(-0.0527051\pi\)
−0.968090 + 0.250601i \(0.919372\pi\)
\(734\) −0.977543 0.435230i −0.0360818 0.0160646i
\(735\) 0 0
\(736\) 4.44420 + 13.6778i 0.163815 + 0.504172i
\(737\) 34.7969 31.3312i 1.28176 1.15410i
\(738\) −0.00272406 0.00157273i −0.000100274 5.78932e-5i
\(739\) −26.9643 46.7035i −0.991897 1.71802i −0.605975 0.795484i \(-0.707217\pi\)
−0.385921 0.922532i \(-0.626116\pi\)
\(740\) 0 0
\(741\) −12.2487 + 5.45349i −0.449969 + 0.200339i
\(742\) 8.19300 + 11.2767i 0.300774 + 0.413981i
\(743\) 40.3898i 1.48176i 0.671639 + 0.740879i \(0.265591\pi\)
−0.671639 + 0.740879i \(0.734409\pi\)
\(744\) 5.56202 7.59153i 0.203913 0.278319i
\(745\) 0 0
\(746\) −15.5521 + 11.2992i −0.569402 + 0.413695i
\(747\) 1.88025 + 4.22311i 0.0687948 + 0.154516i
\(748\) −35.9741 11.6887i −1.31534 0.427381i
\(749\) 3.60710 + 6.24768i 0.131801 + 0.228285i
\(750\) 0 0
\(751\) 31.2321 + 34.6867i 1.13967 + 1.26574i 0.959378 + 0.282125i \(0.0910392\pi\)
0.180297 + 0.983612i \(0.442294\pi\)
\(752\) −52.6938 + 17.1213i −1.92155 + 0.624348i
\(753\) 11.6644 + 10.5027i 0.425075 + 0.382740i
\(754\) 72.8817 + 32.4490i 2.65420 + 1.18172i
\(755\) 0 0
\(756\) 1.11254 + 10.5851i 0.0404628 + 0.384978i
\(757\) −17.7511 1.86572i −0.645176 0.0678107i −0.223711 0.974655i \(-0.571817\pi\)
−0.421465 + 0.906845i \(0.638484\pi\)
\(758\) 4.73342 22.2690i 0.171926 0.808846i
\(759\) 13.2463 + 9.62403i 0.480812 + 0.349330i
\(760\) 0 0
\(761\) −5.47424 1.16359i −0.198441 0.0421800i 0.107619 0.994192i \(-0.465677\pi\)
−0.306060 + 0.952012i \(0.599011\pi\)
\(762\) −4.14620 0.435783i −0.150201 0.0157867i
\(763\) 20.8591 2.19238i 0.755149 0.0793694i
\(764\) 23.1193 4.91417i 0.836428 0.177788i
\(765\) 0 0
\(766\) 19.7492 21.9337i 0.713568 0.792498i
\(767\) −19.2345 + 6.24967i −0.694518 + 0.225663i
\(768\) −16.5387 + 14.8915i −0.596790 + 0.537352i
\(769\) −0.800408 + 1.38635i −0.0288634 + 0.0499929i −0.880096 0.474795i \(-0.842522\pi\)
0.851233 + 0.524788i \(0.175855\pi\)
\(770\) 0 0
\(771\) 5.81984 17.9116i 0.209596 0.645071i
\(772\) −1.79195 4.02479i −0.0644937 0.144855i
\(773\) −26.8378 36.9391i −0.965289 1.32861i −0.944391 0.328825i \(-0.893348\pi\)
−0.0208979 0.999782i \(-0.506652\pi\)
\(774\) −2.86052 −0.102819
\(775\) 0 0
\(776\) 7.38393 0.265068
\(777\) −13.2676 18.2613i −0.475973 0.655121i
\(778\) 15.4364 + 34.6708i 0.553423 + 1.24301i
\(779\) −0.000699289 0.00215219i −2.50546e−5 7.71102e-5i
\(780\) 0 0
\(781\) −0.183316 + 0.317513i −0.00655956 + 0.0113615i
\(782\) −18.4124 + 16.5786i −0.658428 + 0.592851i
\(783\) −42.2631 + 13.7321i −1.51036 + 0.490746i
\(784\) −12.8503 + 14.2717i −0.458939 + 0.509703i
\(785\) 0 0
\(786\) 5.25398 1.11677i 0.187403 0.0398338i
\(787\) 10.2454 1.07683i 0.365208 0.0383849i 0.0798528 0.996807i \(-0.474555\pi\)
0.285356 + 0.958422i \(0.407888\pi\)
\(788\) 8.15254 + 0.856867i 0.290422 + 0.0305246i
\(789\) −4.67731 0.994193i −0.166517 0.0353942i
\(790\) 0 0
\(791\) 0.546783 + 0.397261i 0.0194414 + 0.0141250i
\(792\) 3.35730 15.7949i 0.119296 0.561246i
\(793\) 57.8935 + 6.08485i 2.05586 + 0.216080i
\(794\) 2.03693 + 19.3801i 0.0722879 + 0.687774i
\(795\) 0 0
\(796\) −13.0371 5.80450i −0.462089 0.205735i
\(797\) −15.0005 13.5065i −0.531346 0.478426i 0.359237 0.933246i \(-0.383037\pi\)
−0.890583 + 0.454820i \(0.849703\pi\)
\(798\) 7.48043 2.43054i 0.264804 0.0860402i
\(799\) −41.7250 46.3403i −1.47612 1.63940i
\(800\) 0 0
\(801\) −6.11556 10.5925i −0.216083 0.374266i
\(802\) −61.2536 19.9025i −2.16294 0.702781i
\(803\) 8.49135 + 19.0719i 0.299653 + 0.673032i
\(804\) −8.01438 + 5.82279i −0.282645 + 0.205354i
\(805\) 0 0
\(806\) −39.3715 + 35.1666i −1.38680 + 1.23869i
\(807\) 33.4049i 1.17591i
\(808\) −2.28264 3.14179i −0.0803030 0.110528i
\(809\) 15.1137 6.72905i 0.531369 0.236581i −0.123471 0.992348i \(-0.539403\pi\)
0.654840 + 0.755767i \(0.272736\pi\)
\(810\) 0 0
\(811\) −14.8937 25.7967i −0.522990 0.905845i −0.999642 0.0267530i \(-0.991483\pi\)
0.476652 0.879092i \(-0.341850\pi\)
\(812\) −14.6855 8.47869i −0.515361 0.297544i
\(813\) −15.5642 + 14.0141i −0.545862 + 0.491496i
\(814\) −37.4185 115.162i −1.31152 4.03643i
\(815\) 0 0
\(816\) −28.1974 12.5543i −0.987108 0.439489i
\(817\) 0.427871 + 2.01297i 0.0149693 + 0.0704251i
\(818\) 48.2732 5.07372i 1.68783 0.177398i
\(819\) −1.76495 + 16.7924i −0.0616724 + 0.586774i
\(820\) 0 0
\(821\) 17.6206 + 12.8021i 0.614964 + 0.446798i 0.851159 0.524908i \(-0.175900\pi\)
−0.236195 + 0.971706i \(0.575900\pi\)
\(822\) 7.38927 10.1705i 0.257730 0.354735i
\(823\) −2.96614 + 13.9546i −0.103393 + 0.486426i 0.895732 + 0.444595i \(0.146652\pi\)
−0.999125 + 0.0418309i \(0.986681\pi\)
\(824\) −0.542535 + 5.16187i −0.0189001 + 0.179822i
\(825\) 0 0
\(826\) 11.6048 2.46668i 0.403783 0.0858267i
\(827\) −3.21689 + 7.22525i −0.111862 + 0.251246i −0.960798 0.277249i \(-0.910577\pi\)
0.848936 + 0.528496i \(0.177244\pi\)
\(828\) 3.74811 + 3.37481i 0.130256 + 0.117283i
\(829\) 10.0290 + 30.8660i 0.348321 + 1.07202i 0.959782 + 0.280747i \(0.0905821\pi\)
−0.611461 + 0.791275i \(0.709418\pi\)
\(830\) 0 0
\(831\) 2.94309 5.09759i 0.102095 0.176833i
\(832\) 1.13181 0.653449i 0.0392383 0.0226543i
\(833\) −20.5561 6.67907i −0.712225 0.231416i
\(834\) 19.2452 8.56854i 0.666408 0.296704i
\(835\) 0 0
\(836\) 15.2884 0.528760
\(837\) 3.19040 29.2313i 0.110276 1.01038i
\(838\) 16.2444i 0.561155i
\(839\) −18.9902 + 13.7972i −0.655616 + 0.476333i −0.865180 0.501462i \(-0.832796\pi\)
0.209564 + 0.977795i \(0.432796\pi\)
\(840\) 0 0
\(841\) 12.9168 39.7539i 0.445408 1.37083i
\(842\) 29.6171 17.0994i 1.02067 0.589285i
\(843\) −25.1562 14.5239i −0.866425 0.500231i
\(844\) −5.33437 5.92442i −0.183617 0.203927i
\(845\) 0 0
\(846\) −23.4415 + 26.0344i −0.805935 + 0.895081i
\(847\) 17.4880 39.2786i 0.600893 1.34963i
\(848\) 4.59664 + 21.6255i 0.157849 + 0.742623i
\(849\) −2.31714 22.0461i −0.0795240 0.756621i
\(850\) 0 0
\(851\) −28.1109 5.97515i −0.963628 0.204826i
\(852\) 0.0455927 0.0627529i 0.00156198 0.00214988i
\(853\) 23.8794 32.8672i 0.817616 1.12535i −0.172487 0.985012i \(-0.555180\pi\)
0.990103 0.140340i \(-0.0448196\pi\)
\(854\) −33.4025 7.09992i −1.14301 0.242954i
\(855\) 0 0
\(856\) 0.650335 + 6.18752i 0.0222280 + 0.211485i
\(857\) −1.46492 6.89190i −0.0500407 0.235423i 0.946019 0.324112i \(-0.105066\pi\)
−0.996059 + 0.0886893i \(0.971732\pi\)
\(858\) 25.3039 56.8334i 0.863859 1.94026i
\(859\) 16.5579 18.3894i 0.564949 0.627440i −0.391205 0.920304i \(-0.627942\pi\)
0.956154 + 0.292864i \(0.0946083\pi\)
\(860\) 0 0
\(861\) −0.00130969 0.00145456i −4.46340e−5 4.95711e-5i
\(862\) −42.4465 24.5065i −1.44573 0.834695i
\(863\) −10.2501 + 5.91787i −0.348916 + 0.201447i −0.664208 0.747548i \(-0.731231\pi\)
0.315292 + 0.948995i \(0.397898\pi\)
\(864\) −9.40579 + 28.9480i −0.319991 + 0.984832i
\(865\) 0 0
\(866\) −36.4962 + 26.5161i −1.24019 + 0.901053i
\(867\) 15.9498i 0.541683i
\(868\) 9.10408 6.55912i 0.309013 0.222631i
\(869\) −25.3158 −0.858779
\(870\) 0 0
\(871\) −38.5743 + 17.1744i −1.30704 + 0.581932i
\(872\) 17.2029 + 5.58956i 0.582563 + 0.189286i
\(873\) 7.43639 4.29340i 0.251684 0.145310i
\(874\) 5.00710 8.67255i 0.169368 0.293353i
\(875\) 0 0
\(876\) −1.36487 4.20064i −0.0461147 0.141926i
\(877\) −25.9404 23.3568i −0.875943 0.788703i 0.102605 0.994722i \(-0.467282\pi\)
−0.978548 + 0.206019i \(0.933949\pi\)
\(878\) 2.34372 5.26409i 0.0790969 0.177654i
\(879\) 1.23010 0.261465i 0.0414902 0.00881901i
\(880\) 0 0
\(881\) 2.08888 19.8744i 0.0703762 0.669585i −0.901288 0.433220i \(-0.857377\pi\)
0.971664 0.236365i \(-0.0759561\pi\)
\(882\) −2.52465 + 11.8776i −0.0850095 + 0.399938i
\(883\) −22.6995 + 31.2431i −0.763898 + 1.05142i 0.232982 + 0.972481i \(0.425152\pi\)
−0.996880 + 0.0789344i \(0.974848\pi\)
\(884\) 27.5958 + 20.0495i 0.928146 + 0.674337i
\(885\) 0 0
\(886\) 6.43261 61.2022i 0.216108 2.05613i
\(887\) 42.4867 4.46553i 1.42656 0.149938i 0.640441 0.768007i \(-0.278752\pi\)
0.786124 + 0.618069i \(0.212085\pi\)
\(888\) −4.04732 19.0411i −0.135819 0.638978i
\(889\) 3.45058 + 1.53630i 0.115729 + 0.0515257i
\(890\) 0 0
\(891\) 0.920038 + 2.83159i 0.0308224 + 0.0948617i
\(892\) 12.0608 10.8596i 0.403824 0.363605i
\(893\) 21.8270 + 12.6018i 0.730412 + 0.421704i
\(894\) 11.7568 + 20.3635i 0.393208 + 0.681056i
\(895\) 0 0
\(896\) 17.9732 8.00218i 0.600442 0.267334i
\(897\) −8.67877 11.9453i −0.289776 0.398842i
\(898\) 7.95426i 0.265437i
\(899\) 34.6898 + 31.4866i 1.15697 + 1.05014i
\(900\) 0 0
\(901\) −20.1303 + 14.6255i −0.670638 + 0.487247i
\(902\) −0.00427071 0.00959216i −0.000142199 0.000319384i
\(903\) −1.69287 0.550046i −0.0563351 0.0183044i
\(904\) 0.291435 + 0.504780i 0.00969298 + 0.0167887i
\(905\) 0 0
\(906\) −20.7202 23.0121i −0.688381 0.764525i
\(907\) 6.21939 2.02080i 0.206511 0.0670996i −0.203935 0.978985i \(-0.565373\pi\)
0.410446 + 0.911885i \(0.365373\pi\)
\(908\) 0.330006 + 0.297139i 0.0109516 + 0.00986090i
\(909\) −4.12566 1.83686i −0.136839 0.0609248i
\(910\) 0 0
\(911\) 4.19052 + 39.8702i 0.138838 + 1.32096i 0.812952 + 0.582330i \(0.197859\pi\)
−0.674114 + 0.738627i \(0.735474\pi\)
\(912\) 12.4072 + 1.30404i 0.410842 + 0.0431812i
\(913\) −3.20835 + 15.0941i −0.106181 + 0.499542i
\(914\) 11.9157 + 8.65729i 0.394138 + 0.286358i
\(915\) 0 0
\(916\) −13.9036 2.95529i −0.459387 0.0976456i
\(917\) −4.83977 0.508680i −0.159823 0.0167981i
\(918\) −52.1500 + 5.48118i −1.72120 + 0.180906i
\(919\) 0.0179916 0.00382423i 0.000593488 0.000126150i −0.207615 0.978211i \(-0.566570\pi\)
0.208208 + 0.978084i \(0.433237\pi\)
\(920\) 0 0
\(921\) −0.384370 + 0.426886i −0.0126654 + 0.0140664i
\(922\) −17.0943 + 5.55427i −0.562970 + 0.182920i
\(923\) 0.245700 0.221229i 0.00808731 0.00728185i
\(924\) −6.61171 + 11.4518i −0.217509 + 0.376737i
\(925\) 0 0
\(926\) −12.4114 + 38.1983i −0.407864 + 1.25528i
\(927\) 2.45499 + 5.51401i 0.0806326 + 0.181104i
\(928\) −28.5042 39.2326i −0.935695 1.28787i
\(929\) −29.2558 −0.959851 −0.479925 0.877309i \(-0.659336\pi\)
−0.479925 + 0.877309i \(0.659336\pi\)
\(930\) 0 0
\(931\) 8.73598 0.286310
\(932\) −0.0764819 0.105268i −0.00250525 0.00344818i
\(933\) 12.8865 + 28.9435i 0.421885 + 0.947569i
\(934\) −5.45282 + 16.7820i −0.178422 + 0.549125i
\(935\) 0 0
\(936\) −7.28086 + 12.6108i −0.237982 + 0.412197i
\(937\) 7.93330 7.14318i 0.259170 0.233357i −0.529294 0.848438i \(-0.677543\pi\)
0.788464 + 0.615081i \(0.210877\pi\)
\(938\) 23.5577 7.65436i 0.769186 0.249924i
\(939\) 12.8473 14.2684i 0.419257 0.465632i
\(940\) 0 0
\(941\) 20.6431 4.38782i 0.672945 0.143039i 0.141249 0.989974i \(-0.454888\pi\)
0.531696 + 0.846935i \(0.321555\pi\)
\(942\) 36.7424 3.86178i 1.19713 0.125824i
\(943\) −0.00247837 0.000260488i −8.07069e−5 8.48264e-6i
\(944\) 18.4067 + 3.91246i 0.599087 + 0.127340i
\(945\) 0 0
\(946\) −7.72509 5.61261i −0.251164 0.182482i
\(947\) −9.58705 + 45.1035i −0.311537 + 1.46567i 0.492095 + 0.870541i \(0.336231\pi\)
−0.803633 + 0.595126i \(0.797102\pi\)
\(948\) 5.32662 + 0.559850i 0.173000 + 0.0181831i
\(949\) −1.96788 18.7232i −0.0638802 0.607779i
\(950\) 0 0
\(951\) 22.4543 + 9.99729i 0.728130 + 0.324184i
\(952\) 11.2994 + 10.1740i 0.366216 + 0.329742i
\(953\) −8.30313 + 2.69785i −0.268965 + 0.0873920i −0.440394 0.897804i \(-0.645161\pi\)
0.171430 + 0.985196i \(0.445161\pi\)
\(954\) 9.35391 + 10.3886i 0.302844 + 0.336342i
\(955\) 0 0
\(956\) 9.34727 + 16.1899i 0.302312 + 0.523620i
\(957\) −52.5077 17.0608i −1.69733 0.551497i
\(958\) 4.64439 + 10.4315i 0.150053 + 0.337025i
\(959\) −9.21438 + 6.69464i −0.297548 + 0.216181i
\(960\) 0 0
\(961\) −28.4197 + 12.3823i −0.916765 + 0.399428i
\(962\) 109.196i 3.52061i
\(963\) 4.25271 + 5.85335i 0.137042 + 0.188621i
\(964\) −1.87185 + 0.833401i −0.0602882 + 0.0268420i
\(965\) 0 0
\(966\) 4.33080 + 7.50117i 0.139341 + 0.241346i
\(967\) 8.36547 + 4.82981i 0.269015 + 0.155316i 0.628440 0.777858i \(-0.283694\pi\)
−0.359425 + 0.933174i \(0.617027\pi\)
\(968\) 27.5558 24.8114i 0.885678 0.797468i
\(969\) 4.33882 + 13.3535i 0.139383 + 0.428977i
\(970\) 0 0
\(971\) 31.8789 + 14.1934i 1.02304 + 0.455488i 0.848519 0.529165i \(-0.177495\pi\)
0.174524 + 0.984653i \(0.444161\pi\)
\(972\) 3.61263 + 16.9961i 0.115875 + 0.545150i
\(973\) −18.9816 + 1.99505i −0.608523 + 0.0639584i
\(974\) −3.63047 + 34.5416i −0.116328 + 1.10679i
\(975\) 0 0
\(976\) −43.8197 31.8369i −1.40263 1.01907i
\(977\) 19.8325 27.2971i 0.634498 0.873312i −0.363809 0.931474i \(-0.618524\pi\)
0.998307 + 0.0581615i \(0.0185238\pi\)
\(978\) −6.02016 + 28.3226i −0.192504 + 0.905658i
\(979\) 4.26778 40.6052i 0.136399 1.29775i
\(980\) 0 0
\(981\) 20.5752 4.37339i 0.656915 0.139631i
\(982\) −0.289216 + 0.649589i −0.00922924 + 0.0207292i
\(983\) 7.99315 + 7.19707i 0.254942 + 0.229551i 0.786684 0.617355i \(-0.211796\pi\)
−0.531742 + 0.846906i \(0.678463\pi\)
\(984\) −0.000521619 0.00160538i −1.66286e−5 5.11776e-5i
\(985\) 0 0
\(986\) 41.7721 72.3514i 1.33029 2.30414i
\(987\) −18.8789 + 10.8997i −0.600921 + 0.346942i
\(988\) −13.1120 4.26035i −0.417148 0.135540i
\(989\) −2.07034 + 0.921776i −0.0658331 + 0.0293108i
\(990\) 0 0
\(991\) 16.5667 0.526258 0.263129 0.964761i \(-0.415245\pi\)
0.263129 + 0.964761i \(0.415245\pi\)
\(992\) 31.4141 6.54626i 0.997397 0.207844i
\(993\) 4.16054i 0.132031i
\(994\) −0.156909 + 0.114001i −0.00497685 + 0.00361590i
\(995\) 0 0
\(996\) 1.00886 3.10496i 0.0319670 0.0983843i
\(997\) 35.2682 20.3621i 1.11695 0.644874i 0.176332 0.984331i \(-0.443577\pi\)
0.940622 + 0.339457i \(0.110243\pi\)
\(998\) 26.5297 + 15.3169i 0.839782 + 0.484848i
\(999\) −40.6989 45.2007i −1.28766 1.43009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.c.49.9 80
5.2 odd 4 155.2.q.a.111.1 yes 40
5.3 odd 4 775.2.bl.c.576.5 40
5.4 even 2 inner 775.2.ck.c.49.2 80
31.19 even 15 inner 775.2.ck.c.174.2 80
155.19 even 30 inner 775.2.ck.c.174.9 80
155.22 even 60 4805.2.a.y.1.16 20
155.102 odd 60 4805.2.a.x.1.16 20
155.112 odd 60 155.2.q.a.81.1 40
155.143 odd 60 775.2.bl.c.701.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.81.1 40 155.112 odd 60
155.2.q.a.111.1 yes 40 5.2 odd 4
775.2.bl.c.576.5 40 5.3 odd 4
775.2.bl.c.701.5 40 155.143 odd 60
775.2.ck.c.49.2 80 5.4 even 2 inner
775.2.ck.c.49.9 80 1.1 even 1 trivial
775.2.ck.c.174.2 80 31.19 even 15 inner
775.2.ck.c.174.9 80 155.19 even 30 inner
4805.2.a.x.1.16 20 155.102 odd 60
4805.2.a.y.1.16 20 155.22 even 60