Properties

Label 775.2.ck.c.49.3
Level $775$
Weight $2$
Character 775.49
Analytic conductor $6.188$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 49.3
Character \(\chi\) \(=\) 775.49
Dual form 775.2.ck.c.174.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866342 - 1.19242i) q^{2} +(-1.18190 - 2.65459i) q^{3} +(-0.0532763 + 0.163968i) q^{4} +(-2.14145 + 3.70910i) q^{6} +(2.57003 - 2.31407i) q^{7} +(-2.56187 + 0.832401i) q^{8} +(-3.64256 + 4.04548i) q^{9} +(-2.60914 + 0.554589i) q^{11} +(0.498233 - 0.0523664i) q^{12} +(1.40170 + 0.147324i) q^{13} +(-4.98586 - 1.05978i) q^{14} +(3.49098 + 2.53634i) q^{16} +(-0.554253 + 2.60755i) q^{17} +(7.97960 + 0.838689i) q^{18} +(0.482893 + 4.59442i) q^{19} +(-9.18042 - 4.08739i) q^{21} +(2.92170 + 2.63071i) q^{22} +(-7.56957 + 2.45950i) q^{23} +(5.23755 + 5.81689i) q^{24} +(-1.03868 - 1.79904i) q^{26} +(6.75345 + 2.19433i) q^{27} +(0.242510 + 0.544687i) q^{28} +(-7.61531 + 5.53285i) q^{29} +(1.63570 - 5.32207i) q^{31} -0.972630i q^{32} +(4.55594 + 6.27071i) q^{33} +(3.58946 - 1.59813i) q^{34} +(-0.469264 - 0.812790i) q^{36} +(-8.26300 - 4.77065i) q^{37} +(5.06012 - 4.55615i) q^{38} +(-1.26558 - 3.89505i) q^{39} +(-0.186553 - 0.0830590i) q^{41} +(3.07951 + 14.4880i) q^{42} +(-3.20308 + 0.336657i) q^{43} +(0.0480705 - 0.457360i) q^{44} +(9.49058 + 6.89531i) q^{46} +(3.29049 - 4.52897i) q^{47} +(2.60697 - 12.2648i) q^{48} +(0.518459 - 4.93281i) q^{49} +(7.57705 - 1.61055i) q^{51} +(-0.0988335 + 0.221984i) q^{52} +(-2.88732 - 2.59976i) q^{53} +(-3.23424 - 9.95396i) q^{54} +(-4.65785 + 8.06763i) q^{56} +(11.6256 - 6.71202i) q^{57} +(13.1949 + 4.28729i) q^{58} +(9.59361 - 4.27135i) q^{59} -1.40790 q^{61} +(-7.76321 + 2.66030i) q^{62} +18.8261i q^{63} +(5.82218 - 4.23006i) q^{64} +(3.53030 - 10.8652i) q^{66} +(-4.06251 + 2.34549i) q^{67} +(-0.398025 - 0.229800i) q^{68} +(15.4754 + 17.1872i) q^{69} +(6.37569 - 7.08092i) q^{71} +(5.96430 - 13.3960i) q^{72} +(0.318386 + 1.49789i) q^{73} +(1.46998 + 13.9860i) q^{74} +(-0.779063 - 0.165595i) q^{76} +(-5.42221 + 7.46303i) q^{77} +(-3.54810 + 4.88354i) q^{78} +(-9.67493 - 2.05647i) q^{79} +(-0.449782 - 4.27939i) q^{81} +(0.0625781 + 0.294407i) q^{82} +(2.84228 - 6.38388i) q^{83} +(1.15930 - 1.28753i) q^{84} +(3.17639 + 3.52774i) q^{86} +(23.6880 + 13.6763i) q^{87} +(6.22262 - 3.59263i) q^{88} +(4.05038 - 12.4658i) q^{89} +(3.94332 - 2.86499i) q^{91} -1.37220i q^{92} +(-16.0612 + 1.94804i) q^{93} -8.25112 q^{94} +(-2.58193 + 1.14955i) q^{96} +(-14.1521 - 4.59828i) q^{97} +(-6.33113 + 3.65528i) q^{98} +(7.26037 - 12.5753i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 20 q^{4} + 8 q^{6} - 4 q^{9} - 56 q^{11} + 12 q^{14} + 16 q^{16} + 26 q^{19} - 16 q^{21} + 164 q^{24} + 64 q^{26} - 84 q^{29} - 20 q^{31} - 64 q^{34} - 26 q^{36} - 74 q^{39} + 72 q^{41} + 112 q^{44}+ \cdots - 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866342 1.19242i −0.612596 0.843166i 0.384192 0.923253i \(-0.374480\pi\)
−0.996788 + 0.0800872i \(0.974480\pi\)
\(3\) −1.18190 2.65459i −0.682370 1.53263i −0.838506 0.544892i \(-0.816571\pi\)
0.156137 0.987735i \(-0.450096\pi\)
\(4\) −0.0532763 + 0.163968i −0.0266381 + 0.0819838i
\(5\) 0 0
\(6\) −2.14145 + 3.70910i −0.874242 + 1.51423i
\(7\) 2.57003 2.31407i 0.971381 0.874636i −0.0207568 0.999785i \(-0.506608\pi\)
0.992138 + 0.125149i \(0.0399409\pi\)
\(8\) −2.56187 + 0.832401i −0.905757 + 0.294298i
\(9\) −3.64256 + 4.04548i −1.21419 + 1.34849i
\(10\) 0 0
\(11\) −2.60914 + 0.554589i −0.786684 + 0.167215i −0.583702 0.811968i \(-0.698397\pi\)
−0.202982 + 0.979183i \(0.565063\pi\)
\(12\) 0.498233 0.0523664i 0.143828 0.0151169i
\(13\) 1.40170 + 0.147324i 0.388760 + 0.0408604i 0.296893 0.954911i \(-0.404050\pi\)
0.0918678 + 0.995771i \(0.470716\pi\)
\(14\) −4.98586 1.05978i −1.33253 0.283237i
\(15\) 0 0
\(16\) 3.49098 + 2.53634i 0.872745 + 0.634086i
\(17\) −0.554253 + 2.60755i −0.134426 + 0.632425i 0.858412 + 0.512960i \(0.171451\pi\)
−0.992838 + 0.119464i \(0.961882\pi\)
\(18\) 7.97960 + 0.838689i 1.88081 + 0.197681i
\(19\) 0.482893 + 4.59442i 0.110783 + 1.05403i 0.898794 + 0.438371i \(0.144444\pi\)
−0.788011 + 0.615661i \(0.788889\pi\)
\(20\) 0 0
\(21\) −9.18042 4.08739i −2.00333 0.891941i
\(22\) 2.92170 + 2.63071i 0.622909 + 0.560870i
\(23\) −7.56957 + 2.45950i −1.57836 + 0.512842i −0.961635 0.274333i \(-0.911543\pi\)
−0.616730 + 0.787175i \(0.711543\pi\)
\(24\) 5.23755 + 5.81689i 1.06911 + 1.18737i
\(25\) 0 0
\(26\) −1.03868 1.79904i −0.203701 0.352821i
\(27\) 6.75345 + 2.19433i 1.29970 + 0.422299i
\(28\) 0.242510 + 0.544687i 0.0458301 + 0.102936i
\(29\) −7.61531 + 5.53285i −1.41413 + 1.02742i −0.421422 + 0.906865i \(0.638469\pi\)
−0.992706 + 0.120560i \(0.961531\pi\)
\(30\) 0 0
\(31\) 1.63570 5.32207i 0.293781 0.955873i
\(32\) 0.972630i 0.171938i
\(33\) 4.55594 + 6.27071i 0.793087 + 1.09159i
\(34\) 3.58946 1.59813i 0.615588 0.274077i
\(35\) 0 0
\(36\) −0.469264 0.812790i −0.0782107 0.135465i
\(37\) −8.26300 4.77065i −1.35843 0.784290i −0.369017 0.929423i \(-0.620306\pi\)
−0.989412 + 0.145133i \(0.953639\pi\)
\(38\) 5.06012 4.55615i 0.820859 0.739105i
\(39\) −1.26558 3.89505i −0.202655 0.623707i
\(40\) 0 0
\(41\) −0.186553 0.0830590i −0.0291348 0.0129716i 0.392118 0.919915i \(-0.371743\pi\)
−0.421252 + 0.906943i \(0.638409\pi\)
\(42\) 3.07951 + 14.4880i 0.475179 + 2.23554i
\(43\) −3.20308 + 0.336657i −0.488465 + 0.0513397i −0.345560 0.938397i \(-0.612311\pi\)
−0.142905 + 0.989736i \(0.545644\pi\)
\(44\) 0.0480705 0.457360i 0.00724690 0.0689496i
\(45\) 0 0
\(46\) 9.49058 + 6.89531i 1.39931 + 1.01666i
\(47\) 3.29049 4.52897i 0.479968 0.660619i −0.498531 0.866872i \(-0.666127\pi\)
0.978499 + 0.206253i \(0.0661270\pi\)
\(48\) 2.60697 12.2648i 0.376283 1.77027i
\(49\) 0.518459 4.93281i 0.0740656 0.704687i
\(50\) 0 0
\(51\) 7.57705 1.61055i 1.06100 0.225522i
\(52\) −0.0988335 + 0.221984i −0.0137057 + 0.0307836i
\(53\) −2.88732 2.59976i −0.396604 0.357104i 0.446566 0.894751i \(-0.352647\pi\)
−0.843170 + 0.537647i \(0.819313\pi\)
\(54\) −3.23424 9.95396i −0.440124 1.35456i
\(55\) 0 0
\(56\) −4.65785 + 8.06763i −0.622431 + 1.07808i
\(57\) 11.6256 6.71202i 1.53984 0.889029i
\(58\) 13.1949 + 4.28729i 1.73258 + 0.562949i
\(59\) 9.59361 4.27135i 1.24898 0.556083i 0.327628 0.944807i \(-0.393751\pi\)
0.921354 + 0.388724i \(0.127084\pi\)
\(60\) 0 0
\(61\) −1.40790 −0.180264 −0.0901318 0.995930i \(-0.528729\pi\)
−0.0901318 + 0.995930i \(0.528729\pi\)
\(62\) −7.76321 + 2.66030i −0.985928 + 0.337858i
\(63\) 18.8261i 2.37187i
\(64\) 5.82218 4.23006i 0.727772 0.528757i
\(65\) 0 0
\(66\) 3.53030 10.8652i 0.434550 1.33741i
\(67\) −4.06251 + 2.34549i −0.496314 + 0.286547i −0.727190 0.686436i \(-0.759174\pi\)
0.230876 + 0.972983i \(0.425841\pi\)
\(68\) −0.398025 0.229800i −0.0482677 0.0278674i
\(69\) 15.4754 + 17.1872i 1.86302 + 2.06910i
\(70\) 0 0
\(71\) 6.37569 7.08092i 0.756655 0.840350i −0.234630 0.972085i \(-0.575388\pi\)
0.991285 + 0.131735i \(0.0420546\pi\)
\(72\) 5.96430 13.3960i 0.702900 1.57874i
\(73\) 0.318386 + 1.49789i 0.0372643 + 0.175315i 0.992844 0.119418i \(-0.0381028\pi\)
−0.955580 + 0.294732i \(0.904769\pi\)
\(74\) 1.46998 + 13.9860i 0.170882 + 1.62583i
\(75\) 0 0
\(76\) −0.779063 0.165595i −0.0893646 0.0189950i
\(77\) −5.42221 + 7.46303i −0.617918 + 0.850491i
\(78\) −3.54810 + 4.88354i −0.401743 + 0.552952i
\(79\) −9.67493 2.05647i −1.08851 0.231371i −0.371503 0.928432i \(-0.621157\pi\)
−0.717012 + 0.697061i \(0.754491\pi\)
\(80\) 0 0
\(81\) −0.449782 4.27939i −0.0499758 0.475488i
\(82\) 0.0625781 + 0.294407i 0.00691060 + 0.0325118i
\(83\) 2.84228 6.38388i 0.311981 0.700721i −0.687699 0.725996i \(-0.741379\pi\)
0.999681 + 0.0252743i \(0.00804591\pi\)
\(84\) 1.15930 1.28753i 0.126490 0.140481i
\(85\) 0 0
\(86\) 3.17639 + 3.52774i 0.342519 + 0.380406i
\(87\) 23.6880 + 13.6763i 2.53962 + 1.46625i
\(88\) 6.22262 3.59263i 0.663333 0.382976i
\(89\) 4.05038 12.4658i 0.429339 1.32137i −0.469438 0.882965i \(-0.655543\pi\)
0.898777 0.438405i \(-0.144457\pi\)
\(90\) 0 0
\(91\) 3.94332 2.86499i 0.413373 0.300333i
\(92\) 1.37220i 0.143061i
\(93\) −16.0612 + 1.94804i −1.66546 + 0.202002i
\(94\) −8.25112 −0.851038
\(95\) 0 0
\(96\) −2.58193 + 1.14955i −0.263517 + 0.117326i
\(97\) −14.1521 4.59828i −1.43692 0.466885i −0.515987 0.856596i \(-0.672575\pi\)
−0.920937 + 0.389712i \(0.872575\pi\)
\(98\) −6.33113 + 3.65528i −0.639540 + 0.369239i
\(99\) 7.26037 12.5753i 0.729694 1.26387i
\(100\) 0 0
\(101\) −2.78162 8.56095i −0.276782 0.851847i −0.988742 0.149627i \(-0.952193\pi\)
0.711961 0.702219i \(-0.247807\pi\)
\(102\) −8.48476 7.63971i −0.840117 0.756444i
\(103\) −0.871417 + 1.95724i −0.0858633 + 0.192852i −0.951374 0.308038i \(-0.900327\pi\)
0.865511 + 0.500891i \(0.166994\pi\)
\(104\) −3.71359 + 0.789348i −0.364148 + 0.0774020i
\(105\) 0 0
\(106\) −0.598587 + 5.69517i −0.0581399 + 0.553164i
\(107\) −1.29355 + 6.08566i −0.125052 + 0.588323i 0.870342 + 0.492449i \(0.163898\pi\)
−0.995393 + 0.0958743i \(0.969435\pi\)
\(108\) −0.719597 + 0.990441i −0.0692433 + 0.0953052i
\(109\) −11.8039 8.57606i −1.13061 0.821437i −0.144828 0.989457i \(-0.546263\pi\)
−0.985784 + 0.168020i \(0.946263\pi\)
\(110\) 0 0
\(111\) −2.89807 + 27.5733i −0.275073 + 2.61714i
\(112\) 14.8412 1.55987i 1.40236 0.147394i
\(113\) −2.35359 11.0728i −0.221407 1.04164i −0.938665 0.344831i \(-0.887936\pi\)
0.717258 0.696808i \(-0.245397\pi\)
\(114\) −18.0752 8.04762i −1.69290 0.753728i
\(115\) 0 0
\(116\) −0.501492 1.54343i −0.0465624 0.143304i
\(117\) −5.70176 + 5.13389i −0.527128 + 0.474628i
\(118\) −13.4046 7.73914i −1.23399 0.712445i
\(119\) 4.60961 + 7.98408i 0.422562 + 0.731899i
\(120\) 0 0
\(121\) −3.54898 + 1.58011i −0.322634 + 0.143646i
\(122\) 1.21973 + 1.67881i 0.110429 + 0.151992i
\(123\) 0.593390i 0.0535042i
\(124\) 0.785503 + 0.551742i 0.0705403 + 0.0495479i
\(125\) 0 0
\(126\) 22.4486 16.3099i 1.99988 1.45300i
\(127\) 2.66374 + 5.98285i 0.236368 + 0.530892i 0.992314 0.123742i \(-0.0394895\pi\)
−0.755946 + 0.654634i \(0.772823\pi\)
\(128\) −11.9380 3.87890i −1.05518 0.342850i
\(129\) 4.67940 + 8.10495i 0.411998 + 0.713601i
\(130\) 0 0
\(131\) −0.867294 0.963228i −0.0757759 0.0841576i 0.704065 0.710136i \(-0.251367\pi\)
−0.779840 + 0.625978i \(0.784700\pi\)
\(132\) −1.27092 + 0.412946i −0.110619 + 0.0359423i
\(133\) 11.8729 + 10.6904i 1.02951 + 0.926972i
\(134\) 6.31632 + 2.81221i 0.545647 + 0.242938i
\(135\) 0 0
\(136\) −0.750609 7.14156i −0.0643642 0.612384i
\(137\) 1.01699 + 0.106890i 0.0868875 + 0.00913224i 0.147872 0.989006i \(-0.452758\pi\)
−0.0609850 + 0.998139i \(0.519424\pi\)
\(138\) 7.08731 33.3432i 0.603312 2.83836i
\(139\) 5.63093 + 4.09111i 0.477609 + 0.347004i 0.800399 0.599467i \(-0.204621\pi\)
−0.322790 + 0.946471i \(0.604621\pi\)
\(140\) 0 0
\(141\) −15.9116 3.38211i −1.34000 0.284825i
\(142\) −13.9669 1.46798i −1.17208 0.123190i
\(143\) −3.73892 + 0.392976i −0.312664 + 0.0328623i
\(144\) −22.9768 + 4.88388i −1.91474 + 0.406990i
\(145\) 0 0
\(146\) 1.51028 1.67733i 0.124991 0.138817i
\(147\) −13.7073 + 4.45379i −1.13056 + 0.367342i
\(148\) 1.22245 1.10070i 0.100485 0.0904771i
\(149\) −10.3942 + 18.0033i −0.851527 + 1.47489i 0.0283025 + 0.999599i \(0.490990\pi\)
−0.879830 + 0.475289i \(0.842344\pi\)
\(150\) 0 0
\(151\) 0.0452157 0.139160i 0.00367960 0.0113246i −0.949200 0.314674i \(-0.898105\pi\)
0.952879 + 0.303349i \(0.0981049\pi\)
\(152\) −5.06151 11.3683i −0.410543 0.922094i
\(153\) −8.52989 11.7404i −0.689601 0.949154i
\(154\) 13.5965 1.09564
\(155\) 0 0
\(156\) 0.706087 0.0565322
\(157\) 0.244039 + 0.335891i 0.0194764 + 0.0268070i 0.818644 0.574301i \(-0.194726\pi\)
−0.799168 + 0.601108i \(0.794726\pi\)
\(158\) 5.92963 + 13.3182i 0.471736 + 1.05954i
\(159\) −3.48876 + 10.7373i −0.276677 + 0.851524i
\(160\) 0 0
\(161\) −13.7626 + 23.8375i −1.08464 + 1.87866i
\(162\) −4.71315 + 4.24374i −0.370300 + 0.333420i
\(163\) 10.0246 3.25720i 0.785191 0.255124i 0.111136 0.993805i \(-0.464551\pi\)
0.674055 + 0.738681i \(0.264551\pi\)
\(164\) 0.0235578 0.0261636i 0.00183956 0.00204304i
\(165\) 0 0
\(166\) −10.0746 + 2.14143i −0.781943 + 0.166207i
\(167\) −14.6169 + 1.53630i −1.13109 + 0.118882i −0.651527 0.758625i \(-0.725871\pi\)
−0.479563 + 0.877508i \(0.659205\pi\)
\(168\) 26.9214 + 2.82955i 2.07703 + 0.218304i
\(169\) −10.7729 2.28984i −0.828682 0.176142i
\(170\) 0 0
\(171\) −20.3456 14.7819i −1.55587 1.13040i
\(172\) 0.115447 0.543136i 0.00880276 0.0414137i
\(173\) −17.4044 1.82928i −1.32323 0.139078i −0.583575 0.812059i \(-0.698347\pi\)
−0.739659 + 0.672981i \(0.765013\pi\)
\(174\) −4.21407 40.0942i −0.319468 3.03954i
\(175\) 0 0
\(176\) −10.5151 4.68161i −0.792603 0.352890i
\(177\) −22.6774 20.4188i −1.70453 1.53477i
\(178\) −18.3734 + 5.96989i −1.37715 + 0.447462i
\(179\) 9.50956 + 10.5614i 0.710778 + 0.789399i 0.985053 0.172252i \(-0.0551044\pi\)
−0.274275 + 0.961651i \(0.588438\pi\)
\(180\) 0 0
\(181\) 10.6424 + 18.4332i 0.791044 + 1.37013i 0.925321 + 0.379185i \(0.123796\pi\)
−0.134277 + 0.990944i \(0.542871\pi\)
\(182\) −6.83253 2.22002i −0.506461 0.164559i
\(183\) 1.66400 + 3.73741i 0.123006 + 0.276277i
\(184\) 17.3449 12.6018i 1.27869 0.929020i
\(185\) 0 0
\(186\) 16.2373 + 17.4639i 1.19058 + 1.28052i
\(187\) 7.11084i 0.519996i
\(188\) 0.567299 + 0.780821i 0.0413746 + 0.0569472i
\(189\) 22.4344 9.98844i 1.63186 0.726552i
\(190\) 0 0
\(191\) −6.87683 11.9110i −0.497590 0.861851i 0.502406 0.864632i \(-0.332448\pi\)
−0.999996 + 0.00278081i \(0.999115\pi\)
\(192\) −18.1103 10.4560i −1.30700 0.754596i
\(193\) 15.1633 13.6531i 1.09148 0.982773i 0.0915648 0.995799i \(-0.470813\pi\)
0.999915 + 0.0130261i \(0.00414646\pi\)
\(194\) 6.77745 + 20.8588i 0.486592 + 1.49758i
\(195\) 0 0
\(196\) 0.781199 + 0.347812i 0.0557999 + 0.0248437i
\(197\) 3.19085 + 15.0118i 0.227338 + 1.06954i 0.932688 + 0.360684i \(0.117457\pi\)
−0.705350 + 0.708859i \(0.749210\pi\)
\(198\) −21.2850 + 2.23714i −1.51266 + 0.158987i
\(199\) 1.55425 14.7877i 0.110178 1.04827i −0.790106 0.612971i \(-0.789974\pi\)
0.900284 0.435304i \(-0.143359\pi\)
\(200\) 0 0
\(201\) 11.0278 + 8.01215i 0.777839 + 0.565133i
\(202\) −7.79839 + 10.7336i −0.548693 + 0.755211i
\(203\) −6.76822 + 31.8420i −0.475036 + 2.23487i
\(204\) −0.139599 + 1.32819i −0.00977387 + 0.0929922i
\(205\) 0 0
\(206\) 3.08879 0.656542i 0.215206 0.0457434i
\(207\) 17.6228 39.5814i 1.22487 2.75110i
\(208\) 4.51963 + 4.06949i 0.313380 + 0.282168i
\(209\) −3.80795 11.7197i −0.263401 0.810666i
\(210\) 0 0
\(211\) −4.43407 + 7.68004i −0.305254 + 0.528716i −0.977318 0.211777i \(-0.932075\pi\)
0.672064 + 0.740493i \(0.265408\pi\)
\(212\) 0.580102 0.334922i 0.0398415 0.0230025i
\(213\) −26.3323 8.55589i −1.80426 0.586240i
\(214\) 8.37730 3.72981i 0.572660 0.254965i
\(215\) 0 0
\(216\) −19.1280 −1.30150
\(217\) −8.11183 17.4630i −0.550667 1.18547i
\(218\) 21.5050i 1.45650i
\(219\) 3.59998 2.61554i 0.243264 0.176742i
\(220\) 0 0
\(221\) −1.16105 + 3.57334i −0.0781006 + 0.240369i
\(222\) 35.3896 20.4322i 2.37519 1.37132i
\(223\) 18.7719 + 10.8379i 1.25706 + 0.725762i 0.972501 0.232897i \(-0.0748205\pi\)
0.284556 + 0.958659i \(0.408154\pi\)
\(224\) −2.25073 2.49969i −0.150383 0.167018i
\(225\) 0 0
\(226\) −11.1643 + 12.3993i −0.742641 + 0.824787i
\(227\) −1.29900 + 2.91760i −0.0862176 + 0.193648i −0.951509 0.307622i \(-0.900467\pi\)
0.865291 + 0.501270i \(0.167134\pi\)
\(228\) 0.481187 + 2.26381i 0.0318674 + 0.149924i
\(229\) −0.902887 8.59039i −0.0596644 0.567669i −0.982991 0.183653i \(-0.941208\pi\)
0.923327 0.384016i \(-0.125459\pi\)
\(230\) 0 0
\(231\) 26.2198 + 5.57319i 1.72513 + 0.366689i
\(232\) 14.9039 20.5134i 0.978487 1.34677i
\(233\) 4.37248 6.01820i 0.286451 0.394265i −0.641407 0.767201i \(-0.721649\pi\)
0.927857 + 0.372936i \(0.121649\pi\)
\(234\) 11.0614 + 2.35118i 0.723107 + 0.153701i
\(235\) 0 0
\(236\) 0.189251 + 1.80060i 0.0123192 + 0.117209i
\(237\) 5.97571 + 28.1135i 0.388164 + 1.82617i
\(238\) 5.52685 12.4135i 0.358253 0.804648i
\(239\) 16.4005 18.2146i 1.06086 1.17820i 0.0774117 0.996999i \(-0.475334\pi\)
0.983446 0.181202i \(-0.0579989\pi\)
\(240\) 0 0
\(241\) −5.04341 5.60127i −0.324874 0.360810i 0.558478 0.829519i \(-0.311386\pi\)
−0.883352 + 0.468710i \(0.844719\pi\)
\(242\) 4.95877 + 2.86295i 0.318762 + 0.184037i
\(243\) 7.62050 4.39970i 0.488855 0.282241i
\(244\) 0.0750079 0.230851i 0.00480189 0.0147787i
\(245\) 0 0
\(246\) 0.707568 0.514078i 0.0451129 0.0327764i
\(247\) 6.51112i 0.414293i
\(248\) 0.239648 + 14.9960i 0.0152177 + 0.952247i
\(249\) −20.3059 −1.28683
\(250\) 0 0
\(251\) 8.88229 3.95465i 0.560645 0.249615i −0.106792 0.994281i \(-0.534058\pi\)
0.667437 + 0.744666i \(0.267391\pi\)
\(252\) −3.08688 1.00299i −0.194455 0.0631822i
\(253\) 18.3860 10.6152i 1.15592 0.667370i
\(254\) 4.82634 8.35947i 0.302832 0.524520i
\(255\) 0 0
\(256\) 1.26940 + 3.90682i 0.0793376 + 0.244176i
\(257\) 1.92310 + 1.73157i 0.119960 + 0.108012i 0.726928 0.686714i \(-0.240948\pi\)
−0.606968 + 0.794727i \(0.707614\pi\)
\(258\) 5.61053 12.6015i 0.349296 0.784532i
\(259\) −32.2758 + 6.86043i −2.00552 + 0.426286i
\(260\) 0 0
\(261\) 5.35625 50.9613i 0.331544 3.15443i
\(262\) −0.397196 + 1.86866i −0.0245389 + 0.115446i
\(263\) −8.05344 + 11.0846i −0.496596 + 0.683506i −0.981588 0.191013i \(-0.938823\pi\)
0.484991 + 0.874519i \(0.338823\pi\)
\(264\) −16.8915 12.2724i −1.03960 0.755312i
\(265\) 0 0
\(266\) 2.46143 23.4189i 0.150920 1.43591i
\(267\) −37.8787 + 3.98121i −2.31814 + 0.243646i
\(268\) −0.168149 0.791078i −0.0102713 0.0483228i
\(269\) −18.5821 8.27330i −1.13297 0.504432i −0.247391 0.968916i \(-0.579573\pi\)
−0.885582 + 0.464484i \(0.846240\pi\)
\(270\) 0 0
\(271\) −8.58819 26.4317i −0.521696 1.60561i −0.770759 0.637127i \(-0.780123\pi\)
0.249064 0.968487i \(-0.419877\pi\)
\(272\) −8.54854 + 7.69714i −0.518331 + 0.466708i
\(273\) −12.2660 7.08177i −0.742371 0.428608i
\(274\) −0.753605 1.30528i −0.0455269 0.0788549i
\(275\) 0 0
\(276\) −3.64262 + 1.62180i −0.219260 + 0.0976207i
\(277\) 2.99878 + 4.12746i 0.180179 + 0.247995i 0.889548 0.456843i \(-0.151020\pi\)
−0.709368 + 0.704838i \(0.751020\pi\)
\(278\) 10.2587i 0.615277i
\(279\) 15.5722 + 26.0032i 0.932282 + 1.55677i
\(280\) 0 0
\(281\) 3.96958 2.88407i 0.236805 0.172049i −0.463053 0.886330i \(-0.653246\pi\)
0.699859 + 0.714281i \(0.253246\pi\)
\(282\) 9.75198 + 21.9033i 0.580722 + 1.30432i
\(283\) −14.6470 4.75911i −0.870675 0.282899i −0.160595 0.987020i \(-0.551341\pi\)
−0.710080 + 0.704121i \(0.751341\pi\)
\(284\) 0.821367 + 1.42265i 0.0487392 + 0.0844188i
\(285\) 0 0
\(286\) 3.70777 + 4.11790i 0.219245 + 0.243496i
\(287\) −0.671653 + 0.218233i −0.0396464 + 0.0128819i
\(288\) 3.93475 + 3.54287i 0.231858 + 0.208765i
\(289\) 9.03814 + 4.02404i 0.531655 + 0.236708i
\(290\) 0 0
\(291\) 4.51976 + 43.0026i 0.264953 + 2.52086i
\(292\) −0.262568 0.0275970i −0.0153656 0.00161499i
\(293\) −3.08839 + 14.5297i −0.180426 + 0.848835i 0.791060 + 0.611738i \(0.209529\pi\)
−0.971486 + 0.237097i \(0.923804\pi\)
\(294\) 17.1860 + 12.4864i 1.00231 + 0.728220i
\(295\) 0 0
\(296\) 25.1398 + 5.34363i 1.46122 + 0.310592i
\(297\) −18.8376 1.97991i −1.09307 0.114886i
\(298\) 30.4724 3.20278i 1.76522 0.185532i
\(299\) −10.9726 + 2.33229i −0.634561 + 0.134880i
\(300\) 0 0
\(301\) −7.45296 + 8.27735i −0.429582 + 0.477099i
\(302\) −0.205108 + 0.0666438i −0.0118027 + 0.00383492i
\(303\) −19.4382 + 17.5022i −1.11670 + 1.00548i
\(304\) −9.96727 + 17.2638i −0.571662 + 0.990148i
\(305\) 0 0
\(306\) −6.60964 + 20.3424i −0.377848 + 1.16290i
\(307\) 9.15872 + 20.5708i 0.522716 + 1.17404i 0.961339 + 0.275368i \(0.0887997\pi\)
−0.438623 + 0.898671i \(0.644534\pi\)
\(308\) −0.934819 1.28667i −0.0532663 0.0733147i
\(309\) 6.22558 0.354161
\(310\) 0 0
\(311\) 9.55538 0.541836 0.270918 0.962602i \(-0.412673\pi\)
0.270918 + 0.962602i \(0.412673\pi\)
\(312\) 6.48448 + 8.92513i 0.367112 + 0.505286i
\(313\) 5.58387 + 12.5416i 0.315619 + 0.708892i 0.999791 0.0204285i \(-0.00650305\pi\)
−0.684172 + 0.729320i \(0.739836\pi\)
\(314\) 0.189101 0.581992i 0.0106716 0.0328437i
\(315\) 0 0
\(316\) 0.852639 1.47681i 0.0479647 0.0830772i
\(317\) 22.2105 19.9984i 1.24746 1.12322i 0.259961 0.965619i \(-0.416290\pi\)
0.987503 0.157602i \(-0.0503764\pi\)
\(318\) 15.8258 5.14212i 0.887467 0.288356i
\(319\) 16.8009 18.6593i 0.940672 1.04472i
\(320\) 0 0
\(321\) 17.6838 3.75880i 0.987011 0.209796i
\(322\) 40.3473 4.24068i 2.24847 0.236324i
\(323\) −12.2478 1.28730i −0.681488 0.0716273i
\(324\) 0.725644 + 0.154240i 0.0403136 + 0.00856891i
\(325\) 0 0
\(326\) −12.5687 9.13170i −0.696116 0.505758i
\(327\) −8.81485 + 41.4706i −0.487462 + 2.29333i
\(328\) 0.547064 + 0.0574987i 0.0302065 + 0.00317483i
\(329\) −2.02368 19.2540i −0.111569 1.06151i
\(330\) 0 0
\(331\) −12.5135 5.57139i −0.687807 0.306231i 0.0329126 0.999458i \(-0.489522\pi\)
−0.720719 + 0.693227i \(0.756188\pi\)
\(332\) 0.895322 + 0.806151i 0.0491372 + 0.0442433i
\(333\) 49.3980 16.0504i 2.70700 0.879556i
\(334\) 14.4951 + 16.0985i 0.793139 + 0.880870i
\(335\) 0 0
\(336\) −21.6816 37.5537i −1.18283 2.04872i
\(337\) 9.41650 + 3.05961i 0.512950 + 0.166667i 0.554043 0.832488i \(-0.313084\pi\)
−0.0410937 + 0.999155i \(0.513084\pi\)
\(338\) 6.60254 + 14.8295i 0.359131 + 0.806621i
\(339\) −26.6119 + 19.3347i −1.44536 + 1.05012i
\(340\) 0 0
\(341\) −1.31621 + 14.7932i −0.0712766 + 0.801094i
\(342\) 37.0666i 2.00433i
\(343\) 4.14685 + 5.70765i 0.223909 + 0.308184i
\(344\) 7.92562 3.52871i 0.427321 0.190256i
\(345\) 0 0
\(346\) 12.8969 + 22.3381i 0.693343 + 1.20090i
\(347\) −19.0913 11.0224i −1.02487 0.591711i −0.109362 0.994002i \(-0.534881\pi\)
−0.915512 + 0.402291i \(0.868214\pi\)
\(348\) −3.50447 + 3.15544i −0.187859 + 0.169149i
\(349\) 5.14640 + 15.8390i 0.275480 + 0.847842i 0.989092 + 0.147300i \(0.0470582\pi\)
−0.713611 + 0.700542i \(0.752942\pi\)
\(350\) 0 0
\(351\) 9.14300 + 4.07073i 0.488017 + 0.217279i
\(352\) 0.539410 + 2.53772i 0.0287507 + 0.135261i
\(353\) −8.66048 + 0.910253i −0.460951 + 0.0484479i −0.332158 0.943224i \(-0.607777\pi\)
−0.128793 + 0.991672i \(0.541110\pi\)
\(354\) −4.70137 + 44.7305i −0.249875 + 2.37740i
\(355\) 0 0
\(356\) 1.82819 + 1.32826i 0.0968941 + 0.0703977i
\(357\) 15.7463 21.6730i 0.833385 1.14706i
\(358\) 4.35511 20.4892i 0.230175 1.08289i
\(359\) −1.51620 + 14.4256i −0.0800218 + 0.761357i 0.878770 + 0.477246i \(0.158365\pi\)
−0.958792 + 0.284111i \(0.908302\pi\)
\(360\) 0 0
\(361\) −2.29072 + 0.486908i −0.120564 + 0.0256267i
\(362\) 12.7601 28.6596i 0.670656 1.50632i
\(363\) 8.38907 + 7.55355i 0.440312 + 0.396459i
\(364\) 0.259680 + 0.799213i 0.0136109 + 0.0418901i
\(365\) 0 0
\(366\) 3.01495 5.22205i 0.157594 0.272961i
\(367\) −12.4593 + 7.19340i −0.650372 + 0.375493i −0.788599 0.614908i \(-0.789193\pi\)
0.138227 + 0.990401i \(0.455860\pi\)
\(368\) −32.6634 10.6130i −1.70270 0.553239i
\(369\) 1.01555 0.452150i 0.0528672 0.0235380i
\(370\) 0 0
\(371\) −13.4365 −0.697590
\(372\) 0.536264 2.73729i 0.0278040 0.141922i
\(373\) 18.6605i 0.966203i −0.875564 0.483102i \(-0.839510\pi\)
0.875564 0.483102i \(-0.160490\pi\)
\(374\) −8.47909 + 6.16042i −0.438443 + 0.318548i
\(375\) 0 0
\(376\) −4.65988 + 14.3416i −0.240315 + 0.739614i
\(377\) −11.4895 + 6.63345i −0.591738 + 0.341640i
\(378\) −31.3463 18.0978i −1.61228 0.930849i
\(379\) −8.57853 9.52743i −0.440650 0.489391i 0.481379 0.876513i \(-0.340136\pi\)
−0.922029 + 0.387121i \(0.873469\pi\)
\(380\) 0 0
\(381\) 12.7337 14.1422i 0.652369 0.724529i
\(382\) −8.24521 + 18.5191i −0.421862 + 0.947517i
\(383\) −5.80583 27.3143i −0.296664 1.39570i −0.833738 0.552160i \(-0.813804\pi\)
0.537074 0.843535i \(-0.319530\pi\)
\(384\) 3.81266 + 36.2751i 0.194564 + 1.85115i
\(385\) 0 0
\(386\) −29.4168 6.25274i −1.49728 0.318256i
\(387\) 10.3055 14.1843i 0.523856 0.721026i
\(388\) 1.50794 2.07550i 0.0765540 0.105367i
\(389\) 3.79125 + 0.805855i 0.192224 + 0.0408585i 0.303018 0.952985i \(-0.402006\pi\)
−0.110794 + 0.993843i \(0.535339\pi\)
\(390\) 0 0
\(391\) −2.21783 21.1012i −0.112160 1.06714i
\(392\) 2.77785 + 13.0688i 0.140303 + 0.660072i
\(393\) −1.53192 + 3.44075i −0.0772751 + 0.173563i
\(394\) 15.1359 16.8101i 0.762536 0.846882i
\(395\) 0 0
\(396\) 1.67514 + 1.86043i 0.0841789 + 0.0934901i
\(397\) 23.8574 + 13.7741i 1.19737 + 0.691300i 0.959967 0.280112i \(-0.0903716\pi\)
0.237399 + 0.971412i \(0.423705\pi\)
\(398\) −18.9797 + 10.9579i −0.951364 + 0.549270i
\(399\) 14.3460 44.1525i 0.718199 2.21039i
\(400\) 0 0
\(401\) 9.00271 6.54085i 0.449574 0.326635i −0.339854 0.940478i \(-0.610378\pi\)
0.789427 + 0.613844i \(0.210378\pi\)
\(402\) 20.0910i 1.00205i
\(403\) 3.07683 7.21895i 0.153268 0.359602i
\(404\) 1.55191 0.0772105
\(405\) 0 0
\(406\) 43.8325 19.5155i 2.17537 0.968537i
\(407\) 24.2050 + 7.86470i 1.19980 + 0.389839i
\(408\) −18.0708 + 10.4332i −0.894636 + 0.516519i
\(409\) −1.26897 + 2.19793i −0.0627468 + 0.108681i −0.895692 0.444674i \(-0.853319\pi\)
0.832946 + 0.553355i \(0.186653\pi\)
\(410\) 0 0
\(411\) −0.918232 2.82603i −0.0452930 0.139398i
\(412\) −0.274497 0.247158i −0.0135235 0.0121766i
\(413\) 14.7717 33.1778i 0.726868 1.63257i
\(414\) −62.4649 + 13.2773i −3.06998 + 0.652545i
\(415\) 0 0
\(416\) 0.143292 1.36333i 0.00702547 0.0668429i
\(417\) 4.20502 19.7831i 0.205921 0.968782i
\(418\) −10.6757 + 14.6939i −0.522167 + 0.718702i
\(419\) 14.6114 + 10.6158i 0.713812 + 0.518615i 0.884401 0.466727i \(-0.154567\pi\)
−0.170589 + 0.985342i \(0.554567\pi\)
\(420\) 0 0
\(421\) 0.184868 1.75890i 0.00900991 0.0857236i −0.989093 0.147293i \(-0.952944\pi\)
0.998103 + 0.0615695i \(0.0196106\pi\)
\(422\) 12.9992 1.36627i 0.632793 0.0665092i
\(423\) 6.33603 + 29.8087i 0.308068 + 1.44935i
\(424\) 9.56098 + 4.25682i 0.464322 + 0.206730i
\(425\) 0 0
\(426\) 12.6106 + 38.8114i 0.610986 + 1.88042i
\(427\) −3.61836 + 3.25799i −0.175105 + 0.157665i
\(428\) −0.928935 0.536321i −0.0449018 0.0259240i
\(429\) 5.46221 + 9.46083i 0.263718 + 0.456773i
\(430\) 0 0
\(431\) 0.267400 0.119054i 0.0128802 0.00573463i −0.400286 0.916390i \(-0.631089\pi\)
0.413167 + 0.910655i \(0.364423\pi\)
\(432\) 18.0106 + 24.7894i 0.866534 + 1.19268i
\(433\) 4.00282i 0.192363i 0.995364 + 0.0961816i \(0.0306630\pi\)
−0.995364 + 0.0961816i \(0.969337\pi\)
\(434\) −13.7956 + 24.8016i −0.662210 + 1.19052i
\(435\) 0 0
\(436\) 2.03506 1.47856i 0.0974619 0.0708102i
\(437\) −14.9553 33.5901i −0.715408 1.60683i
\(438\) −6.23762 2.02673i −0.298045 0.0968407i
\(439\) −2.03306 3.52136i −0.0970325 0.168065i 0.813423 0.581673i \(-0.197602\pi\)
−0.910455 + 0.413608i \(0.864268\pi\)
\(440\) 0 0
\(441\) 18.0670 + 20.0655i 0.860335 + 0.955499i
\(442\) 5.26678 1.71128i 0.250515 0.0813973i
\(443\) 6.76020 + 6.08691i 0.321187 + 0.289198i 0.813913 0.580986i \(-0.197333\pi\)
−0.492726 + 0.870184i \(0.664000\pi\)
\(444\) −4.36673 1.94419i −0.207236 0.0922673i
\(445\) 0 0
\(446\) −3.33950 31.7733i −0.158130 1.50451i
\(447\) 60.0763 + 6.31427i 2.84151 + 0.298655i
\(448\) 5.17454 24.3443i 0.244474 1.15016i
\(449\) −4.30026 3.12433i −0.202942 0.147446i 0.481673 0.876351i \(-0.340029\pi\)
−0.684615 + 0.728905i \(0.740029\pi\)
\(450\) 0 0
\(451\) 0.532807 + 0.113252i 0.0250889 + 0.00533281i
\(452\) 1.94097 + 0.204004i 0.0912953 + 0.00959553i
\(453\) −0.422852 + 0.0444435i −0.0198673 + 0.00208814i
\(454\) 4.60437 0.978690i 0.216094 0.0459322i
\(455\) 0 0
\(456\) −24.1961 + 26.8725i −1.13308 + 1.25842i
\(457\) −5.93396 + 1.92806i −0.277579 + 0.0901909i −0.444498 0.895780i \(-0.646618\pi\)
0.166919 + 0.985971i \(0.446618\pi\)
\(458\) −9.46112 + 8.51883i −0.442089 + 0.398059i
\(459\) −9.46494 + 16.3938i −0.441786 + 0.765195i
\(460\) 0 0
\(461\) 8.34338 25.6783i 0.388590 1.19596i −0.545252 0.838272i \(-0.683566\pi\)
0.933842 0.357685i \(-0.116434\pi\)
\(462\) −16.0697 36.0932i −0.747631 1.67921i
\(463\) 8.64731 + 11.9020i 0.401875 + 0.553133i 0.961213 0.275806i \(-0.0889448\pi\)
−0.559339 + 0.828939i \(0.688945\pi\)
\(464\) −40.6181 −1.88565
\(465\) 0 0
\(466\) −10.9643 −0.507910
\(467\) 16.6548 + 22.9234i 0.770694 + 1.06077i 0.996249 + 0.0865383i \(0.0275805\pi\)
−0.225555 + 0.974230i \(0.572419\pi\)
\(468\) −0.538022 1.20842i −0.0248701 0.0558591i
\(469\) −5.01315 + 15.4289i −0.231486 + 0.712440i
\(470\) 0 0
\(471\) 0.603222 1.04481i 0.0277950 0.0481424i
\(472\) −21.0221 + 18.9284i −0.967620 + 0.871249i
\(473\) 8.17055 2.65477i 0.375682 0.122067i
\(474\) 28.3460 31.4814i 1.30198 1.44599i
\(475\) 0 0
\(476\) −1.55471 + 0.330464i −0.0712601 + 0.0151468i
\(477\) 21.0345 2.21082i 0.963104 0.101226i
\(478\) −35.9277 3.77616i −1.64330 0.172717i
\(479\) −5.96591 1.26809i −0.272589 0.0579407i 0.0695887 0.997576i \(-0.477831\pi\)
−0.342178 + 0.939635i \(0.611165\pi\)
\(480\) 0 0
\(481\) −10.8794 7.90434i −0.496057 0.360407i
\(482\) −2.30974 + 10.8665i −0.105206 + 0.494953i
\(483\) 79.5447 + 8.36049i 3.61941 + 0.380415i
\(484\) −0.0700099 0.666099i −0.00318227 0.0302772i
\(485\) 0 0
\(486\) −11.8482 5.27517i −0.537447 0.239287i
\(487\) 16.0771 + 14.4759i 0.728524 + 0.655966i 0.947497 0.319765i \(-0.103604\pi\)
−0.218973 + 0.975731i \(0.570271\pi\)
\(488\) 3.60686 1.17194i 0.163275 0.0530513i
\(489\) −20.4947 22.7616i −0.926800 1.02932i
\(490\) 0 0
\(491\) 0.338579 + 0.586436i 0.0152798 + 0.0264655i 0.873564 0.486709i \(-0.161803\pi\)
−0.858284 + 0.513174i \(0.828469\pi\)
\(492\) −0.0972967 0.0316136i −0.00438647 0.00142525i
\(493\) −10.2064 22.9239i −0.459673 1.03244i
\(494\) 7.76397 5.64086i 0.349318 0.253794i
\(495\) 0 0
\(496\) 19.2088 14.4305i 0.862501 0.647951i
\(497\) 32.9520i 1.47810i
\(498\) 17.5918 + 24.2130i 0.788308 + 1.08501i
\(499\) −28.0667 + 12.4961i −1.25644 + 0.559402i −0.923519 0.383553i \(-0.874700\pi\)
−0.332919 + 0.942955i \(0.608034\pi\)
\(500\) 0 0
\(501\) 21.3539 + 36.9861i 0.954024 + 1.65242i
\(502\) −12.4107 7.16532i −0.553916 0.319804i
\(503\) −10.9479 + 9.85750i −0.488141 + 0.439524i −0.876083 0.482159i \(-0.839853\pi\)
0.387942 + 0.921684i \(0.373186\pi\)
\(504\) −15.6709 48.2301i −0.698037 2.14834i
\(505\) 0 0
\(506\) −28.5863 12.7274i −1.27082 0.565804i
\(507\) 6.65385 + 31.3039i 0.295508 + 1.39026i
\(508\) −1.12291 + 0.118022i −0.0498209 + 0.00523639i
\(509\) 2.93549 27.9294i 0.130114 1.23795i −0.713368 0.700789i \(-0.752831\pi\)
0.843482 0.537158i \(-0.180502\pi\)
\(510\) 0 0
\(511\) 4.28448 + 3.11286i 0.189534 + 0.137705i
\(512\) −11.1974 + 15.4119i −0.494860 + 0.681117i
\(513\) −6.82048 + 32.0878i −0.301131 + 1.41671i
\(514\) 0.398689 3.79327i 0.0175854 0.167314i
\(515\) 0 0
\(516\) −1.57825 + 0.335467i −0.0694786 + 0.0147681i
\(517\) −6.07362 + 13.6416i −0.267118 + 0.599956i
\(518\) 36.1424 + 32.5427i 1.58800 + 1.42985i
\(519\) 15.7143 + 48.3636i 0.689781 + 2.12293i
\(520\) 0 0
\(521\) −0.658209 + 1.14005i −0.0288366 + 0.0499465i −0.880084 0.474819i \(-0.842514\pi\)
0.851247 + 0.524765i \(0.175847\pi\)
\(522\) −65.4075 + 37.7630i −2.86281 + 1.65284i
\(523\) −19.6489 6.38431i −0.859186 0.279167i −0.153898 0.988087i \(-0.549183\pi\)
−0.705289 + 0.708920i \(0.749183\pi\)
\(524\) 0.204144 0.0908909i 0.00891809 0.00397059i
\(525\) 0 0
\(526\) 20.1945 0.880522
\(527\) 12.9710 + 7.21495i 0.565026 + 0.314288i
\(528\) 33.4464i 1.45557i
\(529\) 32.6418 23.7157i 1.41921 1.03112i
\(530\) 0 0
\(531\) −17.6657 + 54.3694i −0.766625 + 2.35943i
\(532\) −2.38541 + 1.37722i −0.103421 + 0.0597100i
\(533\) −0.249255 0.143907i −0.0107964 0.00623331i
\(534\) 37.5631 + 41.7181i 1.62552 + 1.80532i
\(535\) 0 0
\(536\) 8.45521 9.39046i 0.365210 0.405606i
\(537\) 16.7969 37.7265i 0.724841 1.62802i
\(538\) 6.23326 + 29.3252i 0.268735 + 1.26430i
\(539\) 1.38295 + 13.1579i 0.0595679 + 0.566751i
\(540\) 0 0
\(541\) −44.1743 9.38953i −1.89920 0.403688i −0.899737 0.436432i \(-0.856242\pi\)
−0.999464 + 0.0327444i \(0.989575\pi\)
\(542\) −24.0773 + 33.1396i −1.03421 + 1.42347i
\(543\) 36.3543 50.0374i 1.56011 2.14731i
\(544\) 2.53619 + 0.539083i 0.108738 + 0.0231130i
\(545\) 0 0
\(546\) 2.18211 + 20.7614i 0.0933857 + 0.888506i
\(547\) −8.28680 38.9863i −0.354318 1.66694i −0.689120 0.724647i \(-0.742003\pi\)
0.334802 0.942288i \(-0.391330\pi\)
\(548\) −0.0717080 + 0.161059i −0.00306322 + 0.00688009i
\(549\) 5.12838 5.69564i 0.218874 0.243084i
\(550\) 0 0
\(551\) −29.0976 32.3162i −1.23960 1.37672i
\(552\) −53.9526 31.1496i −2.29638 1.32581i
\(553\) −29.6237 + 17.1033i −1.25973 + 0.727304i
\(554\) 2.32369 7.15159i 0.0987242 0.303842i
\(555\) 0 0
\(556\) −0.970804 + 0.705331i −0.0411713 + 0.0299127i
\(557\) 19.9182i 0.843963i 0.906604 + 0.421982i \(0.138665\pi\)
−0.906604 + 0.421982i \(0.861335\pi\)
\(558\) 17.5158 41.0962i 0.741504 1.73974i
\(559\) −4.53934 −0.191993
\(560\) 0 0
\(561\) −18.8764 + 8.40430i −0.796961 + 0.354830i
\(562\) −6.87803 2.23481i −0.290132 0.0942697i
\(563\) 28.1963 16.2792i 1.18833 0.686085i 0.230406 0.973095i \(-0.425994\pi\)
0.957928 + 0.287010i \(0.0926611\pi\)
\(564\) 1.40227 2.42880i 0.0590461 0.102271i
\(565\) 0 0
\(566\) 7.01449 + 21.5884i 0.294841 + 0.907427i
\(567\) −11.0588 9.95735i −0.464424 0.418170i
\(568\) −10.4395 + 23.4475i −0.438032 + 0.983835i
\(569\) 3.17999 0.675928i 0.133312 0.0283364i −0.140772 0.990042i \(-0.544959\pi\)
0.274084 + 0.961706i \(0.411625\pi\)
\(570\) 0 0
\(571\) −0.840471 + 7.99655i −0.0351726 + 0.334645i 0.962759 + 0.270361i \(0.0871431\pi\)
−0.997932 + 0.0642841i \(0.979524\pi\)
\(572\) 0.134760 0.633998i 0.00563461 0.0265088i
\(573\) −23.4911 + 32.3328i −0.981356 + 1.35072i
\(574\) 0.842106 + 0.611826i 0.0351488 + 0.0255371i
\(575\) 0 0
\(576\) −4.09504 + 38.9617i −0.170627 + 1.62341i
\(577\) 25.6525 2.69618i 1.06793 0.112244i 0.445779 0.895143i \(-0.352927\pi\)
0.622148 + 0.782900i \(0.286260\pi\)
\(578\) −3.03178 14.2634i −0.126106 0.593280i
\(579\) −54.1649 24.1158i −2.25102 1.00222i
\(580\) 0 0
\(581\) −7.46796 22.9840i −0.309823 0.953537i
\(582\) 47.3614 42.6444i 1.96319 1.76767i
\(583\) 8.97522 + 5.18184i 0.371715 + 0.214610i
\(584\) −2.06251 3.57237i −0.0853472 0.147826i
\(585\) 0 0
\(586\) 20.0011 8.90506i 0.826237 0.367864i
\(587\) 1.12831 + 1.55298i 0.0465701 + 0.0640983i 0.831667 0.555275i \(-0.187387\pi\)
−0.785097 + 0.619373i \(0.787387\pi\)
\(588\) 2.48484i 0.102473i
\(589\) 25.2417 + 4.94511i 1.04007 + 0.203760i
\(590\) 0 0
\(591\) 36.0788 26.2128i 1.48408 1.07825i
\(592\) −16.7460 37.6121i −0.688255 1.54585i
\(593\) −11.6701 3.79186i −0.479235 0.155713i 0.0594306 0.998232i \(-0.481071\pi\)
−0.538666 + 0.842519i \(0.681071\pi\)
\(594\) 13.9589 + 24.1776i 0.572742 + 0.992018i
\(595\) 0 0
\(596\) −2.39819 2.66346i −0.0982338 0.109100i
\(597\) −41.0923 + 13.3517i −1.68180 + 0.546449i
\(598\) 12.2871 + 11.0633i 0.502456 + 0.452413i
\(599\) 1.61046 + 0.717023i 0.0658016 + 0.0292968i 0.439374 0.898304i \(-0.355200\pi\)
−0.373572 + 0.927601i \(0.621867\pi\)
\(600\) 0 0
\(601\) 0.814152 + 7.74614i 0.0332099 + 0.315971i 0.998498 + 0.0547846i \(0.0174472\pi\)
−0.965288 + 0.261187i \(0.915886\pi\)
\(602\) 16.3269 + 1.71602i 0.665434 + 0.0699399i
\(603\) 5.30931 24.9784i 0.216212 1.01720i
\(604\) 0.0204087 + 0.0148278i 0.000830419 + 0.000603335i
\(605\) 0 0
\(606\) 37.7101 + 8.01553i 1.53187 + 0.325609i
\(607\) 1.70943 + 0.179668i 0.0693837 + 0.00729252i 0.139157 0.990270i \(-0.455561\pi\)
−0.0697730 + 0.997563i \(0.522228\pi\)
\(608\) 4.46867 0.469677i 0.181229 0.0190479i
\(609\) 92.5266 19.6671i 3.74937 0.796953i
\(610\) 0 0
\(611\) 5.27950 5.86348i 0.213586 0.237211i
\(612\) 2.37948 0.773141i 0.0961849 0.0312524i
\(613\) −15.8323 + 14.2554i −0.639459 + 0.575772i −0.923764 0.382962i \(-0.874904\pi\)
0.284305 + 0.958734i \(0.408237\pi\)
\(614\) 16.5944 28.7424i 0.669696 1.15995i
\(615\) 0 0
\(616\) 7.67874 23.6327i 0.309385 0.952190i
\(617\) −5.82757 13.0889i −0.234609 0.526941i 0.757423 0.652924i \(-0.226458\pi\)
−0.992032 + 0.125984i \(0.959791\pi\)
\(618\) −5.39348 7.42349i −0.216958 0.298617i
\(619\) 9.19099 0.369417 0.184709 0.982793i \(-0.440866\pi\)
0.184709 + 0.982793i \(0.440866\pi\)
\(620\) 0 0
\(621\) −56.5177 −2.26798
\(622\) −8.27822 11.3940i −0.331926 0.456857i
\(623\) −18.4371 41.4103i −0.738666 1.65907i
\(624\) 5.46108 16.8075i 0.218618 0.672837i
\(625\) 0 0
\(626\) 10.1172 17.5236i 0.404367 0.700384i
\(627\) −26.6103 + 23.9600i −1.06271 + 0.956870i
\(628\) −0.0680766 + 0.0221194i −0.00271655 + 0.000882661i
\(629\) 17.0195 18.9021i 0.678612 0.753675i
\(630\) 0 0
\(631\) 16.6459 3.53821i 0.662665 0.140854i 0.135712 0.990748i \(-0.456668\pi\)
0.526953 + 0.849895i \(0.323334\pi\)
\(632\) 26.4977 2.78502i 1.05402 0.110782i
\(633\) 25.6280 + 2.69361i 1.01862 + 0.107061i
\(634\) −43.0883 9.15869i −1.71125 0.363738i
\(635\) 0 0
\(636\) −1.57470 1.14409i −0.0624410 0.0453660i
\(637\) 1.45344 6.83792i 0.0575875 0.270928i
\(638\) −36.8050 3.86837i −1.45713 0.153150i
\(639\) 5.42184 + 51.5854i 0.214485 + 2.04069i
\(640\) 0 0
\(641\) 3.54414 + 1.57795i 0.139985 + 0.0623254i 0.475534 0.879698i \(-0.342255\pi\)
−0.335549 + 0.942023i \(0.608922\pi\)
\(642\) −19.8022 17.8300i −0.781532 0.703694i
\(643\) −21.0244 + 6.83125i −0.829123 + 0.269398i −0.692676 0.721249i \(-0.743568\pi\)
−0.136447 + 0.990647i \(0.543568\pi\)
\(644\) −3.17536 3.52659i −0.125127 0.138967i
\(645\) 0 0
\(646\) 9.07582 + 15.7198i 0.357083 + 0.618486i
\(647\) −36.0479 11.7127i −1.41719 0.460472i −0.502480 0.864589i \(-0.667579\pi\)
−0.914707 + 0.404117i \(0.867579\pi\)
\(648\) 4.71445 + 10.5888i 0.185201 + 0.415969i
\(649\) −22.6622 + 16.4650i −0.889569 + 0.646310i
\(650\) 0 0
\(651\) −36.7698 + 42.1731i −1.44112 + 1.65289i
\(652\) 1.81725i 0.0711689i
\(653\) −3.76912 5.18775i −0.147497 0.203012i 0.728875 0.684647i \(-0.240043\pi\)
−0.876372 + 0.481634i \(0.840043\pi\)
\(654\) 57.0869 25.4167i 2.23228 0.993873i
\(655\) 0 0
\(656\) −0.440588 0.763121i −0.0172021 0.0297949i
\(657\) −7.21941 4.16813i −0.281656 0.162614i
\(658\) −21.2056 + 19.0936i −0.826682 + 0.744348i
\(659\) −3.69830 11.3822i −0.144065 0.443387i 0.852824 0.522198i \(-0.174888\pi\)
−0.996890 + 0.0788106i \(0.974888\pi\)
\(660\) 0 0
\(661\) 9.01893 + 4.01548i 0.350796 + 0.156184i 0.574567 0.818457i \(-0.305170\pi\)
−0.223772 + 0.974642i \(0.571837\pi\)
\(662\) 4.19759 + 19.7481i 0.163144 + 0.767531i
\(663\) 10.8580 1.14122i 0.421690 0.0443214i
\(664\) −1.96761 + 18.7206i −0.0763581 + 0.726499i
\(665\) 0 0
\(666\) −61.9343 44.9979i −2.39991 1.74363i
\(667\) 44.0366 60.6112i 1.70510 2.34687i
\(668\) 0.526831 2.47855i 0.0203837 0.0958978i
\(669\) 6.58383 62.6409i 0.254545 2.42184i
\(670\) 0 0
\(671\) 3.67341 0.780808i 0.141811 0.0301428i
\(672\) −3.97552 + 8.92915i −0.153359 + 0.344450i
\(673\) −7.57833 6.82356i −0.292123 0.263029i 0.510018 0.860164i \(-0.329639\pi\)
−0.802141 + 0.597135i \(0.796306\pi\)
\(674\) −4.50958 13.8791i −0.173703 0.534601i
\(675\) 0 0
\(676\) 0.949399 1.64441i 0.0365153 0.0632464i
\(677\) −21.4806 + 12.4018i −0.825566 + 0.476641i −0.852332 0.523001i \(-0.824812\pi\)
0.0267663 + 0.999642i \(0.491479\pi\)
\(678\) 46.1101 + 14.9821i 1.77085 + 0.575383i
\(679\) −47.0120 + 20.9311i −1.80415 + 0.803262i
\(680\) 0 0
\(681\) 9.28031 0.355622
\(682\) 18.7799 11.2465i 0.719119 0.430649i
\(683\) 27.4082i 1.04875i −0.851489 0.524373i \(-0.824300\pi\)
0.851489 0.524373i \(-0.175700\pi\)
\(684\) 3.50769 2.54849i 0.134120 0.0974439i
\(685\) 0 0
\(686\) 3.21331 9.88955i 0.122685 0.377585i
\(687\) −21.7368 + 12.5498i −0.829312 + 0.478803i
\(688\) −12.0357 6.94884i −0.458859 0.264922i
\(689\) −3.66414 4.06944i −0.139593 0.155033i
\(690\) 0 0
\(691\) 10.0242 11.1330i 0.381339 0.423520i −0.521666 0.853150i \(-0.674689\pi\)
0.903005 + 0.429630i \(0.141356\pi\)
\(692\) 1.22719 2.75630i 0.0466506 0.104779i
\(693\) −10.4408 49.1200i −0.396612 1.86591i
\(694\) 3.39633 + 32.3139i 0.128923 + 1.22662i
\(695\) 0 0
\(696\) −72.0696 15.3189i −2.73179 0.580660i
\(697\) 0.319978 0.440412i 0.0121200 0.0166818i
\(698\) 14.4281 19.8586i 0.546113 0.751660i
\(699\) −21.1437 4.49423i −0.799727 0.169987i
\(700\) 0 0
\(701\) 4.23920 + 40.3333i 0.160113 + 1.52337i 0.719517 + 0.694474i \(0.244363\pi\)
−0.559405 + 0.828895i \(0.688970\pi\)
\(702\) −3.06696 14.4289i −0.115755 0.544584i
\(703\) 17.9282 40.2674i 0.676176 1.51872i
\(704\) −12.8449 + 14.2657i −0.484111 + 0.537659i
\(705\) 0 0
\(706\) 8.58834 + 9.53832i 0.323226 + 0.358979i
\(707\) −26.9595 15.5651i −1.01392 0.585385i
\(708\) 4.55618 2.63051i 0.171232 0.0988607i
\(709\) −12.6179 + 38.8338i −0.473874 + 1.45844i 0.373595 + 0.927592i \(0.378125\pi\)
−0.847470 + 0.530844i \(0.821875\pi\)
\(710\) 0 0
\(711\) 43.5609 31.6489i 1.63366 1.18693i
\(712\) 35.3072i 1.32319i
\(713\) 0.708091 + 44.3088i 0.0265182 + 1.65938i
\(714\) −39.4849 −1.47769
\(715\) 0 0
\(716\) −2.23837 + 0.996585i −0.0836517 + 0.0372441i
\(717\) −67.7358 22.0087i −2.52964 0.821930i
\(718\) 18.5149 10.6896i 0.690971 0.398932i
\(719\) 3.15103 5.45775i 0.117514 0.203540i −0.801268 0.598305i \(-0.795841\pi\)
0.918782 + 0.394766i \(0.129174\pi\)
\(720\) 0 0
\(721\) 2.28960 + 7.04668i 0.0852693 + 0.262432i
\(722\) 2.56514 + 2.30967i 0.0954648 + 0.0859569i
\(723\) −8.90827 + 20.0083i −0.331302 + 0.744117i
\(724\) −3.58943 + 0.762958i −0.133400 + 0.0283551i
\(725\) 0 0
\(726\) 1.73918 16.5472i 0.0645471 0.614125i
\(727\) 6.72695 31.6478i 0.249489 1.17375i −0.657783 0.753208i \(-0.728506\pi\)
0.907272 0.420545i \(-0.138161\pi\)
\(728\) −7.71745 + 10.6222i −0.286028 + 0.393683i
\(729\) −31.1296 22.6170i −1.15295 0.837665i
\(730\) 0 0
\(731\) 0.897462 8.53878i 0.0331938 0.315818i
\(732\) −0.701465 + 0.0737269i −0.0259269 + 0.00272503i
\(733\) −4.28094 20.1402i −0.158120 0.743897i −0.983730 0.179655i \(-0.942502\pi\)
0.825610 0.564242i \(-0.190831\pi\)
\(734\) 19.3716 + 8.62478i 0.715018 + 0.318346i
\(735\) 0 0
\(736\) 2.39219 + 7.36239i 0.0881772 + 0.271381i
\(737\) 9.29885 8.37272i 0.342527 0.308413i
\(738\) −1.41896 0.819238i −0.0522327 0.0301566i
\(739\) −18.6769 32.3494i −0.687041 1.18999i −0.972791 0.231686i \(-0.925576\pi\)
0.285749 0.958304i \(-0.407758\pi\)
\(740\) 0 0
\(741\) 17.2844 7.69549i 0.634957 0.282701i
\(742\) 11.6406 + 16.0219i 0.427341 + 0.588184i
\(743\) 6.28553i 0.230594i 0.993331 + 0.115297i \(0.0367819\pi\)
−0.993331 + 0.115297i \(0.963218\pi\)
\(744\) 39.5250 18.3599i 1.44906 0.673108i
\(745\) 0 0
\(746\) −22.2511 + 16.1664i −0.814670 + 0.591892i
\(747\) 15.4726 + 34.7521i 0.566113 + 1.27151i
\(748\) 1.16595 + 0.378839i 0.0426313 + 0.0138517i
\(749\) 10.7582 + 18.6337i 0.393095 + 0.680860i
\(750\) 0 0
\(751\) 2.94353 + 3.26912i 0.107411 + 0.119292i 0.794453 0.607326i \(-0.207758\pi\)
−0.687042 + 0.726618i \(0.741091\pi\)
\(752\) 22.9741 7.46473i 0.837779 0.272211i
\(753\) −20.9959 18.9048i −0.765135 0.688930i
\(754\) 17.8637 + 7.95341i 0.650556 + 0.289646i
\(755\) 0 0
\(756\) 0.442558 + 4.21066i 0.0160957 + 0.153140i
\(757\) −1.81984 0.191273i −0.0661431 0.00695192i 0.0713991 0.997448i \(-0.477254\pi\)
−0.137542 + 0.990496i \(0.543920\pi\)
\(758\) −3.92872 + 18.4832i −0.142698 + 0.671340i
\(759\) −49.9093 36.2613i −1.81159 1.31620i
\(760\) 0 0
\(761\) 17.5931 + 3.73953i 0.637750 + 0.135558i 0.515429 0.856933i \(-0.327633\pi\)
0.122322 + 0.992491i \(0.460966\pi\)
\(762\) −27.8952 2.93190i −1.01054 0.106212i
\(763\) −50.1821 + 5.27435i −1.81671 + 0.190944i
\(764\) 2.31939 0.493002i 0.0839126 0.0178362i
\(765\) 0 0
\(766\) −27.5402 + 30.5865i −0.995067 + 1.10513i
\(767\) 14.0766 4.57376i 0.508277 0.165149i
\(768\) 8.87069 7.98720i 0.320093 0.288213i
\(769\) −9.46486 + 16.3936i −0.341311 + 0.591169i −0.984677 0.174391i \(-0.944204\pi\)
0.643365 + 0.765560i \(0.277538\pi\)
\(770\) 0 0
\(771\) 2.32369 7.15159i 0.0836857 0.257558i
\(772\) 1.43082 + 3.21368i 0.0514964 + 0.115663i
\(773\) 12.3488 + 16.9967i 0.444156 + 0.611328i 0.971129 0.238554i \(-0.0766732\pi\)
−0.526973 + 0.849882i \(0.676673\pi\)
\(774\) −25.8416 −0.928857
\(775\) 0 0
\(776\) 40.0833 1.43891
\(777\) 56.3583 + 77.5706i 2.02184 + 2.78283i
\(778\) −2.32360 5.21889i −0.0833051 0.187106i
\(779\) 0.291523 0.897214i 0.0104449 0.0321460i
\(780\) 0 0
\(781\) −12.7080 + 22.0110i −0.454729 + 0.787614i
\(782\) −23.2401 + 20.9255i −0.831063 + 0.748293i
\(783\) −63.5705 + 20.6553i −2.27183 + 0.738161i
\(784\) 14.3212 15.9053i 0.511473 0.568048i
\(785\) 0 0
\(786\) 5.42997 1.15418i 0.193681 0.0411681i
\(787\) 23.4700 2.46680i 0.836615 0.0879318i 0.323475 0.946237i \(-0.395149\pi\)
0.513140 + 0.858305i \(0.328482\pi\)
\(788\) −2.63144 0.276575i −0.0937410 0.00985258i
\(789\) 38.9434 + 8.27768i 1.38642 + 0.294693i
\(790\) 0 0
\(791\) −31.6719 23.0110i −1.12612 0.818178i
\(792\) −8.13238 + 38.2598i −0.288972 + 1.35950i
\(793\) −1.97345 0.207418i −0.0700794 0.00736564i
\(794\) −4.24421 40.3810i −0.150621 1.43307i
\(795\) 0 0
\(796\) 2.34190 + 1.04268i 0.0830065 + 0.0369569i
\(797\) −18.3363 16.5101i −0.649506 0.584818i 0.277105 0.960840i \(-0.410625\pi\)
−0.926611 + 0.376022i \(0.877292\pi\)
\(798\) −65.0767 + 21.1447i −2.30369 + 0.748514i
\(799\) 9.98578 + 11.0903i 0.353271 + 0.392348i
\(800\) 0 0
\(801\) 35.6763 + 61.7931i 1.26056 + 2.18335i
\(802\) −15.5988 5.06837i −0.550814 0.178970i
\(803\) −1.66143 3.73162i −0.0586304 0.131686i
\(804\) −1.90125 + 1.38134i −0.0670520 + 0.0487161i
\(805\) 0 0
\(806\) −11.2736 + 2.58522i −0.397095 + 0.0910604i
\(807\) 59.1061i 2.08063i
\(808\) 14.2523 + 19.6166i 0.501394 + 0.690110i
\(809\) 11.3204 5.04018i 0.398005 0.177203i −0.197966 0.980209i \(-0.563434\pi\)
0.595972 + 0.803005i \(0.296767\pi\)
\(810\) 0 0
\(811\) 27.1897 + 47.0939i 0.954758 + 1.65369i 0.734921 + 0.678153i \(0.237219\pi\)
0.219837 + 0.975537i \(0.429447\pi\)
\(812\) −4.86046 2.80619i −0.170569 0.0984779i
\(813\) −60.0150 + 54.0378i −2.10482 + 1.89519i
\(814\) −11.5918 35.6760i −0.406294 1.25044i
\(815\) 0 0
\(816\) 30.5362 + 13.5956i 1.06898 + 0.475942i
\(817\) −3.09349 14.5537i −0.108227 0.509170i
\(818\) 3.72021 0.391010i 0.130074 0.0136713i
\(819\) −2.77355 + 26.3885i −0.0969155 + 0.922090i
\(820\) 0 0
\(821\) −19.9227 14.4747i −0.695306 0.505169i 0.183094 0.983095i \(-0.441389\pi\)
−0.878400 + 0.477926i \(0.841389\pi\)
\(822\) −2.57430 + 3.54322i −0.0897890 + 0.123584i
\(823\) 1.98941 9.35942i 0.0693463 0.326249i −0.929777 0.368124i \(-0.880000\pi\)
0.999123 + 0.0418757i \(0.0133334\pi\)
\(824\) 0.603251 5.73955i 0.0210152 0.199947i
\(825\) 0 0
\(826\) −52.3591 + 11.1293i −1.82181 + 0.387237i
\(827\) −16.1498 + 36.2730i −0.561583 + 1.26134i 0.380135 + 0.924931i \(0.375878\pi\)
−0.941718 + 0.336405i \(0.890789\pi\)
\(828\) 5.55119 + 4.99831i 0.192917 + 0.173703i
\(829\) −13.6971 42.1553i −0.475720 1.46411i −0.844985 0.534790i \(-0.820391\pi\)
0.369265 0.929324i \(-0.379609\pi\)
\(830\) 0 0
\(831\) 7.41246 12.8388i 0.257136 0.445372i
\(832\) 8.78411 5.07151i 0.304534 0.175823i
\(833\) 12.5752 + 4.08593i 0.435705 + 0.141569i
\(834\) −27.2327 + 12.1248i −0.942990 + 0.419846i
\(835\) 0 0
\(836\) 2.12452 0.0734780
\(837\) 22.7250 32.3531i 0.785491 1.11829i
\(838\) 26.6197i 0.919564i
\(839\) −40.2618 + 29.2519i −1.38999 + 1.00989i −0.394124 + 0.919057i \(0.628952\pi\)
−0.995866 + 0.0908299i \(0.971048\pi\)
\(840\) 0 0
\(841\) 18.4191 56.6881i 0.635141 1.95476i
\(842\) −2.25750 + 1.30337i −0.0777986 + 0.0449171i
\(843\) −12.3477 7.12893i −0.425276 0.245533i
\(844\) −1.02305 1.13621i −0.0352147 0.0391099i
\(845\) 0 0
\(846\) 30.0552 33.3797i 1.03332 1.14762i
\(847\) −5.46452 + 12.2735i −0.187763 + 0.421723i
\(848\) −3.48570 16.3989i −0.119700 0.563142i
\(849\) 4.67783 + 44.5066i 0.160543 + 1.52746i
\(850\) 0 0
\(851\) 74.2808 + 15.7889i 2.54631 + 0.541235i
\(852\) 2.80578 3.86182i 0.0961243 0.132304i
\(853\) −13.8055 + 19.0016i −0.472690 + 0.650602i −0.977080 0.212874i \(-0.931718\pi\)
0.504390 + 0.863476i \(0.331718\pi\)
\(854\) 7.01961 + 1.49206i 0.240206 + 0.0510574i
\(855\) 0 0
\(856\) −1.75181 16.6674i −0.0598758 0.569680i
\(857\) −5.40517 25.4293i −0.184637 0.868649i −0.968752 0.248033i \(-0.920216\pi\)
0.784114 0.620616i \(-0.213117\pi\)
\(858\) 6.54911 14.7096i 0.223583 0.502176i
\(859\) −9.55279 + 10.6095i −0.325937 + 0.361990i −0.883736 0.467987i \(-0.844980\pi\)
0.557798 + 0.829976i \(0.311646\pi\)
\(860\) 0 0
\(861\) 1.37314 + 1.52503i 0.0467967 + 0.0519730i
\(862\) −0.373622 0.215711i −0.0127256 0.00734713i
\(863\) 34.5317 19.9369i 1.17547 0.678659i 0.220509 0.975385i \(-0.429228\pi\)
0.954963 + 0.296726i \(0.0958947\pi\)
\(864\) 2.13427 6.56861i 0.0726094 0.223469i
\(865\) 0 0
\(866\) 4.77303 3.46781i 0.162194 0.117841i
\(867\) 28.7485i 0.976351i
\(868\) 3.29554 0.399712i 0.111858 0.0135671i
\(869\) 26.3837 0.895006
\(870\) 0 0
\(871\) −6.03994 + 2.68916i −0.204656 + 0.0911186i
\(872\) 37.3788 + 12.1451i 1.26581 + 0.411285i
\(873\) 70.1520 40.5023i 2.37429 1.37079i
\(874\) −27.0970 + 46.9334i −0.916571 + 1.58755i
\(875\) 0 0
\(876\) 0.237070 + 0.729626i 0.00800984 + 0.0246518i
\(877\) −10.4152 9.37786i −0.351695 0.316668i 0.474280 0.880374i \(-0.342708\pi\)
−0.825975 + 0.563706i \(0.809375\pi\)
\(878\) −2.43761 + 5.47495i −0.0822652 + 0.184771i
\(879\) 42.2206 8.97426i 1.42407 0.302694i
\(880\) 0 0
\(881\) −5.27580 + 50.1959i −0.177746 + 1.69114i 0.434656 + 0.900597i \(0.356870\pi\)
−0.612402 + 0.790546i \(0.709797\pi\)
\(882\) 8.27419 38.9270i 0.278606 1.31074i
\(883\) 9.49725 13.0718i 0.319608 0.439903i −0.618739 0.785596i \(-0.712356\pi\)
0.938347 + 0.345694i \(0.112356\pi\)
\(884\) −0.524056 0.380749i −0.0176259 0.0128060i
\(885\) 0 0
\(886\) 1.40149 13.3343i 0.0470841 0.447975i
\(887\) −3.18229 + 0.334472i −0.106851 + 0.0112305i −0.157803 0.987471i \(-0.550441\pi\)
0.0509521 + 0.998701i \(0.483774\pi\)
\(888\) −15.5276 73.0515i −0.521071 2.45145i
\(889\) 20.6906 + 9.21205i 0.693941 + 0.308962i
\(890\) 0 0
\(891\) 3.54685 + 10.9161i 0.118824 + 0.365702i
\(892\) −2.77717 + 2.50057i −0.0929864 + 0.0837253i
\(893\) 22.3970 + 12.9309i 0.749486 + 0.432716i
\(894\) −44.5173 77.1063i −1.48888 2.57882i
\(895\) 0 0
\(896\) −39.6572 + 17.6565i −1.32485 + 0.589863i
\(897\) 19.1598 + 26.3711i 0.639726 + 0.880507i
\(898\) 7.83444i 0.261439i
\(899\) 16.9898 + 49.5794i 0.566643 + 1.65356i
\(900\) 0 0
\(901\) 8.37931 6.08793i 0.279155 0.202818i
\(902\) −0.326550 0.733443i −0.0108729 0.0244210i
\(903\) 30.7816 + 10.0016i 1.02435 + 0.332831i
\(904\) 15.2466 + 26.4078i 0.507093 + 0.878312i
\(905\) 0 0
\(906\) 0.419329 + 0.465712i 0.0139313 + 0.0154723i
\(907\) −32.2453 + 10.4771i −1.07069 + 0.347887i −0.790755 0.612132i \(-0.790312\pi\)
−0.279932 + 0.960020i \(0.590312\pi\)
\(908\) −0.409186 0.368433i −0.0135793 0.0122269i
\(909\) 44.7654 + 19.9308i 1.48477 + 0.661064i
\(910\) 0 0
\(911\) −1.46263 13.9160i −0.0484592 0.461058i −0.991664 0.128848i \(-0.958872\pi\)
0.943205 0.332211i \(-0.107794\pi\)
\(912\) 57.6086 + 6.05491i 1.90761 + 0.200498i
\(913\) −3.87548 + 18.2327i −0.128260 + 0.603414i
\(914\) 7.43989 + 5.40540i 0.246090 + 0.178795i
\(915\) 0 0
\(916\) 1.45665 + 0.309620i 0.0481290 + 0.0102301i
\(917\) −4.45795 0.468549i −0.147214 0.0154729i
\(918\) 27.7481 2.91644i 0.915823 0.0962569i
\(919\) 38.5472 8.19345i 1.27155 0.270277i 0.477774 0.878483i \(-0.341444\pi\)
0.793779 + 0.608206i \(0.208110\pi\)
\(920\) 0 0
\(921\) 43.7824 48.6253i 1.44268 1.60226i
\(922\) −37.8475 + 12.2974i −1.24644 + 0.404993i
\(923\) 9.97996 8.98600i 0.328494 0.295778i
\(924\) −2.31071 + 4.00227i −0.0760169 + 0.131665i
\(925\) 0 0
\(926\) 6.70062 20.6224i 0.220196 0.677694i
\(927\) −4.74376 10.6547i −0.155805 0.349945i
\(928\) 5.38142 + 7.40689i 0.176654 + 0.243143i
\(929\) 12.8728 0.422342 0.211171 0.977449i \(-0.432272\pi\)
0.211171 + 0.977449i \(0.432272\pi\)
\(930\) 0 0
\(931\) 22.9138 0.750968
\(932\) 0.753840 + 1.03757i 0.0246929 + 0.0339868i
\(933\) −11.2935 25.3656i −0.369732 0.830432i
\(934\) 12.9055 39.7190i 0.422280 1.29965i
\(935\) 0 0
\(936\) 10.3337 17.8985i 0.337768 0.585031i
\(937\) −21.2751 + 19.1562i −0.695026 + 0.625805i −0.938976 0.343983i \(-0.888224\pi\)
0.243949 + 0.969788i \(0.421557\pi\)
\(938\) 22.7408 7.38893i 0.742513 0.241257i
\(939\) 26.6932 29.6458i 0.871098 0.967453i
\(940\) 0 0
\(941\) 19.8694 4.22338i 0.647725 0.137678i 0.127678 0.991816i \(-0.459248\pi\)
0.520047 + 0.854137i \(0.325914\pi\)
\(942\) −1.76845 + 0.185871i −0.0576191 + 0.00605601i
\(943\) 1.61641 + 0.169892i 0.0526377 + 0.00553244i
\(944\) 44.3247 + 9.42151i 1.44265 + 0.306644i
\(945\) 0 0
\(946\) −10.2441 7.44277i −0.333064 0.241985i
\(947\) 9.92432 46.6903i 0.322497 1.51723i −0.456227 0.889864i \(-0.650799\pi\)
0.778724 0.627367i \(-0.215867\pi\)
\(948\) −4.92806 0.517960i −0.160056 0.0168226i
\(949\) 0.225605 + 2.14649i 0.00732346 + 0.0696780i
\(950\) 0 0
\(951\) −79.3380 35.3236i −2.57271 1.14544i
\(952\) −18.4552 16.6171i −0.598135 0.538563i
\(953\) 9.28292 3.01620i 0.300703 0.0977044i −0.154779 0.987949i \(-0.549467\pi\)
0.455483 + 0.890245i \(0.349467\pi\)
\(954\) −20.8593 23.1666i −0.675344 0.750046i
\(955\) 0 0
\(956\) 2.11284 + 3.65955i 0.0683341 + 0.118358i
\(957\) −69.3898 22.5461i −2.24305 0.728813i
\(958\) 3.65642 + 8.21246i 0.118134 + 0.265332i
\(959\) 2.86105 2.07868i 0.0923882 0.0671240i
\(960\) 0 0
\(961\) −25.6490 17.4107i −0.827386 0.561634i
\(962\) 19.8206i 0.639042i
\(963\) −19.9076 27.4004i −0.641512 0.882966i
\(964\) 1.18712 0.528540i 0.0382346 0.0170231i
\(965\) 0 0
\(966\) −58.9437 102.094i −1.89648 3.28481i
\(967\) 37.1923 + 21.4730i 1.19602 + 0.690525i 0.959666 0.281141i \(-0.0907128\pi\)
0.236358 + 0.971666i \(0.424046\pi\)
\(968\) 7.77673 7.00220i 0.249954 0.225059i
\(969\) 11.0585 + 34.0344i 0.355249 + 1.09334i
\(970\) 0 0
\(971\) 17.8152 + 7.93183i 0.571717 + 0.254545i 0.672170 0.740397i \(-0.265363\pi\)
−0.100453 + 0.994942i \(0.532029\pi\)
\(972\) 0.315416 + 1.48391i 0.0101170 + 0.0475966i
\(973\) 23.9388 2.51607i 0.767442 0.0806614i
\(974\) 3.33304 31.7117i 0.106797 1.01611i
\(975\) 0 0
\(976\) −4.91496 3.57093i −0.157324 0.114303i
\(977\) 6.48067 8.91987i 0.207335 0.285372i −0.692667 0.721257i \(-0.743565\pi\)
0.900002 + 0.435885i \(0.143565\pi\)
\(978\) −9.38597 + 44.1575i −0.300130 + 1.41200i
\(979\) −3.65460 + 34.7712i −0.116802 + 1.11129i
\(980\) 0 0
\(981\) 77.6908 16.5137i 2.48048 0.527241i
\(982\) 0.405951 0.911781i 0.0129544 0.0290961i
\(983\) −30.6958 27.6386i −0.979044 0.881535i 0.0139261 0.999903i \(-0.495567\pi\)
−0.992970 + 0.118368i \(0.962234\pi\)
\(984\) −0.493939 1.52019i −0.0157462 0.0484618i
\(985\) 0 0
\(986\) −18.4927 + 32.0302i −0.588926 + 1.02005i
\(987\) −48.7198 + 28.1284i −1.55077 + 0.895336i
\(988\) −1.06761 0.346888i −0.0339653 0.0110360i
\(989\) 23.4179 10.4263i 0.744646 0.331538i
\(990\) 0 0
\(991\) −19.5359 −0.620579 −0.310290 0.950642i \(-0.600426\pi\)
−0.310290 + 0.950642i \(0.600426\pi\)
\(992\) −5.17641 1.59093i −0.164351 0.0505122i
\(993\) 39.8031i 1.26311i
\(994\) −39.2925 + 28.5477i −1.24628 + 0.905477i
\(995\) 0 0
\(996\) 1.08182 3.32950i 0.0342788 0.105499i
\(997\) −4.56114 + 2.63337i −0.144453 + 0.0833998i −0.570484 0.821308i \(-0.693245\pi\)
0.426032 + 0.904708i \(0.359911\pi\)
\(998\) 39.2159 + 22.6413i 1.24136 + 0.716698i
\(999\) −45.3354 50.3501i −1.43435 1.59301i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.c.49.3 80
5.2 odd 4 155.2.q.a.111.4 yes 40
5.3 odd 4 775.2.bl.c.576.2 40
5.4 even 2 inner 775.2.ck.c.49.8 80
31.19 even 15 inner 775.2.ck.c.174.8 80
155.19 even 30 inner 775.2.ck.c.174.3 80
155.22 even 60 4805.2.a.y.1.6 20
155.102 odd 60 4805.2.a.x.1.6 20
155.112 odd 60 155.2.q.a.81.4 40
155.143 odd 60 775.2.bl.c.701.2 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.81.4 40 155.112 odd 60
155.2.q.a.111.4 yes 40 5.2 odd 4
775.2.bl.c.576.2 40 5.3 odd 4
775.2.bl.c.701.2 40 155.143 odd 60
775.2.ck.c.49.3 80 1.1 even 1 trivial
775.2.ck.c.49.8 80 5.4 even 2 inner
775.2.ck.c.174.3 80 155.19 even 30 inner
775.2.ck.c.174.8 80 31.19 even 15 inner
4805.2.a.x.1.6 20 155.102 odd 60
4805.2.a.y.1.6 20 155.22 even 60