Properties

Label 775.2.ck.c.49.10
Level $775$
Weight $2$
Character 775.49
Analytic conductor $6.188$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 49.10
Character \(\chi\) \(=\) 775.49
Dual form 775.2.ck.c.174.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26139 + 1.73615i) q^{2} +(-0.138074 - 0.310120i) q^{3} +(-0.805084 + 2.47779i) q^{4} +(0.364249 - 0.630898i) q^{6} +(1.83635 - 1.65346i) q^{7} +(-1.23541 + 0.401408i) q^{8} +(1.93028 - 2.14380i) q^{9} +(0.0336808 - 0.00715908i) q^{11} +(0.879574 - 0.0924470i) q^{12} +(0.857233 + 0.0900989i) q^{13} +(5.18700 + 1.10253i) q^{14} +(1.96024 + 1.42420i) q^{16} +(0.358278 - 1.68556i) q^{17} +(6.15678 + 0.647103i) q^{18} +(0.158669 + 1.50963i) q^{19} +(-0.766324 - 0.341189i) q^{21} +(0.0549137 + 0.0494445i) q^{22} +(-3.41410 + 1.10931i) q^{23} +(0.295063 + 0.327700i) q^{24} +(0.924877 + 1.60193i) q^{26} +(-1.89992 - 0.617320i) q^{27} +(2.61851 + 5.88128i) q^{28} +(4.30334 - 3.12656i) q^{29} +(4.25923 + 3.58594i) q^{31} +7.79771i q^{32} +(-0.00687063 - 0.00945661i) q^{33} +(3.37832 - 1.50412i) q^{34} +(3.75784 + 6.50877i) q^{36} +(1.14087 + 0.658683i) q^{37} +(-2.42081 + 2.17970i) q^{38} +(-0.0904204 - 0.278285i) q^{39} +(1.12138 + 0.499269i) q^{41} +(-0.374274 - 1.76082i) q^{42} +(-12.1413 + 1.27610i) q^{43} +(-0.00937716 + 0.0892178i) q^{44} +(-6.23243 - 4.52812i) q^{46} +(-5.47765 + 7.53934i) q^{47} +(0.171014 - 0.804556i) q^{48} +(-0.0934359 + 0.888983i) q^{49} +(-0.572196 + 0.121624i) q^{51} +(-0.913391 + 2.05151i) q^{52} +(-7.98460 - 7.18936i) q^{53} +(-1.32477 - 4.07722i) q^{54} +(-1.60493 + 2.77982i) q^{56} +(0.446259 - 0.257648i) q^{57} +(10.8564 + 3.52744i) q^{58} +(6.55294 - 2.91755i) q^{59} -12.3227 q^{61} +(-0.853205 + 11.9179i) q^{62} -7.12841i q^{63} +(-9.61749 + 6.98752i) q^{64} +(0.00775156 - 0.0238569i) q^{66} +(2.17857 - 1.25780i) q^{67} +(3.88804 + 2.24476i) q^{68} +(0.815419 + 0.905614i) q^{69} +(4.44824 - 4.94027i) q^{71} +(-1.52415 + 3.42329i) q^{72} +(2.63702 + 12.4062i) q^{73} +(0.295509 + 2.81158i) q^{74} +(-3.86830 - 0.822233i) q^{76} +(0.0500126 - 0.0688365i) q^{77} +(0.369090 - 0.508008i) q^{78} +(9.79690 + 2.08239i) q^{79} +(-0.833733 - 7.93244i) q^{81} +(0.547683 + 2.57665i) q^{82} +(3.45672 - 7.76391i) q^{83} +(1.46235 - 1.62411i) q^{84} +(-17.5304 - 19.4694i) q^{86} +(-1.56379 - 0.902855i) q^{87} +(-0.0387358 + 0.0223641i) q^{88} +(0.401874 - 1.23684i) q^{89} +(1.72316 - 1.25195i) q^{91} -9.35253i q^{92} +(0.523983 - 1.81600i) q^{93} -19.9988 q^{94} +(2.41822 - 1.07666i) q^{96} +(2.13701 + 0.694355i) q^{97} +(-1.66127 + 0.959132i) q^{98} +(0.0496659 - 0.0860238i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 20 q^{4} + 8 q^{6} - 4 q^{9} - 56 q^{11} + 12 q^{14} + 16 q^{16} + 26 q^{19} - 16 q^{21} + 164 q^{24} + 64 q^{26} - 84 q^{29} - 20 q^{31} - 64 q^{34} - 26 q^{36} - 74 q^{39} + 72 q^{41} + 112 q^{44}+ \cdots - 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26139 + 1.73615i 0.891934 + 1.22764i 0.972970 + 0.230931i \(0.0741772\pi\)
−0.0810357 + 0.996711i \(0.525823\pi\)
\(3\) −0.138074 0.310120i −0.0797172 0.179048i 0.869290 0.494303i \(-0.164577\pi\)
−0.949007 + 0.315255i \(0.897910\pi\)
\(4\) −0.805084 + 2.47779i −0.402542 + 1.23890i
\(5\) 0 0
\(6\) 0.364249 0.630898i 0.148704 0.257563i
\(7\) 1.83635 1.65346i 0.694076 0.624949i −0.244651 0.969611i \(-0.578673\pi\)
0.938727 + 0.344662i \(0.112007\pi\)
\(8\) −1.23541 + 0.401408i −0.436783 + 0.141919i
\(9\) 1.93028 2.14380i 0.643427 0.714598i
\(10\) 0 0
\(11\) 0.0336808 0.00715908i 0.0101551 0.00215854i −0.202831 0.979214i \(-0.565014\pi\)
0.212986 + 0.977055i \(0.431681\pi\)
\(12\) 0.879574 0.0924470i 0.253911 0.0266871i
\(13\) 0.857233 + 0.0900989i 0.237754 + 0.0249889i 0.222656 0.974897i \(-0.428527\pi\)
0.0150979 + 0.999886i \(0.495194\pi\)
\(14\) 5.18700 + 1.10253i 1.38628 + 0.294664i
\(15\) 0 0
\(16\) 1.96024 + 1.42420i 0.490061 + 0.356050i
\(17\) 0.358278 1.68556i 0.0868951 0.408809i −0.913104 0.407726i \(-0.866322\pi\)
0.999999 0.00108331i \(-0.000344830\pi\)
\(18\) 6.15678 + 0.647103i 1.45117 + 0.152524i
\(19\) 0.158669 + 1.50963i 0.0364012 + 0.346334i 0.997530 + 0.0702352i \(0.0223750\pi\)
−0.961129 + 0.276099i \(0.910958\pi\)
\(20\) 0 0
\(21\) −0.766324 0.341189i −0.167226 0.0744536i
\(22\) 0.0549137 + 0.0494445i 0.0117076 + 0.0105416i
\(23\) −3.41410 + 1.10931i −0.711890 + 0.231307i −0.642503 0.766283i \(-0.722104\pi\)
−0.0693865 + 0.997590i \(0.522104\pi\)
\(24\) 0.295063 + 0.327700i 0.0602294 + 0.0668915i
\(25\) 0 0
\(26\) 0.924877 + 1.60193i 0.181383 + 0.314165i
\(27\) −1.89992 0.617320i −0.365639 0.118803i
\(28\) 2.61851 + 5.88128i 0.494852 + 1.11146i
\(29\) 4.30334 3.12656i 0.799111 0.580588i −0.111542 0.993760i \(-0.535579\pi\)
0.910653 + 0.413172i \(0.135579\pi\)
\(30\) 0 0
\(31\) 4.25923 + 3.58594i 0.764980 + 0.644055i
\(32\) 7.79771i 1.37845i
\(33\) −0.00687063 0.00945661i −0.00119602 0.00164618i
\(34\) 3.37832 1.50412i 0.579376 0.257955i
\(35\) 0 0
\(36\) 3.75784 + 6.50877i 0.626307 + 1.08480i
\(37\) 1.14087 + 0.658683i 0.187558 + 0.108287i 0.590839 0.806790i \(-0.298797\pi\)
−0.403281 + 0.915076i \(0.632130\pi\)
\(38\) −2.42081 + 2.17970i −0.392707 + 0.353595i
\(39\) −0.0904204 0.278285i −0.0144789 0.0445613i
\(40\) 0 0
\(41\) 1.12138 + 0.499269i 0.175129 + 0.0779727i 0.492429 0.870353i \(-0.336109\pi\)
−0.317299 + 0.948326i \(0.602776\pi\)
\(42\) −0.374274 1.76082i −0.0577518 0.271701i
\(43\) −12.1413 + 1.27610i −1.85153 + 0.194604i −0.963956 0.266062i \(-0.914277\pi\)
−0.887574 + 0.460666i \(0.847611\pi\)
\(44\) −0.00937716 + 0.0892178i −0.00141366 + 0.0134501i
\(45\) 0 0
\(46\) −6.23243 4.52812i −0.918922 0.667636i
\(47\) −5.47765 + 7.53934i −0.798997 + 1.09973i 0.193932 + 0.981015i \(0.437876\pi\)
−0.992929 + 0.118710i \(0.962124\pi\)
\(48\) 0.171014 0.804556i 0.0246837 0.116128i
\(49\) −0.0934359 + 0.888983i −0.0133480 + 0.126998i
\(50\) 0 0
\(51\) −0.572196 + 0.121624i −0.0801234 + 0.0170308i
\(52\) −0.913391 + 2.05151i −0.126665 + 0.284493i
\(53\) −7.98460 7.18936i −1.09677 0.987535i −0.0967990 0.995304i \(-0.530860\pi\)
−0.999970 + 0.00776892i \(0.997527\pi\)
\(54\) −1.32477 4.07722i −0.180278 0.554839i
\(55\) 0 0
\(56\) −1.60493 + 2.77982i −0.214468 + 0.371470i
\(57\) 0.446259 0.257648i 0.0591085 0.0341263i
\(58\) 10.8564 + 3.52744i 1.42551 + 0.463176i
\(59\) 6.55294 2.91755i 0.853120 0.379833i 0.0668844 0.997761i \(-0.478694\pi\)
0.786235 + 0.617927i \(0.212027\pi\)
\(60\) 0 0
\(61\) −12.3227 −1.57776 −0.788879 0.614548i \(-0.789338\pi\)
−0.788879 + 0.614548i \(0.789338\pi\)
\(62\) −0.853205 + 11.9179i −0.108357 + 1.51358i
\(63\) 7.12841i 0.898095i
\(64\) −9.61749 + 6.98752i −1.20219 + 0.873440i
\(65\) 0 0
\(66\) 0.00775156 0.0238569i 0.000954151 0.00293658i
\(67\) 2.17857 1.25780i 0.266154 0.153664i −0.360984 0.932572i \(-0.617559\pi\)
0.627139 + 0.778908i \(0.284226\pi\)
\(68\) 3.88804 + 2.24476i 0.471494 + 0.272217i
\(69\) 0.815419 + 0.905614i 0.0981649 + 0.109023i
\(70\) 0 0
\(71\) 4.44824 4.94027i 0.527909 0.586302i −0.418927 0.908020i \(-0.637594\pi\)
0.946836 + 0.321718i \(0.104260\pi\)
\(72\) −1.52415 + 3.42329i −0.179623 + 0.403439i
\(73\) 2.63702 + 12.4062i 0.308640 + 1.45204i 0.809811 + 0.586690i \(0.199569\pi\)
−0.501171 + 0.865348i \(0.667097\pi\)
\(74\) 0.295509 + 2.81158i 0.0343522 + 0.326839i
\(75\) 0 0
\(76\) −3.86830 0.822233i −0.443725 0.0943166i
\(77\) 0.0500126 0.0688365i 0.00569947 0.00784464i
\(78\) 0.369090 0.508008i 0.0417912 0.0575206i
\(79\) 9.79690 + 2.08239i 1.10224 + 0.234288i 0.722887 0.690966i \(-0.242815\pi\)
0.379349 + 0.925253i \(0.376148\pi\)
\(80\) 0 0
\(81\) −0.833733 7.93244i −0.0926370 0.881382i
\(82\) 0.547683 + 2.57665i 0.0604815 + 0.284543i
\(83\) 3.45672 7.76391i 0.379424 0.852200i −0.618375 0.785883i \(-0.712209\pi\)
0.997799 0.0663168i \(-0.0211248\pi\)
\(84\) 1.46235 1.62411i 0.159556 0.177204i
\(85\) 0 0
\(86\) −17.5304 19.4694i −1.89035 2.09944i
\(87\) −1.56379 0.902855i −0.167656 0.0967962i
\(88\) −0.0387358 + 0.0223641i −0.00412925 + 0.00238403i
\(89\) 0.401874 1.23684i 0.0425986 0.131105i −0.927495 0.373835i \(-0.878043\pi\)
0.970094 + 0.242730i \(0.0780428\pi\)
\(90\) 0 0
\(91\) 1.72316 1.25195i 0.180636 0.131240i
\(92\) 9.35253i 0.975069i
\(93\) 0.523983 1.81600i 0.0543345 0.188310i
\(94\) −19.9988 −2.06272
\(95\) 0 0
\(96\) 2.41822 1.07666i 0.246809 0.109886i
\(97\) 2.13701 + 0.694355i 0.216980 + 0.0705011i 0.415490 0.909598i \(-0.363610\pi\)
−0.198510 + 0.980099i \(0.563610\pi\)
\(98\) −1.66127 + 0.959132i −0.167813 + 0.0968870i
\(99\) 0.0496659 0.0860238i 0.00499161 0.00864572i
\(100\) 0 0
\(101\) 2.82475 + 8.69369i 0.281073 + 0.865054i 0.987548 + 0.157316i \(0.0502842\pi\)
−0.706475 + 0.707738i \(0.749716\pi\)
\(102\) −0.932917 0.840002i −0.0923725 0.0831726i
\(103\) 2.22567 4.99893i 0.219301 0.492559i −0.770072 0.637957i \(-0.779780\pi\)
0.989373 + 0.145398i \(0.0464463\pi\)
\(104\) −1.09520 + 0.232792i −0.107393 + 0.0228271i
\(105\) 0 0
\(106\) 2.41015 22.9310i 0.234094 2.22726i
\(107\) −2.50059 + 11.7644i −0.241741 + 1.13730i 0.674999 + 0.737819i \(0.264144\pi\)
−0.916740 + 0.399484i \(0.869189\pi\)
\(108\) 3.05918 4.21061i 0.294370 0.405166i
\(109\) −9.42799 6.84984i −0.903038 0.656095i 0.0362066 0.999344i \(-0.488473\pi\)
−0.939244 + 0.343249i \(0.888473\pi\)
\(110\) 0 0
\(111\) 0.0467455 0.444754i 0.00443689 0.0422142i
\(112\) 5.95456 0.625849i 0.562653 0.0591372i
\(113\) −3.53272 16.6201i −0.332330 1.56349i −0.754082 0.656780i \(-0.771918\pi\)
0.421752 0.906711i \(-0.361415\pi\)
\(114\) 1.01022 + 0.449779i 0.0946158 + 0.0421257i
\(115\) 0 0
\(116\) 4.28242 + 13.1799i 0.397613 + 1.22373i
\(117\) 1.84786 1.66382i 0.170834 0.153820i
\(118\) 13.3311 + 7.69671i 1.22723 + 0.708539i
\(119\) −2.12909 3.68769i −0.195173 0.338050i
\(120\) 0 0
\(121\) −10.0479 + 4.47362i −0.913447 + 0.406693i
\(122\) −15.5437 21.3940i −1.40726 1.93692i
\(123\) 0.416697i 0.0375723i
\(124\) −12.3143 + 7.66649i −1.10585 + 0.688471i
\(125\) 0 0
\(126\) 12.3760 8.99167i 1.10254 0.801042i
\(127\) −0.589284 1.32355i −0.0522905 0.117446i 0.885511 0.464619i \(-0.153809\pi\)
−0.937801 + 0.347172i \(0.887142\pi\)
\(128\) −9.43061 3.06419i −0.833556 0.270839i
\(129\) 2.07214 + 3.58906i 0.182442 + 0.315999i
\(130\) 0 0
\(131\) 3.07515 + 3.41530i 0.268677 + 0.298396i 0.862353 0.506308i \(-0.168990\pi\)
−0.593675 + 0.804705i \(0.702324\pi\)
\(132\) 0.0289629 0.00941063i 0.00252090 0.000819090i
\(133\) 2.78749 + 2.50987i 0.241706 + 0.217633i
\(134\) 4.93173 + 2.19575i 0.426037 + 0.189684i
\(135\) 0 0
\(136\) 0.233980 + 2.22617i 0.0200637 + 0.190893i
\(137\) −3.04376 0.319912i −0.260046 0.0273320i −0.0263918 0.999652i \(-0.508402\pi\)
−0.233654 + 0.972320i \(0.575068\pi\)
\(138\) −0.543723 + 2.55802i −0.0462848 + 0.217753i
\(139\) −9.44000 6.85856i −0.800691 0.581736i 0.110426 0.993884i \(-0.464778\pi\)
−0.911117 + 0.412149i \(0.864778\pi\)
\(140\) 0 0
\(141\) 3.09442 + 0.657739i 0.260597 + 0.0553916i
\(142\) 14.1880 + 1.49122i 1.19063 + 0.125140i
\(143\) 0.0295174 0.00310240i 0.00246836 0.000259436i
\(144\) 6.83702 1.45325i 0.569751 0.121104i
\(145\) 0 0
\(146\) −18.2127 + 20.2273i −1.50730 + 1.67402i
\(147\) 0.288592 0.0937694i 0.0238027 0.00773397i
\(148\) −2.55058 + 2.29655i −0.209656 + 0.188775i
\(149\) 9.58706 16.6053i 0.785403 1.36036i −0.143355 0.989671i \(-0.545789\pi\)
0.928758 0.370686i \(-0.120878\pi\)
\(150\) 0 0
\(151\) −1.24220 + 3.82309i −0.101089 + 0.311119i −0.988793 0.149296i \(-0.952299\pi\)
0.887704 + 0.460415i \(0.152299\pi\)
\(152\) −0.802000 1.80132i −0.0650508 0.146107i
\(153\) −2.92193 4.02169i −0.236224 0.325134i
\(154\) 0.182596 0.0147140
\(155\) 0 0
\(156\) 0.762330 0.0610352
\(157\) −10.3678 14.2701i −0.827444 1.13888i −0.988393 0.151917i \(-0.951456\pi\)
0.160949 0.986963i \(-0.448544\pi\)
\(158\) 8.74232 + 19.6356i 0.695501 + 1.56212i
\(159\) −1.12710 + 3.46885i −0.0893846 + 0.275098i
\(160\) 0 0
\(161\) −4.43530 + 7.68217i −0.349551 + 0.605440i
\(162\) 12.7202 11.4533i 0.999396 0.899860i
\(163\) −23.0030 + 7.47414i −1.80174 + 0.585420i −0.999926 0.0121588i \(-0.996130\pi\)
−0.801810 + 0.597578i \(0.796130\pi\)
\(164\) −2.13989 + 2.37658i −0.167097 + 0.185580i
\(165\) 0 0
\(166\) 17.8396 3.79192i 1.38462 0.294310i
\(167\) −10.5743 + 1.11140i −0.818262 + 0.0860028i −0.504405 0.863467i \(-0.668288\pi\)
−0.313857 + 0.949470i \(0.601621\pi\)
\(168\) 1.08368 + 0.113899i 0.0836076 + 0.00878751i
\(169\) −11.9892 2.54838i −0.922245 0.196029i
\(170\) 0 0
\(171\) 3.54262 + 2.57387i 0.270911 + 0.196828i
\(172\) 6.61284 31.1110i 0.504224 2.37219i
\(173\) 7.90211 + 0.830545i 0.600786 + 0.0631452i 0.400039 0.916498i \(-0.368996\pi\)
0.200747 + 0.979643i \(0.435663\pi\)
\(174\) −0.405053 3.85382i −0.0307070 0.292157i
\(175\) 0 0
\(176\) 0.0762186 + 0.0339347i 0.00574519 + 0.00255792i
\(177\) −1.80958 1.62936i −0.136017 0.122470i
\(178\) 2.65426 0.862421i 0.198945 0.0646412i
\(179\) 3.74794 + 4.16251i 0.280134 + 0.311120i 0.866748 0.498746i \(-0.166206\pi\)
−0.586614 + 0.809867i \(0.699539\pi\)
\(180\) 0 0
\(181\) 12.7202 + 22.0320i 0.945482 + 1.63762i 0.754784 + 0.655974i \(0.227742\pi\)
0.190698 + 0.981649i \(0.438925\pi\)
\(182\) 4.34713 + 1.41247i 0.322231 + 0.104699i
\(183\) 1.70145 + 3.82151i 0.125774 + 0.282494i
\(184\) 3.77252 2.74090i 0.278114 0.202062i
\(185\) 0 0
\(186\) 3.81378 1.38096i 0.279640 0.101257i
\(187\) 0.0593361i 0.00433909i
\(188\) −14.2709 19.6423i −1.04082 1.43256i
\(189\) −4.50963 + 2.00782i −0.328027 + 0.146047i
\(190\) 0 0
\(191\) 6.28076 + 10.8786i 0.454460 + 0.787147i 0.998657 0.0518101i \(-0.0164990\pi\)
−0.544197 + 0.838957i \(0.683166\pi\)
\(192\) 3.49490 + 2.01778i 0.252222 + 0.145621i
\(193\) −2.93299 + 2.64087i −0.211121 + 0.190094i −0.767906 0.640562i \(-0.778701\pi\)
0.556785 + 0.830657i \(0.312035\pi\)
\(194\) 1.49008 + 4.58601i 0.106982 + 0.329256i
\(195\) 0 0
\(196\) −2.12749 0.947221i −0.151964 0.0676586i
\(197\) −4.04791 19.0439i −0.288402 1.35682i −0.848849 0.528635i \(-0.822704\pi\)
0.560448 0.828190i \(-0.310629\pi\)
\(198\) 0.211998 0.0222819i 0.0150660 0.00158350i
\(199\) −2.50605 + 23.8435i −0.177649 + 1.69022i 0.435450 + 0.900213i \(0.356589\pi\)
−0.613099 + 0.790006i \(0.710078\pi\)
\(200\) 0 0
\(201\) −0.690871 0.501947i −0.0487303 0.0354046i
\(202\) −11.5304 + 15.8703i −0.811278 + 1.11663i
\(203\) 2.73281 12.8569i 0.191806 0.902376i
\(204\) 0.159307 1.51570i 0.0111537 0.106120i
\(205\) 0 0
\(206\) 11.4863 2.44149i 0.800289 0.170107i
\(207\) −4.21205 + 9.46042i −0.292758 + 0.657545i
\(208\) 1.55207 + 1.39749i 0.107616 + 0.0968983i
\(209\) 0.0161517 + 0.0497098i 0.00111724 + 0.00343850i
\(210\) 0 0
\(211\) −5.74590 + 9.95219i −0.395564 + 0.685137i −0.993173 0.116650i \(-0.962784\pi\)
0.597609 + 0.801788i \(0.296118\pi\)
\(212\) 24.2420 13.9961i 1.66495 0.961259i
\(213\) −2.14626 0.697363i −0.147059 0.0477825i
\(214\) −23.5789 + 10.4980i −1.61182 + 0.717628i
\(215\) 0 0
\(216\) 2.59497 0.176565
\(217\) 13.7507 0.457398i 0.933455 0.0310502i
\(218\) 25.0087i 1.69380i
\(219\) 3.48331 2.53077i 0.235380 0.171014i
\(220\) 0 0
\(221\) 0.458995 1.41264i 0.0308754 0.0950246i
\(222\) 0.831123 0.479849i 0.0557813 0.0322054i
\(223\) 3.87842 + 2.23921i 0.259718 + 0.149949i 0.624206 0.781260i \(-0.285423\pi\)
−0.364488 + 0.931208i \(0.618756\pi\)
\(224\) 12.8932 + 14.3193i 0.861463 + 0.956751i
\(225\) 0 0
\(226\) 24.3989 27.0977i 1.62299 1.80251i
\(227\) 6.40556 14.3871i 0.425152 0.954906i −0.566272 0.824218i \(-0.691615\pi\)
0.991424 0.130688i \(-0.0417185\pi\)
\(228\) 0.279122 + 1.31317i 0.0184853 + 0.0869666i
\(229\) 0.240431 + 2.28755i 0.0158881 + 0.151166i 0.999590 0.0286434i \(-0.00911873\pi\)
−0.983702 + 0.179809i \(0.942452\pi\)
\(230\) 0 0
\(231\) −0.0282530 0.00600536i −0.00185891 0.000395124i
\(232\) −4.06136 + 5.58998i −0.266641 + 0.367000i
\(233\) −11.9800 + 16.4891i −0.784837 + 1.08023i 0.209895 + 0.977724i \(0.432688\pi\)
−0.994732 + 0.102511i \(0.967312\pi\)
\(234\) 5.21949 + 1.10944i 0.341209 + 0.0725262i
\(235\) 0 0
\(236\) 1.95344 + 18.5857i 0.127158 + 1.20983i
\(237\) −0.706907 3.32574i −0.0459185 0.216030i
\(238\) 3.71677 8.34801i 0.240923 0.541121i
\(239\) −9.71312 + 10.7875i −0.628290 + 0.697786i −0.970299 0.241910i \(-0.922226\pi\)
0.342009 + 0.939697i \(0.388893\pi\)
\(240\) 0 0
\(241\) −9.51662 10.5693i −0.613019 0.680827i 0.354083 0.935214i \(-0.384793\pi\)
−0.967103 + 0.254387i \(0.918126\pi\)
\(242\) −20.4412 11.8017i −1.31401 0.758643i
\(243\) −7.53504 + 4.35036i −0.483373 + 0.279076i
\(244\) 9.92079 30.5331i 0.635114 1.95468i
\(245\) 0 0
\(246\) 0.723448 0.525616i 0.0461254 0.0335120i
\(247\) 1.30840i 0.0832518i
\(248\) −6.70131 2.72041i −0.425533 0.172746i
\(249\) −2.88503 −0.182831
\(250\) 0 0
\(251\) 22.2381 9.90103i 1.40365 0.624947i 0.441453 0.897285i \(-0.354463\pi\)
0.962202 + 0.272337i \(0.0877966\pi\)
\(252\) 17.6627 + 5.73896i 1.11265 + 0.361521i
\(253\) −0.107048 + 0.0618043i −0.00673006 + 0.00388560i
\(254\) 1.55457 2.69259i 0.0975424 0.168948i
\(255\) 0 0
\(256\) 0.771361 + 2.37401i 0.0482101 + 0.148375i
\(257\) 15.7467 + 14.1784i 0.982252 + 0.884424i 0.993306 0.115515i \(-0.0368519\pi\)
−0.0110538 + 0.999939i \(0.503519\pi\)
\(258\) −3.61737 + 8.12474i −0.225207 + 0.505824i
\(259\) 3.18415 0.676812i 0.197853 0.0420550i
\(260\) 0 0
\(261\) 1.60396 15.2606i 0.0992825 0.944610i
\(262\) −2.05052 + 9.64694i −0.126682 + 0.595990i
\(263\) −3.74515 + 5.15476i −0.230936 + 0.317856i −0.908721 0.417404i \(-0.862940\pi\)
0.677785 + 0.735260i \(0.262940\pi\)
\(264\) 0.0122840 + 0.00892484i 0.000756027 + 0.000549286i
\(265\) 0 0
\(266\) −0.841403 + 8.00541i −0.0515897 + 0.490843i
\(267\) −0.439057 + 0.0461468i −0.0268699 + 0.00282414i
\(268\) 1.36263 + 6.41067i 0.0832358 + 0.391594i
\(269\) −24.1414 10.7485i −1.47193 0.655345i −0.494996 0.868895i \(-0.664831\pi\)
−0.976932 + 0.213550i \(0.931497\pi\)
\(270\) 0 0
\(271\) −4.94971 15.2336i −0.300673 0.925377i −0.981256 0.192706i \(-0.938274\pi\)
0.680583 0.732671i \(-0.261726\pi\)
\(272\) 3.10289 2.79386i 0.188140 0.169402i
\(273\) −0.626177 0.361524i −0.0378980 0.0218804i
\(274\) −3.28394 5.68796i −0.198390 0.343622i
\(275\) 0 0
\(276\) −2.90041 + 1.29134i −0.174584 + 0.0777297i
\(277\) −4.90164 6.74652i −0.294511 0.405359i 0.635962 0.771720i \(-0.280603\pi\)
−0.930473 + 0.366361i \(0.880603\pi\)
\(278\) 25.0405i 1.50183i
\(279\) 15.9090 2.20902i 0.952449 0.132251i
\(280\) 0 0
\(281\) 7.87455 5.72119i 0.469756 0.341298i −0.327590 0.944820i \(-0.606237\pi\)
0.797346 + 0.603522i \(0.206237\pi\)
\(282\) 2.76132 + 6.20203i 0.164434 + 0.369326i
\(283\) 12.7603 + 4.14607i 0.758521 + 0.246459i 0.662644 0.748935i \(-0.269434\pi\)
0.0958775 + 0.995393i \(0.469434\pi\)
\(284\) 8.65976 + 14.9991i 0.513862 + 0.890035i
\(285\) 0 0
\(286\) 0.0426190 + 0.0473332i 0.00252011 + 0.00279887i
\(287\) 2.88476 0.937316i 0.170282 0.0553280i
\(288\) 16.7167 + 15.0518i 0.985040 + 0.886934i
\(289\) 12.8175 + 5.70672i 0.753971 + 0.335690i
\(290\) 0 0
\(291\) −0.0797321 0.758600i −0.00467398 0.0444699i
\(292\) −32.8631 3.45405i −1.92317 0.202133i
\(293\) 0.999813 4.70375i 0.0584097 0.274796i −0.939245 0.343248i \(-0.888473\pi\)
0.997654 + 0.0684523i \(0.0218061\pi\)
\(294\) 0.526824 + 0.382760i 0.0307250 + 0.0223230i
\(295\) 0 0
\(296\) −1.67384 0.355786i −0.0972901 0.0206797i
\(297\) −0.0684102 0.00719020i −0.00396956 0.000417218i
\(298\) 40.9222 4.30110i 2.37056 0.249156i
\(299\) −3.02663 + 0.643330i −0.175035 + 0.0372048i
\(300\) 0 0
\(301\) −20.1857 + 22.4185i −1.16348 + 1.29218i
\(302\) −8.20435 + 2.66575i −0.472107 + 0.153397i
\(303\) 2.30606 2.07638i 0.132480 0.119285i
\(304\) −1.83899 + 3.18523i −0.105473 + 0.182685i
\(305\) 0 0
\(306\) 3.29657 10.1458i 0.188452 0.579997i
\(307\) 11.1600 + 25.0657i 0.636934 + 1.43058i 0.886734 + 0.462280i \(0.152968\pi\)
−0.249800 + 0.968297i \(0.580365\pi\)
\(308\) 0.130298 + 0.179340i 0.00742443 + 0.0102188i
\(309\) −1.85757 −0.105674
\(310\) 0 0
\(311\) −34.7671 −1.97146 −0.985730 0.168335i \(-0.946161\pi\)
−0.985730 + 0.168335i \(0.946161\pi\)
\(312\) 0.223412 + 0.307500i 0.0126482 + 0.0174088i
\(313\) 8.38497 + 18.8330i 0.473947 + 1.06450i 0.979452 + 0.201678i \(0.0646395\pi\)
−0.505505 + 0.862824i \(0.668694\pi\)
\(314\) 11.6972 36.0002i 0.660110 2.03161i
\(315\) 0 0
\(316\) −13.0471 + 22.5982i −0.733955 + 1.27125i
\(317\) 15.1579 13.6482i 0.851353 0.766562i −0.122804 0.992431i \(-0.539189\pi\)
0.974158 + 0.225869i \(0.0725221\pi\)
\(318\) −7.44414 + 2.41875i −0.417447 + 0.135637i
\(319\) 0.122557 0.136113i 0.00686187 0.00762088i
\(320\) 0 0
\(321\) 3.99363 0.848871i 0.222902 0.0473794i
\(322\) −18.9320 + 1.98983i −1.05504 + 0.110889i
\(323\) 2.60143 + 0.273422i 0.144748 + 0.0152136i
\(324\) 20.3262 + 4.32046i 1.12923 + 0.240025i
\(325\) 0 0
\(326\) −41.9919 30.5089i −2.32572 1.68973i
\(327\) −0.822507 + 3.86959i −0.0454848 + 0.213989i
\(328\) −1.58577 0.166671i −0.0875593 0.00920286i
\(329\) 2.40709 + 22.9019i 0.132707 + 1.26263i
\(330\) 0 0
\(331\) −28.6028 12.7348i −1.57215 0.699968i −0.578843 0.815439i \(-0.696496\pi\)
−0.993311 + 0.115471i \(0.963162\pi\)
\(332\) 16.4544 + 14.8156i 0.903054 + 0.813113i
\(333\) 3.61429 1.17435i 0.198062 0.0643541i
\(334\) −15.2678 16.9566i −0.835417 0.927825i
\(335\) 0 0
\(336\) −1.01626 1.76021i −0.0554415 0.0960274i
\(337\) −10.7432 3.49068i −0.585219 0.190149i 0.00141805 0.999999i \(-0.499549\pi\)
−0.586637 + 0.809850i \(0.699549\pi\)
\(338\) −10.6986 24.0295i −0.581928 1.30703i
\(339\) −4.66646 + 3.39038i −0.253447 + 0.184140i
\(340\) 0 0
\(341\) 0.169126 + 0.0902854i 0.00915870 + 0.00488923i
\(342\) 9.39716i 0.508140i
\(343\) 11.4655 + 15.7809i 0.619077 + 0.852087i
\(344\) 14.4872 6.45012i 0.781098 0.347767i
\(345\) 0 0
\(346\) 8.52566 + 14.7669i 0.458342 + 0.793872i
\(347\) 2.17038 + 1.25307i 0.116512 + 0.0672684i 0.557124 0.830430i \(-0.311905\pi\)
−0.440611 + 0.897698i \(0.645238\pi\)
\(348\) 3.49607 3.14787i 0.187409 0.168744i
\(349\) 0.527266 + 1.62276i 0.0282239 + 0.0868642i 0.964176 0.265262i \(-0.0854586\pi\)
−0.935952 + 0.352127i \(0.885459\pi\)
\(350\) 0 0
\(351\) −1.57305 0.700368i −0.0839633 0.0373829i
\(352\) 0.0558244 + 0.262633i 0.00297545 + 0.0139984i
\(353\) −7.98033 + 0.838766i −0.424750 + 0.0446430i −0.314492 0.949260i \(-0.601834\pi\)
−0.110258 + 0.993903i \(0.535168\pi\)
\(354\) 0.546222 5.19695i 0.0290314 0.276215i
\(355\) 0 0
\(356\) 2.74109 + 1.99152i 0.145278 + 0.105550i
\(357\) −0.849653 + 1.16945i −0.0449684 + 0.0618937i
\(358\) −2.49914 + 11.7575i −0.132083 + 0.621404i
\(359\) 0.214085 2.03688i 0.0112989 0.107502i −0.987419 0.158127i \(-0.949455\pi\)
0.998718 + 0.0506245i \(0.0161212\pi\)
\(360\) 0 0
\(361\) 16.3310 3.47126i 0.859526 0.182698i
\(362\) −22.2057 + 49.8749i −1.16711 + 2.62137i
\(363\) 2.77472 + 2.49837i 0.145635 + 0.131130i
\(364\) 1.71478 + 5.27755i 0.0898789 + 0.276619i
\(365\) 0 0
\(366\) −4.48853 + 7.77436i −0.234619 + 0.406372i
\(367\) −5.88693 + 3.39882i −0.307295 + 0.177417i −0.645716 0.763578i \(-0.723441\pi\)
0.338420 + 0.940995i \(0.390107\pi\)
\(368\) −8.27235 2.68785i −0.431226 0.140114i
\(369\) 3.23490 1.44027i 0.168402 0.0749775i
\(370\) 0 0
\(371\) −26.5499 −1.37840
\(372\) 4.07781 + 2.76035i 0.211425 + 0.143118i
\(373\) 19.0749i 0.987662i −0.869558 0.493831i \(-0.835596\pi\)
0.869558 0.493831i \(-0.164404\pi\)
\(374\) 0.103016 0.0748457i 0.00532685 0.00387018i
\(375\) 0 0
\(376\) 3.74078 11.5129i 0.192916 0.593734i
\(377\) 3.97067 2.29247i 0.204500 0.118068i
\(378\) −9.17425 5.29676i −0.471873 0.272436i
\(379\) 4.57029 + 5.07582i 0.234760 + 0.260727i 0.849001 0.528391i \(-0.177204\pi\)
−0.614241 + 0.789118i \(0.710538\pi\)
\(380\) 0 0
\(381\) −0.329095 + 0.365497i −0.0168600 + 0.0187250i
\(382\) −10.9644 + 24.6264i −0.560987 + 1.26000i
\(383\) 3.18109 + 14.9658i 0.162546 + 0.764719i 0.981592 + 0.190991i \(0.0611701\pi\)
−0.819046 + 0.573728i \(0.805497\pi\)
\(384\) 0.351858 + 3.34771i 0.0179557 + 0.170837i
\(385\) 0 0
\(386\) −8.28458 1.76094i −0.421674 0.0896295i
\(387\) −20.7004 + 28.4917i −1.05226 + 1.44831i
\(388\) −3.44094 + 4.73604i −0.174687 + 0.240436i
\(389\) −35.2480 7.49219i −1.78714 0.379869i −0.809002 0.587806i \(-0.799992\pi\)
−0.978142 + 0.207937i \(0.933325\pi\)
\(390\) 0 0
\(391\) 0.646615 + 6.15213i 0.0327007 + 0.311127i
\(392\) −0.241414 1.13576i −0.0121932 0.0573647i
\(393\) 0.634554 1.42523i 0.0320090 0.0718934i
\(394\) 27.9571 31.0495i 1.40846 1.56425i
\(395\) 0 0
\(396\) 0.173164 + 0.192318i 0.00870182 + 0.00966435i
\(397\) 10.2745 + 5.93197i 0.515661 + 0.297717i 0.735158 0.677896i \(-0.237108\pi\)
−0.219496 + 0.975613i \(0.570441\pi\)
\(398\) −44.5569 + 25.7249i −2.23344 + 1.28947i
\(399\) 0.393479 1.21100i 0.0196986 0.0606260i
\(400\) 0 0
\(401\) 31.2668 22.7167i 1.56139 1.13442i 0.626533 0.779395i \(-0.284473\pi\)
0.934858 0.355022i \(-0.115527\pi\)
\(402\) 1.83260i 0.0914020i
\(403\) 3.32806 + 3.45774i 0.165783 + 0.172242i
\(404\) −23.8153 −1.18486
\(405\) 0 0
\(406\) 25.7686 11.4729i 1.27887 0.569391i
\(407\) 0.0431411 + 0.0140174i 0.00213842 + 0.000694816i
\(408\) 0.658074 0.379939i 0.0325795 0.0188098i
\(409\) −1.77446 + 3.07346i −0.0877416 + 0.151973i −0.906556 0.422085i \(-0.861298\pi\)
0.818815 + 0.574058i \(0.194632\pi\)
\(410\) 0 0
\(411\) 0.321054 + 0.988103i 0.0158364 + 0.0487395i
\(412\) 10.5945 + 9.53929i 0.521951 + 0.469967i
\(413\) 7.20944 16.1927i 0.354753 0.796789i
\(414\) −21.7377 + 4.62049i −1.06835 + 0.227085i
\(415\) 0 0
\(416\) −0.702565 + 6.68446i −0.0344461 + 0.327732i
\(417\) −0.823555 + 3.87452i −0.0403297 + 0.189736i
\(418\) −0.0659301 + 0.0907450i −0.00322475 + 0.00443848i
\(419\) 9.72888 + 7.06844i 0.475287 + 0.345316i 0.799498 0.600669i \(-0.205099\pi\)
−0.324211 + 0.945985i \(0.605099\pi\)
\(420\) 0 0
\(421\) −1.71081 + 16.2773i −0.0833798 + 0.793306i 0.870308 + 0.492508i \(0.163920\pi\)
−0.953688 + 0.300798i \(0.902747\pi\)
\(422\) −24.5263 + 2.57782i −1.19392 + 0.125486i
\(423\) 5.58939 + 26.2960i 0.271765 + 1.27856i
\(424\) 12.7501 + 5.67671i 0.619200 + 0.275685i
\(425\) 0 0
\(426\) −1.49654 4.60587i −0.0725076 0.223155i
\(427\) −22.6288 + 20.3751i −1.09508 + 0.986018i
\(428\) −27.1364 15.6672i −1.31169 0.757304i
\(429\) −0.00503770 0.00872555i −0.000243222 0.000421274i
\(430\) 0 0
\(431\) −7.89927 + 3.51698i −0.380494 + 0.169407i −0.588066 0.808813i \(-0.700111\pi\)
0.207572 + 0.978220i \(0.433444\pi\)
\(432\) −2.84511 3.91596i −0.136885 0.188407i
\(433\) 11.7623i 0.565262i 0.959229 + 0.282631i \(0.0912072\pi\)
−0.959229 + 0.282631i \(0.908793\pi\)
\(434\) 18.1390 + 23.2962i 0.870699 + 1.11825i
\(435\) 0 0
\(436\) 24.5628 17.8459i 1.17634 0.854665i
\(437\) −2.21636 4.97804i −0.106023 0.238132i
\(438\) 8.78760 + 2.85526i 0.419888 + 0.136430i
\(439\) 14.0078 + 24.2623i 0.668557 + 1.15797i 0.978308 + 0.207156i \(0.0664209\pi\)
−0.309751 + 0.950818i \(0.600246\pi\)
\(440\) 0 0
\(441\) 1.72544 + 1.91630i 0.0821638 + 0.0912522i
\(442\) 3.03153 0.985002i 0.144195 0.0468518i
\(443\) 10.7138 + 9.64677i 0.509029 + 0.458332i 0.883179 0.469037i \(-0.155399\pi\)
−0.374150 + 0.927368i \(0.622065\pi\)
\(444\) 1.06437 + 0.473890i 0.0505130 + 0.0224898i
\(445\) 0 0
\(446\) 1.00459 + 9.55803i 0.0475687 + 0.452586i
\(447\) −6.47335 0.680377i −0.306179 0.0321807i
\(448\) −6.10753 + 28.7337i −0.288554 + 1.35754i
\(449\) −19.5658 14.2154i −0.923369 0.670867i 0.0209913 0.999780i \(-0.493318\pi\)
−0.944360 + 0.328913i \(0.893318\pi\)
\(450\) 0 0
\(451\) 0.0413432 + 0.00878776i 0.00194677 + 0.000413800i
\(452\) 44.0254 + 4.62726i 2.07078 + 0.217648i
\(453\) 1.35713 0.142640i 0.0637637 0.00670183i
\(454\) 33.0580 7.02670i 1.55149 0.329780i
\(455\) 0 0
\(456\) −0.447890 + 0.497432i −0.0209744 + 0.0232944i
\(457\) 29.2518 9.50449i 1.36834 0.444601i 0.469523 0.882920i \(-0.344426\pi\)
0.898819 + 0.438319i \(0.144426\pi\)
\(458\) −3.66825 + 3.30291i −0.171406 + 0.154335i
\(459\) −1.72123 + 2.98126i −0.0803402 + 0.139153i
\(460\) 0 0
\(461\) −2.77077 + 8.52756i −0.129048 + 0.397168i −0.994617 0.103621i \(-0.966957\pi\)
0.865569 + 0.500790i \(0.166957\pi\)
\(462\) −0.0252117 0.0566265i −0.00117296 0.00263450i
\(463\) −18.1482 24.9789i −0.843420 1.16087i −0.985274 0.170980i \(-0.945307\pi\)
0.141855 0.989887i \(-0.454693\pi\)
\(464\) 12.8885 0.598331
\(465\) 0 0
\(466\) −43.7389 −2.02616
\(467\) −16.5536 22.7841i −0.766010 1.05432i −0.996690 0.0812924i \(-0.974095\pi\)
0.230681 0.973030i \(-0.425905\pi\)
\(468\) 2.63491 + 5.91812i 0.121799 + 0.273565i
\(469\) 1.92090 5.91193i 0.0886990 0.272987i
\(470\) 0 0
\(471\) −2.99391 + 5.18561i −0.137952 + 0.238940i
\(472\) −6.92442 + 6.23477i −0.318722 + 0.286979i
\(473\) −0.399793 + 0.129901i −0.0183825 + 0.00597284i
\(474\) 4.88229 5.42233i 0.224251 0.249056i
\(475\) 0 0
\(476\) 10.8514 2.30654i 0.497374 0.105720i
\(477\) −30.8250 + 3.23984i −1.41138 + 0.148342i
\(478\) −30.9807 3.25620i −1.41703 0.148935i
\(479\) 1.20986 + 0.257165i 0.0552801 + 0.0117501i 0.235469 0.971882i \(-0.424337\pi\)
−0.180189 + 0.983632i \(0.557671\pi\)
\(480\) 0 0
\(481\) 0.918647 + 0.667436i 0.0418867 + 0.0304325i
\(482\) 6.34571 29.8542i 0.289039 1.35982i
\(483\) 2.99479 + 0.314765i 0.136268 + 0.0143223i
\(484\) −2.99529 28.4983i −0.136150 1.29538i
\(485\) 0 0
\(486\) −17.0575 7.59447i −0.773742 0.344492i
\(487\) 10.2185 + 9.20079i 0.463045 + 0.416928i 0.867352 0.497696i \(-0.165820\pi\)
−0.404307 + 0.914624i \(0.632487\pi\)
\(488\) 15.2235 4.94643i 0.689137 0.223914i
\(489\) 5.49400 + 6.10171i 0.248447 + 0.275929i
\(490\) 0 0
\(491\) 3.73427 + 6.46795i 0.168525 + 0.291894i 0.937902 0.346902i \(-0.112766\pi\)
−0.769376 + 0.638796i \(0.779433\pi\)
\(492\) 1.03249 + 0.335476i 0.0465482 + 0.0151244i
\(493\) −3.72823 8.37374i −0.167911 0.377134i
\(494\) −2.27158 + 1.65040i −0.102203 + 0.0742551i
\(495\) 0 0
\(496\) 3.24202 + 13.0953i 0.145571 + 0.587997i
\(497\) 16.4271i 0.736854i
\(498\) −3.63913 5.00884i −0.163073 0.224451i
\(499\) 18.1126 8.06423i 0.810829 0.361004i 0.0409236 0.999162i \(-0.486970\pi\)
0.769906 + 0.638158i \(0.220303\pi\)
\(500\) 0 0
\(501\) 1.80470 + 3.12584i 0.0806282 + 0.139652i
\(502\) 45.2404 + 26.1196i 2.01918 + 1.16577i
\(503\) 5.73527 5.16406i 0.255723 0.230254i −0.531290 0.847190i \(-0.678293\pi\)
0.787014 + 0.616935i \(0.211626\pi\)
\(504\) 2.86140 + 8.80649i 0.127457 + 0.392272i
\(505\) 0 0
\(506\) −0.242331 0.107893i −0.0107729 0.00479641i
\(507\) 0.865095 + 4.06995i 0.0384202 + 0.180753i
\(508\) 3.75391 0.394552i 0.166553 0.0175054i
\(509\) 3.56093 33.8800i 0.157835 1.50170i −0.573229 0.819395i \(-0.694309\pi\)
0.731064 0.682309i \(-0.239024\pi\)
\(510\) 0 0
\(511\) 25.3557 + 18.4220i 1.12167 + 0.814941i
\(512\) −14.8055 + 20.3781i −0.654318 + 0.900591i
\(513\) 0.630470 2.96613i 0.0278359 0.130958i
\(514\) −4.75313 + 45.2230i −0.209652 + 1.99470i
\(515\) 0 0
\(516\) −10.5612 + 2.24485i −0.464931 + 0.0988240i
\(517\) −0.130517 + 0.293146i −0.00574013 + 0.0128925i
\(518\) 5.19148 + 4.67443i 0.228101 + 0.205383i
\(519\) −0.833509 2.56528i −0.0365870 0.112603i
\(520\) 0 0
\(521\) 11.6725 20.2174i 0.511384 0.885742i −0.488529 0.872547i \(-0.662466\pi\)
0.999913 0.0131949i \(-0.00420018\pi\)
\(522\) 28.5179 16.4648i 1.24820 0.720647i
\(523\) 30.0253 + 9.75582i 1.31292 + 0.426592i 0.880056 0.474869i \(-0.157505\pi\)
0.432859 + 0.901461i \(0.357505\pi\)
\(524\) −10.9382 + 4.86999i −0.477836 + 0.212746i
\(525\) 0 0
\(526\) −13.6735 −0.596194
\(527\) 7.57033 5.89443i 0.329769 0.256766i
\(528\) 0.0283224i 0.00123257i
\(529\) −8.18185 + 5.94446i −0.355733 + 0.258455i
\(530\) 0 0
\(531\) 6.39437 19.6799i 0.277492 0.854033i
\(532\) −8.46310 + 4.88617i −0.366922 + 0.211842i
\(533\) 0.916297 + 0.529025i 0.0396892 + 0.0229146i
\(534\) −0.633938 0.704060i −0.0274332 0.0304677i
\(535\) 0 0
\(536\) −2.18653 + 2.42838i −0.0944436 + 0.104890i
\(537\) 0.773382 1.73705i 0.0333739 0.0749590i
\(538\) −11.7907 55.4710i −0.508335 2.39153i
\(539\) 0.00321730 + 0.0306106i 0.000138579 + 0.00131849i
\(540\) 0 0
\(541\) 24.7849 + 5.26819i 1.06558 + 0.226497i 0.707154 0.707059i \(-0.249979\pi\)
0.358431 + 0.933556i \(0.383312\pi\)
\(542\) 20.2044 27.8089i 0.867851 1.19449i
\(543\) 5.07622 6.98682i 0.217841 0.299833i
\(544\) 13.1435 + 2.79375i 0.563525 + 0.119781i
\(545\) 0 0
\(546\) −0.162192 1.54316i −0.00694119 0.0660411i
\(547\) −5.50600 25.9037i −0.235419 1.10756i −0.923997 0.382399i \(-0.875098\pi\)
0.688578 0.725162i \(-0.258235\pi\)
\(548\) 3.24316 7.28426i 0.138541 0.311168i
\(549\) −23.7863 + 26.4173i −1.01517 + 1.12746i
\(550\) 0 0
\(551\) 5.40277 + 6.00039i 0.230166 + 0.255625i
\(552\) −1.37090 0.791487i −0.0583492 0.0336879i
\(553\) 21.4337 12.3748i 0.911454 0.526228i
\(554\) 5.53011 17.0199i 0.234952 0.723108i
\(555\) 0 0
\(556\) 24.5941 17.8687i 1.04302 0.757800i
\(557\) 6.77607i 0.287111i −0.989642 0.143556i \(-0.954146\pi\)
0.989642 0.143556i \(-0.0458536\pi\)
\(558\) 23.9026 + 24.8340i 1.01188 + 1.05131i
\(559\) −10.5229 −0.445071
\(560\) 0 0
\(561\) −0.0184013 + 0.00819279i −0.000776904 + 0.000345900i
\(562\) 19.8657 + 6.45475i 0.837983 + 0.272277i
\(563\) −10.6621 + 6.15575i −0.449353 + 0.259434i −0.707557 0.706656i \(-0.750203\pi\)
0.258204 + 0.966090i \(0.416869\pi\)
\(564\) −4.12101 + 7.13779i −0.173526 + 0.300555i
\(565\) 0 0
\(566\) 8.89747 + 27.3836i 0.373988 + 1.15102i
\(567\) −14.6470 13.1882i −0.615116 0.553853i
\(568\) −3.51232 + 7.88881i −0.147374 + 0.331007i
\(569\) 8.71280 1.85196i 0.365259 0.0776383i −0.0216258 0.999766i \(-0.506884\pi\)
0.386885 + 0.922128i \(0.373551\pi\)
\(570\) 0 0
\(571\) 2.36325 22.4848i 0.0988989 0.940960i −0.826748 0.562572i \(-0.809812\pi\)
0.925647 0.378388i \(-0.123521\pi\)
\(572\) −0.0160768 + 0.0756356i −0.000672206 + 0.00316248i
\(573\) 2.50646 3.44984i 0.104709 0.144119i
\(574\) 5.26612 + 3.82606i 0.219804 + 0.159697i
\(575\) 0 0
\(576\) −3.58467 + 34.1058i −0.149361 + 1.42108i
\(577\) 30.5685 3.21288i 1.27259 0.133754i 0.555958 0.831210i \(-0.312352\pi\)
0.716627 + 0.697456i \(0.245685\pi\)
\(578\) 6.26010 + 29.4515i 0.260386 + 1.22502i
\(579\) 1.22396 + 0.544941i 0.0508659 + 0.0226470i
\(580\) 0 0
\(581\) −6.48956 19.9728i −0.269232 0.828612i
\(582\) 1.21647 1.09531i 0.0504243 0.0454022i
\(583\) −0.320397 0.184981i −0.0132695 0.00766114i
\(584\) −8.23776 14.2682i −0.340881 0.590423i
\(585\) 0 0
\(586\) 9.42756 4.19742i 0.389449 0.173394i
\(587\) 13.1855 + 18.1483i 0.544224 + 0.749060i 0.989214 0.146476i \(-0.0467930\pi\)
−0.444991 + 0.895535i \(0.646793\pi\)
\(588\) 0.790564i 0.0326023i
\(589\) −4.73766 + 6.99885i −0.195212 + 0.288383i
\(590\) 0 0
\(591\) −5.34699 + 3.88482i −0.219946 + 0.159800i
\(592\) 1.29829 + 2.91601i 0.0533594 + 0.119847i
\(593\) 25.0867 + 8.15116i 1.03019 + 0.334728i 0.774864 0.632128i \(-0.217818\pi\)
0.255323 + 0.966856i \(0.417818\pi\)
\(594\) −0.0738084 0.127840i −0.00302839 0.00524533i
\(595\) 0 0
\(596\) 33.4261 + 37.1234i 1.36918 + 1.52063i
\(597\) 7.74035 2.51499i 0.316792 0.102932i
\(598\) −4.93467 4.44319i −0.201794 0.181696i
\(599\) 21.7931 + 9.70292i 0.890443 + 0.396451i 0.800385 0.599486i \(-0.204628\pi\)
0.0900576 + 0.995937i \(0.471295\pi\)
\(600\) 0 0
\(601\) −0.708227 6.73833i −0.0288892 0.274862i −0.999425 0.0339054i \(-0.989205\pi\)
0.970536 0.240957i \(-0.0774612\pi\)
\(602\) −64.3838 6.76701i −2.62409 0.275803i
\(603\) 1.50879 7.09830i 0.0614427 0.289065i
\(604\) −8.47276 6.15582i −0.344752 0.250477i
\(605\) 0 0
\(606\) 6.51374 + 1.38454i 0.264603 + 0.0562430i
\(607\) 36.2222 + 3.80710i 1.47021 + 0.154526i 0.805510 0.592582i \(-0.201891\pi\)
0.664703 + 0.747108i \(0.268558\pi\)
\(608\) −11.7717 + 1.23725i −0.477405 + 0.0501773i
\(609\) −4.36450 + 0.927704i −0.176859 + 0.0375925i
\(610\) 0 0
\(611\) −5.37491 + 5.96944i −0.217446 + 0.241498i
\(612\) 12.3173 4.00214i 0.497898 0.161777i
\(613\) 21.1145 19.0116i 0.852807 0.767871i −0.121619 0.992577i \(-0.538809\pi\)
0.974427 + 0.224706i \(0.0721421\pi\)
\(614\) −29.4408 + 50.9930i −1.18813 + 2.05791i
\(615\) 0 0
\(616\) −0.0341544 + 0.105117i −0.00137612 + 0.00423527i
\(617\) −0.779979 1.75186i −0.0314008 0.0705272i 0.897164 0.441697i \(-0.145623\pi\)
−0.928565 + 0.371170i \(0.878957\pi\)
\(618\) −2.34312 3.22502i −0.0942540 0.129729i
\(619\) 19.2014 0.771768 0.385884 0.922547i \(-0.373896\pi\)
0.385884 + 0.922547i \(0.373896\pi\)
\(620\) 0 0
\(621\) 7.17131 0.287775
\(622\) −43.8547 60.3608i −1.75841 2.42025i
\(623\) −1.30708 2.93576i −0.0523672 0.117619i
\(624\) 0.219088 0.674284i 0.00877054 0.0269930i
\(625\) 0 0
\(626\) −22.1201 + 38.3132i −0.884098 + 1.53130i
\(627\) 0.0131859 0.0118726i 0.000526593 0.000474146i
\(628\) 43.7054 14.2007i 1.74403 0.566671i
\(629\) 1.51900 1.68702i 0.0605665 0.0672659i
\(630\) 0 0
\(631\) 30.5762 6.49917i 1.21722 0.258728i 0.445845 0.895110i \(-0.352903\pi\)
0.771374 + 0.636382i \(0.219570\pi\)
\(632\) −12.9390 + 1.35995i −0.514688 + 0.0540959i
\(633\) 3.87973 + 0.407776i 0.154206 + 0.0162077i
\(634\) 42.8154 + 9.10069i 1.70042 + 0.361434i
\(635\) 0 0
\(636\) −7.68768 5.58543i −0.304836 0.221477i
\(637\) −0.160193 + 0.753648i −0.00634707 + 0.0298606i
\(638\) 0.390904 + 0.0410857i 0.0154760 + 0.00162660i
\(639\) −2.00457 19.0722i −0.0792996 0.754486i
\(640\) 0 0
\(641\) −23.6057 10.5099i −0.932369 0.415118i −0.116393 0.993203i \(-0.537133\pi\)
−0.815976 + 0.578086i \(0.803800\pi\)
\(642\) 6.51127 + 5.86277i 0.256979 + 0.231385i
\(643\) −42.3232 + 13.7516i −1.66906 + 0.542311i −0.982741 0.184986i \(-0.940776\pi\)
−0.686322 + 0.727298i \(0.740776\pi\)
\(644\) −15.4640 17.1745i −0.609368 0.676772i
\(645\) 0 0
\(646\) 2.80671 + 4.86136i 0.110429 + 0.191268i
\(647\) −29.1894 9.48422i −1.14756 0.372863i −0.327333 0.944909i \(-0.606150\pi\)
−0.820222 + 0.572046i \(0.806150\pi\)
\(648\) 4.21415 + 9.46513i 0.165547 + 0.371825i
\(649\) 0.199821 0.145179i 0.00784367 0.00569876i
\(650\) 0 0
\(651\) −2.04046 4.20120i −0.0799719 0.164658i
\(652\) 63.0141i 2.46782i
\(653\) 2.80185 + 3.85641i 0.109645 + 0.150913i 0.860313 0.509767i \(-0.170268\pi\)
−0.750668 + 0.660680i \(0.770268\pi\)
\(654\) −7.75569 + 3.45305i −0.303271 + 0.135025i
\(655\) 0 0
\(656\) 1.48711 + 2.57575i 0.0580619 + 0.100566i
\(657\) 31.6866 + 18.2943i 1.23621 + 0.713727i
\(658\) −36.7249 + 33.0673i −1.43169 + 1.28910i
\(659\) −11.2644 34.6682i −0.438797 1.35048i −0.889145 0.457626i \(-0.848700\pi\)
0.450347 0.892853i \(-0.351300\pi\)
\(660\) 0 0
\(661\) 6.40261 + 2.85063i 0.249033 + 0.110877i 0.527457 0.849582i \(-0.323145\pi\)
−0.278424 + 0.960458i \(0.589812\pi\)
\(662\) −13.9697 65.7223i −0.542948 2.55437i
\(663\) −0.501464 + 0.0527059i −0.0194752 + 0.00204693i
\(664\) −1.15396 + 10.9792i −0.0447822 + 0.426074i
\(665\) 0 0
\(666\) 6.59786 + 4.79362i 0.255662 + 0.185749i
\(667\) −11.2237 + 15.4482i −0.434585 + 0.598155i
\(668\) 5.75936 27.0956i 0.222836 1.04836i
\(669\) 0.158913 1.51195i 0.00614392 0.0584555i
\(670\) 0 0
\(671\) −0.415038 + 0.0882191i −0.0160224 + 0.00340566i
\(672\) 2.66049 5.97557i 0.102631 0.230513i
\(673\) 4.90504 + 4.41652i 0.189076 + 0.170244i 0.758232 0.651985i \(-0.226063\pi\)
−0.569156 + 0.822229i \(0.692730\pi\)
\(674\) −7.49098 23.0549i −0.288542 0.888041i
\(675\) 0 0
\(676\) 15.9667 27.6551i 0.614102 1.06366i
\(677\) 6.81514 3.93472i 0.261927 0.151224i −0.363286 0.931678i \(-0.618345\pi\)
0.625213 + 0.780454i \(0.285012\pi\)
\(678\) −11.7724 3.82509i −0.452116 0.146902i
\(679\) 5.07238 2.25837i 0.194660 0.0866683i
\(680\) 0 0
\(681\) −5.34617 −0.204866
\(682\) 0.0565846 + 0.407513i 0.00216674 + 0.0156045i
\(683\) 0.381978i 0.0146160i 0.999973 + 0.00730798i \(0.00232622\pi\)
−0.999973 + 0.00730798i \(0.997674\pi\)
\(684\) −9.22961 + 6.70571i −0.352903 + 0.256399i
\(685\) 0 0
\(686\) −12.9355 + 39.8115i −0.493881 + 1.52001i
\(687\) 0.676217 0.390414i 0.0257993 0.0148952i
\(688\) −25.6173 14.7902i −0.976651 0.563869i
\(689\) −6.19691 6.88237i −0.236083 0.262197i
\(690\) 0 0
\(691\) −9.85330 + 10.9432i −0.374837 + 0.416299i −0.900818 0.434198i \(-0.857032\pi\)
0.525980 + 0.850497i \(0.323699\pi\)
\(692\) −8.41978 + 18.9111i −0.320072 + 0.718893i
\(693\) −0.0510328 0.240091i −0.00193858 0.00912029i
\(694\) 0.562173 + 5.34872i 0.0213398 + 0.203035i
\(695\) 0 0
\(696\) 2.29433 + 0.487675i 0.0869664 + 0.0184853i
\(697\) 1.24331 1.71127i 0.0470939 0.0648191i
\(698\) −2.15226 + 2.96234i −0.0814644 + 0.112126i
\(699\) 6.76772 + 1.43852i 0.255979 + 0.0544099i
\(700\) 0 0
\(701\) −2.11136 20.0883i −0.0797451 0.758724i −0.959197 0.282737i \(-0.908758\pi\)
0.879452 0.475987i \(-0.157909\pi\)
\(702\) −0.768283 3.61449i −0.0289970 0.136420i
\(703\) −0.813349 + 1.82681i −0.0306760 + 0.0688995i
\(704\) −0.273901 + 0.304198i −0.0103230 + 0.0114649i
\(705\) 0 0
\(706\) −11.5225 12.7970i −0.433655 0.481622i
\(707\) 19.5619 + 11.2941i 0.735701 + 0.424757i
\(708\) 5.49407 3.17200i 0.206480 0.119211i
\(709\) 9.27986 28.5605i 0.348513 1.07261i −0.611164 0.791504i \(-0.709298\pi\)
0.959676 0.281107i \(-0.0907017\pi\)
\(710\) 0 0
\(711\) 23.3750 16.9829i 0.876631 0.636910i
\(712\) 1.68932i 0.0633099i
\(713\) −18.5194 7.51799i −0.693556 0.281551i
\(714\) −3.10207 −0.116092
\(715\) 0 0
\(716\) −13.3312 + 5.93545i −0.498212 + 0.221818i
\(717\) 4.68655 + 1.52275i 0.175023 + 0.0568683i
\(718\) 3.80637 2.19761i 0.142052 0.0820139i
\(719\) 6.61620 11.4596i 0.246743 0.427371i −0.715877 0.698226i \(-0.753973\pi\)
0.962620 + 0.270855i \(0.0873064\pi\)
\(720\) 0 0
\(721\) −4.17842 12.8598i −0.155612 0.478926i
\(722\) 26.6263 + 23.9744i 0.990928 + 0.892236i
\(723\) −1.96374 + 4.41064i −0.0730324 + 0.164033i
\(724\) −64.8314 + 13.7803i −2.40944 + 0.512142i
\(725\) 0 0
\(726\) −0.837547 + 7.96872i −0.0310843 + 0.295747i
\(727\) −2.37478 + 11.1725i −0.0880758 + 0.414364i 0.911916 + 0.410376i \(0.134603\pi\)
−0.999992 + 0.00398775i \(0.998731\pi\)
\(728\) −1.62626 + 2.23836i −0.0602732 + 0.0829590i
\(729\) −16.9689 12.3287i −0.628480 0.456617i
\(730\) 0 0
\(731\) −2.19900 + 20.9221i −0.0813331 + 0.773833i
\(732\) −10.8387 + 1.13919i −0.400610 + 0.0421059i
\(733\) −6.50083 30.5840i −0.240114 1.12965i −0.918648 0.395077i \(-0.870718\pi\)
0.678534 0.734569i \(-0.262616\pi\)
\(734\) −13.3265 5.93336i −0.491892 0.219004i
\(735\) 0 0
\(736\) −8.65007 26.6222i −0.318846 0.981307i
\(737\) 0.0643712 0.0579601i 0.00237114 0.00213499i
\(738\) 6.58098 + 3.79953i 0.242249 + 0.139863i
\(739\) 9.76743 + 16.9177i 0.359301 + 0.622327i 0.987844 0.155447i \(-0.0496819\pi\)
−0.628543 + 0.777774i \(0.716349\pi\)
\(740\) 0 0
\(741\) 0.405762 0.180657i 0.0149060 0.00663660i
\(742\) −33.4896 46.0945i −1.22944 1.69218i
\(743\) 23.5592i 0.864305i 0.901801 + 0.432152i \(0.142246\pi\)
−0.901801 + 0.432152i \(0.857754\pi\)
\(744\) 0.0816235 + 2.45383i 0.00299246 + 0.0899617i
\(745\) 0 0
\(746\) 33.1169 24.0608i 1.21250 0.880930i
\(747\) −9.97180 22.3970i −0.364849 0.819465i
\(748\) 0.147023 + 0.0477705i 0.00537568 + 0.00174666i
\(749\) 14.8599 + 25.7381i 0.542969 + 0.940451i
\(750\) 0 0
\(751\) 5.94733 + 6.60518i 0.217021 + 0.241026i 0.841819 0.539760i \(-0.181485\pi\)
−0.624798 + 0.780787i \(0.714818\pi\)
\(752\) −21.4750 + 6.97766i −0.783114 + 0.254449i
\(753\) −6.14101 5.52939i −0.223791 0.201502i
\(754\) 8.98861 + 4.00199i 0.327346 + 0.145744i
\(755\) 0 0
\(756\) −1.34432 12.7904i −0.0488926 0.465182i
\(757\) −13.4594 1.41464i −0.489191 0.0514161i −0.143278 0.989683i \(-0.545764\pi\)
−0.345913 + 0.938266i \(0.612431\pi\)
\(758\) −3.04748 + 14.3373i −0.110689 + 0.520753i
\(759\) 0.0339473 + 0.0246642i 0.00123221 + 0.000895253i
\(760\) 0 0
\(761\) 39.5104 + 8.39820i 1.43225 + 0.304435i 0.857750 0.514068i \(-0.171862\pi\)
0.574503 + 0.818502i \(0.305195\pi\)
\(762\) −1.04967 0.110325i −0.0380256 0.00399666i
\(763\) −28.6391 + 3.01009i −1.03680 + 0.108972i
\(764\) −32.0114 + 6.80424i −1.15813 + 0.246169i
\(765\) 0 0
\(766\) −21.9704 + 24.4005i −0.793821 + 0.881628i
\(767\) 5.88026 1.91061i 0.212324 0.0689883i
\(768\) 0.629721 0.567004i 0.0227231 0.0204600i
\(769\) −2.49942 + 4.32912i −0.0901313 + 0.156112i −0.907566 0.419909i \(-0.862062\pi\)
0.817435 + 0.576021i \(0.195395\pi\)
\(770\) 0 0
\(771\) 2.22279 6.84103i 0.0800517 0.246374i
\(772\) −4.18224 9.39346i −0.150522 0.338078i
\(773\) 10.0896 + 13.8871i 0.362897 + 0.499485i 0.950953 0.309335i \(-0.100106\pi\)
−0.588056 + 0.808820i \(0.700106\pi\)
\(774\) −75.5770 −2.71656
\(775\) 0 0
\(776\) −2.91879 −0.104779
\(777\) −0.649542 0.894017i −0.0233022 0.0320727i
\(778\) −31.4538 70.6463i −1.12767 2.53279i
\(779\) −0.575786 + 1.77209i −0.0206297 + 0.0634916i
\(780\) 0 0
\(781\) 0.114453 0.198238i 0.00409543 0.00709350i
\(782\) −9.86539 + 8.88283i −0.352785 + 0.317649i
\(783\) −10.1061 + 3.28367i −0.361162 + 0.117349i
\(784\) −1.44925 + 1.60955i −0.0517588 + 0.0574840i
\(785\) 0 0
\(786\) 3.27483 0.696087i 0.116809 0.0248286i
\(787\) −17.3086 + 1.81921i −0.616986 + 0.0648478i −0.407865 0.913042i \(-0.633727\pi\)
−0.209120 + 0.977890i \(0.567060\pi\)
\(788\) 50.4458 + 5.30207i 1.79706 + 0.188879i
\(789\) 2.11570 + 0.449707i 0.0753210 + 0.0160100i
\(790\) 0 0
\(791\) −33.9680 24.6792i −1.20776 0.877492i
\(792\) −0.0268269 + 0.126211i −0.000953253 + 0.00448471i
\(793\) −10.5634 1.11026i −0.375118 0.0394265i
\(794\) 2.66129 + 25.3205i 0.0944458 + 0.898592i
\(795\) 0 0
\(796\) −57.0616 25.4055i −2.02249 0.900473i
\(797\) 30.5421 + 27.5002i 1.08186 + 0.974107i 0.999746 0.0225160i \(-0.00716766\pi\)
0.0821094 + 0.996623i \(0.473834\pi\)
\(798\) 2.59881 0.844405i 0.0919970 0.0298916i
\(799\) 10.7455 + 11.9341i 0.380149 + 0.422198i
\(800\) 0 0
\(801\) −1.87580 3.24899i −0.0662783 0.114797i
\(802\) 78.8791 + 25.6294i 2.78532 + 0.905004i
\(803\) 0.177634 + 0.398973i 0.00626858 + 0.0140795i
\(804\) 1.79993 1.30773i 0.0634787 0.0461199i
\(805\) 0 0
\(806\) −1.80519 + 10.1396i −0.0635850 + 0.357151i
\(807\) 8.97082i 0.315788i
\(808\) −6.97943 9.60637i −0.245536 0.337951i
\(809\) 4.58996 2.04358i 0.161374 0.0718484i −0.324460 0.945899i \(-0.605183\pi\)
0.485834 + 0.874051i \(0.338516\pi\)
\(810\) 0 0
\(811\) −7.40329 12.8229i −0.259965 0.450272i 0.706267 0.707945i \(-0.250378\pi\)
−0.966232 + 0.257673i \(0.917044\pi\)
\(812\) 29.6565 + 17.1222i 1.04074 + 0.600872i
\(813\) −4.04082 + 3.63837i −0.141718 + 0.127603i
\(814\) 0.0300813 + 0.0925806i 0.00105435 + 0.00324495i
\(815\) 0 0
\(816\) −1.29486 0.576509i −0.0453292 0.0201818i
\(817\) −3.85289 18.1264i −0.134796 0.634163i
\(818\) −7.57427 + 0.796088i −0.264828 + 0.0278346i
\(819\) 0.642261 6.11071i 0.0224424 0.213525i
\(820\) 0 0
\(821\) −9.98059 7.25132i −0.348325 0.253073i 0.399841 0.916584i \(-0.369065\pi\)
−0.748166 + 0.663512i \(0.769065\pi\)
\(822\) −1.31052 + 1.80378i −0.0457096 + 0.0629139i
\(823\) −0.499605 + 2.35046i −0.0174152 + 0.0819318i −0.985997 0.166763i \(-0.946668\pi\)
0.968582 + 0.248695i \(0.0800017\pi\)
\(824\) −0.742994 + 7.06911i −0.0258834 + 0.246264i
\(825\) 0 0
\(826\) 37.2068 7.90854i 1.29459 0.275173i
\(827\) −12.0844 + 27.1421i −0.420217 + 0.943823i 0.572110 + 0.820177i \(0.306125\pi\)
−0.992326 + 0.123645i \(0.960541\pi\)
\(828\) −20.0499 18.0530i −0.696783 0.627386i
\(829\) −12.0353 37.0408i −0.418003 1.28648i −0.909537 0.415622i \(-0.863564\pi\)
0.491535 0.870858i \(-0.336436\pi\)
\(830\) 0 0
\(831\) −1.41544 + 2.45162i −0.0491011 + 0.0850456i
\(832\) −8.87400 + 5.12341i −0.307651 + 0.177622i
\(833\) 1.46496 + 0.475995i 0.0507579 + 0.0164923i
\(834\) −7.76557 + 3.45745i −0.268900 + 0.119722i
\(835\) 0 0
\(836\) −0.136174 −0.00470968
\(837\) −5.87850 9.44230i −0.203191 0.326374i
\(838\) 25.8068i 0.891481i
\(839\) −10.0592 + 7.30841i −0.347281 + 0.252314i −0.747727 0.664006i \(-0.768855\pi\)
0.400447 + 0.916320i \(0.368855\pi\)
\(840\) 0 0
\(841\) −0.218112 + 0.671281i −0.00752111 + 0.0231476i
\(842\) −30.4178 + 17.5617i −1.04827 + 0.605216i
\(843\) −2.86153 1.65210i −0.0985562 0.0569015i
\(844\) −20.0335 22.2495i −0.689583 0.765860i
\(845\) 0 0
\(846\) −38.6034 + 42.8734i −1.32721 + 1.47402i
\(847\) −11.0546 + 24.8290i −0.379840 + 0.853133i
\(848\) −5.41266 25.4646i −0.185872 0.874457i
\(849\) −0.476090 4.52969i −0.0163394 0.155459i
\(850\) 0 0
\(851\) −4.62574 0.983231i −0.158568 0.0337047i
\(852\) 3.45584 4.75656i 0.118395 0.162957i
\(853\) 24.4039 33.5891i 0.835573 1.15007i −0.151287 0.988490i \(-0.548342\pi\)
0.986860 0.161578i \(-0.0516584\pi\)
\(854\) −63.9178 13.5861i −2.18722 0.464908i
\(855\) 0 0
\(856\) −1.63306 15.5375i −0.0558168 0.531062i
\(857\) 1.72963 + 8.13729i 0.0590832 + 0.277965i 0.997765 0.0668199i \(-0.0212853\pi\)
−0.938682 + 0.344785i \(0.887952\pi\)
\(858\) 0.00879437 0.0197525i 0.000300235 0.000674339i
\(859\) −16.2822 + 18.0832i −0.555540 + 0.616990i −0.953858 0.300258i \(-0.902927\pi\)
0.398318 + 0.917247i \(0.369594\pi\)
\(860\) 0 0
\(861\) −0.688992 0.765203i −0.0234808 0.0260780i
\(862\) −16.0700 9.27803i −0.547347 0.316011i
\(863\) 34.7442 20.0596i 1.18271 0.682835i 0.226066 0.974112i \(-0.427413\pi\)
0.956639 + 0.291277i \(0.0940800\pi\)
\(864\) 4.81368 14.8150i 0.163765 0.504016i
\(865\) 0 0
\(866\) −20.4212 + 14.8369i −0.693940 + 0.504177i
\(867\) 4.76291i 0.161757i
\(868\) −9.93709 + 34.4395i −0.337287 + 1.16895i
\(869\) 0.344876 0.0116991
\(870\) 0 0
\(871\) 1.98087 0.881938i 0.0671191 0.0298833i
\(872\) 14.3970 + 4.67787i 0.487544 + 0.158413i
\(873\) 5.61358 3.24100i 0.189991 0.109691i
\(874\) 5.84692 10.1272i 0.197775 0.342556i
\(875\) 0 0
\(876\) 3.46638 + 10.6684i 0.117118 + 0.360452i
\(877\) −17.4978 15.7551i −0.590858 0.532011i 0.318556 0.947904i \(-0.396802\pi\)
−0.909413 + 0.415894i \(0.863469\pi\)
\(878\) −24.4536 + 54.9237i −0.825269 + 1.85359i
\(879\) −1.59677 + 0.339405i −0.0538578 + 0.0114478i
\(880\) 0 0
\(881\) 4.75745 45.2641i 0.160282 1.52499i −0.558356 0.829602i \(-0.688568\pi\)
0.718638 0.695384i \(-0.244766\pi\)
\(882\) −1.15053 + 5.41281i −0.0387403 + 0.182259i
\(883\) 7.30265 10.0512i 0.245754 0.338251i −0.668265 0.743924i \(-0.732963\pi\)
0.914018 + 0.405673i \(0.132963\pi\)
\(884\) 3.13070 + 2.27459i 0.105297 + 0.0765027i
\(885\) 0 0
\(886\) −3.23396 + 30.7691i −0.108647 + 1.03371i
\(887\) −35.7742 + 3.76002i −1.20118 + 0.126249i −0.683906 0.729570i \(-0.739720\pi\)
−0.517275 + 0.855819i \(0.673053\pi\)
\(888\) 0.120778 + 0.568217i 0.00405305 + 0.0190681i
\(889\) −3.27057 1.45615i −0.109691 0.0488378i
\(890\) 0 0
\(891\) −0.0848697 0.261202i −0.00284324 0.00875060i
\(892\) −8.67075 + 7.80718i −0.290318 + 0.261404i
\(893\) −12.2508 7.07299i −0.409956 0.236688i
\(894\) −6.98416 12.0969i −0.233585 0.404582i
\(895\) 0 0
\(896\) −22.3845 + 9.96620i −0.747812 + 0.332947i
\(897\) 0.617409 + 0.849791i 0.0206147 + 0.0283737i
\(898\) 51.9003i 1.73194i
\(899\) 29.5406 + 2.11482i 0.985234 + 0.0705331i
\(900\) 0 0
\(901\) −14.9788 + 10.8828i −0.499017 + 0.362557i
\(902\) 0.0368928 + 0.0828626i 0.00122840 + 0.00275902i
\(903\) 9.73955 + 3.16457i 0.324112 + 0.105310i
\(904\) 11.0358 + 19.1146i 0.367046 + 0.635742i
\(905\) 0 0
\(906\) 1.95951 + 2.17626i 0.0651004 + 0.0723014i
\(907\) 15.4692 5.02626i 0.513648 0.166894i −0.0407129 0.999171i \(-0.512963\pi\)
0.554360 + 0.832277i \(0.312963\pi\)
\(908\) 30.4913 + 27.4545i 1.01189 + 0.911109i
\(909\) 24.0900 + 10.7256i 0.799016 + 0.355745i
\(910\) 0 0
\(911\) −1.45830 13.8748i −0.0483157 0.459694i −0.991755 0.128148i \(-0.959097\pi\)
0.943439 0.331545i \(-0.107570\pi\)
\(912\) 1.24172 + 0.130510i 0.0411174 + 0.00432162i
\(913\) 0.0608426 0.286242i 0.00201360 0.00947322i
\(914\) 53.3990 + 38.7967i 1.76628 + 1.28328i
\(915\) 0 0
\(916\) −5.86164 1.24593i −0.193674 0.0411667i
\(917\) 11.2941 + 1.18706i 0.372965 + 0.0392002i
\(918\) −7.34704 + 0.772206i −0.242489 + 0.0254866i
\(919\) 54.0648 11.4918i 1.78343 0.379081i 0.806267 0.591552i \(-0.201485\pi\)
0.977167 + 0.212472i \(0.0681513\pi\)
\(920\) 0 0
\(921\) 6.23248 6.92186i 0.205367 0.228083i
\(922\) −18.3001 + 5.94607i −0.602683 + 0.195823i
\(923\) 4.25829 3.83418i 0.140163 0.126204i
\(924\) 0.0376261 0.0651703i 0.00123781 0.00214394i
\(925\) 0 0
\(926\) 20.4752 63.0160i 0.672855 2.07084i
\(927\) −6.42051 14.4207i −0.210877 0.473638i
\(928\) 24.3800 + 33.5562i 0.800314 + 1.10154i
\(929\) −28.9662 −0.950350 −0.475175 0.879891i \(-0.657615\pi\)
−0.475175 + 0.879891i \(0.657615\pi\)
\(930\) 0 0
\(931\) −1.35686 −0.0444695
\(932\) −31.2116 42.9591i −1.02237 1.40717i
\(933\) 4.80044 + 10.7820i 0.157159 + 0.352985i
\(934\) 18.6761 57.4791i 0.611100 1.88077i
\(935\) 0 0
\(936\) −1.61499 + 2.79724i −0.0527874 + 0.0914305i
\(937\) 0.886112 0.797859i 0.0289480 0.0260649i −0.654530 0.756036i \(-0.727133\pi\)
0.683478 + 0.729971i \(0.260467\pi\)
\(938\) 12.6870 4.12225i 0.414245 0.134596i
\(939\) 4.68272 5.20069i 0.152815 0.169718i
\(940\) 0 0
\(941\) −46.5525 + 9.89504i −1.51757 + 0.322569i −0.889988 0.455983i \(-0.849288\pi\)
−0.627580 + 0.778552i \(0.715954\pi\)
\(942\) −12.7795 + 1.34318i −0.416378 + 0.0437630i
\(943\) −4.38234 0.460602i −0.142709 0.0149993i
\(944\) 17.0005 + 3.61357i 0.553320 + 0.117612i
\(945\) 0 0
\(946\) −0.729820 0.530245i −0.0237285 0.0172398i
\(947\) 5.02930 23.6610i 0.163430 0.768879i −0.817717 0.575620i \(-0.804761\pi\)
0.981148 0.193259i \(-0.0619059\pi\)
\(948\) 8.80961 + 0.925927i 0.286123 + 0.0300727i
\(949\) 1.14276 + 10.8726i 0.0370955 + 0.352940i
\(950\) 0 0
\(951\) −6.32551 2.81630i −0.205119 0.0913247i
\(952\) 4.11056 + 3.70116i 0.133224 + 0.119955i
\(953\) 39.2490 12.7528i 1.27140 0.413103i 0.405857 0.913937i \(-0.366973\pi\)
0.865544 + 0.500834i \(0.166973\pi\)
\(954\) −44.5071 49.4302i −1.44097 1.60036i
\(955\) 0 0
\(956\) −18.9093 32.7520i −0.611572 1.05927i
\(957\) −0.0591333 0.0192136i −0.00191151 0.000621087i
\(958\) 1.07963 + 2.42489i 0.0348812 + 0.0783446i
\(959\) −6.11839 + 4.44527i −0.197573 + 0.143545i
\(960\) 0 0
\(961\) 5.28201 + 30.5467i 0.170387 + 0.985377i
\(962\) 2.43680i 0.0785656i
\(963\) 20.3935 + 28.0693i 0.657172 + 0.904520i
\(964\) 33.8502 15.0711i 1.09024 0.485406i
\(965\) 0 0
\(966\) 3.23111 + 5.59645i 0.103959 + 0.180063i
\(967\) 34.7954 + 20.0891i 1.11894 + 0.646023i 0.941131 0.338041i \(-0.109764\pi\)
0.177813 + 0.984064i \(0.443098\pi\)
\(968\) 10.6175 9.56006i 0.341260 0.307272i
\(969\) −0.274397 0.844508i −0.00881491 0.0271295i
\(970\) 0 0
\(971\) 34.2354 + 15.2426i 1.09867 + 0.489158i 0.874319 0.485351i \(-0.161308\pi\)
0.224348 + 0.974509i \(0.427975\pi\)
\(972\) −4.71295 22.1727i −0.151168 0.711189i
\(973\) −28.6755 + 3.01392i −0.919295 + 0.0966218i
\(974\) −3.08445 + 29.3466i −0.0988322 + 0.940326i
\(975\) 0 0
\(976\) −24.1555 17.5500i −0.773198 0.561761i
\(977\) 9.16432 12.6136i 0.293193 0.403545i −0.636855 0.770983i \(-0.719765\pi\)
0.930048 + 0.367438i \(0.119765\pi\)
\(978\) −3.66342 + 17.2350i −0.117143 + 0.551115i
\(979\) 0.00468080 0.0445349i 0.000149599 0.00142334i
\(980\) 0 0
\(981\) −32.8833 + 6.98957i −1.04988 + 0.223160i
\(982\) −6.51896 + 14.6418i −0.208028 + 0.467239i
\(983\) 16.4362 + 14.7992i 0.524233 + 0.472022i 0.888243 0.459373i \(-0.151926\pi\)
−0.364010 + 0.931395i \(0.618593\pi\)
\(984\) 0.167266 + 0.514791i 0.00533223 + 0.0164109i
\(985\) 0 0
\(986\) 9.83532 17.0353i 0.313221 0.542514i
\(987\) 6.76999 3.90866i 0.215491 0.124414i
\(988\) −3.24196 1.05338i −0.103140 0.0335123i
\(989\) 40.0360 17.8252i 1.27307 0.566808i
\(990\) 0 0
\(991\) 57.8161 1.83659 0.918295 0.395896i \(-0.129566\pi\)
0.918295 + 0.395896i \(0.129566\pi\)
\(992\) −27.9621 + 33.2122i −0.887799 + 1.05449i
\(993\) 10.6287i 0.337290i
\(994\) 28.5198 20.7209i 0.904594 0.657226i
\(995\) 0 0
\(996\) 2.32269 7.14850i 0.0735972 0.226509i
\(997\) −1.10658 + 0.638886i −0.0350458 + 0.0202337i −0.517421 0.855731i \(-0.673108\pi\)
0.482375 + 0.875965i \(0.339774\pi\)
\(998\) 36.8476 + 21.2740i 1.16639 + 0.673416i
\(999\) −1.76094 1.95573i −0.0557138 0.0618764i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.c.49.10 80
5.2 odd 4 775.2.bl.c.576.1 40
5.3 odd 4 155.2.q.a.111.5 yes 40
5.4 even 2 inner 775.2.ck.c.49.1 80
31.19 even 15 inner 775.2.ck.c.174.1 80
155.19 even 30 inner 775.2.ck.c.174.10 80
155.53 even 60 4805.2.a.y.1.3 20
155.112 odd 60 775.2.bl.c.701.1 40
155.133 odd 60 4805.2.a.x.1.3 20
155.143 odd 60 155.2.q.a.81.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.81.5 40 155.143 odd 60
155.2.q.a.111.5 yes 40 5.3 odd 4
775.2.bl.c.576.1 40 5.2 odd 4
775.2.bl.c.701.1 40 155.112 odd 60
775.2.ck.c.49.1 80 5.4 even 2 inner
775.2.ck.c.49.10 80 1.1 even 1 trivial
775.2.ck.c.174.1 80 31.19 even 15 inner
775.2.ck.c.174.10 80 155.19 even 30 inner
4805.2.a.x.1.3 20 155.133 odd 60
4805.2.a.y.1.3 20 155.53 even 60