Properties

Label 775.2.ck.c.174.7
Level $775$
Weight $2$
Character 775.174
Analytic conductor $6.188$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 174.7
Character \(\chi\) \(=\) 775.174
Dual form 775.2.ck.c.49.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.276293 - 0.380285i) q^{2} +(-0.673286 + 1.51222i) q^{3} +(0.549755 + 1.69197i) q^{4} +(0.389052 + 0.673858i) q^{6} +(-3.07510 - 2.76883i) q^{7} +(1.68943 + 0.548929i) q^{8} +(0.173882 + 0.193116i) q^{9} +(-2.87081 - 0.610210i) q^{11} +(-2.92878 - 0.307828i) q^{12} +(-2.02152 + 0.212471i) q^{13} +(-1.90257 + 0.404405i) q^{14} +(-2.20303 + 1.60059i) q^{16} +(-0.0399441 - 0.187922i) q^{17} +(0.121482 - 0.0127682i) q^{18} +(-0.712651 + 6.78042i) q^{19} +(6.25751 - 2.78602i) q^{21} +(-1.02524 + 0.923131i) q^{22} +(-2.38756 - 0.775764i) q^{23} +(-1.96757 + 2.18521i) q^{24} +(-0.477734 + 0.827460i) q^{26} +(-5.13206 + 1.66751i) q^{27} +(2.99423 - 6.72516i) q^{28} +(-4.63691 - 3.36892i) q^{29} +(-5.30321 - 1.69587i) q^{31} +4.83275i q^{32} +(2.85565 - 3.93047i) q^{33} +(-0.0825003 - 0.0367315i) q^{34} +(-0.231154 + 0.400371i) q^{36} +(6.80193 - 3.92710i) q^{37} +(2.38159 + 2.14440i) q^{38} +(1.03976 - 3.20005i) q^{39} +(8.04782 - 3.58312i) q^{41} +(0.669425 - 3.14940i) q^{42} +(-6.47245 - 0.680282i) q^{43} +(-0.545786 - 5.19280i) q^{44} +(-0.954677 + 0.693613i) q^{46} +(-4.13611 - 5.69287i) q^{47} +(-0.937190 - 4.40913i) q^{48} +(1.05811 + 10.0672i) q^{49} +(0.311074 + 0.0661209i) q^{51} +(-1.47084 - 3.30356i) q^{52} +(-5.80788 + 5.22944i) q^{53} +(-0.783826 + 2.41237i) q^{54} +(-3.67527 - 6.36575i) q^{56} +(-9.77371 - 5.64285i) q^{57} +(-2.56230 + 0.832541i) q^{58} +(-4.29740 - 1.91333i) q^{59} +2.19934 q^{61} +(-2.11015 + 1.54817i) q^{62} -1.07530i q^{63} +(-2.56823 - 1.86593i) q^{64} +(-0.705701 - 2.17192i) q^{66} +(1.41260 + 0.815567i) q^{67} +(0.296000 - 0.170895i) q^{68} +(2.78064 - 3.08821i) q^{69} +(9.25749 + 10.2815i) q^{71} +(0.187755 + 0.421705i) q^{72} +(-1.73920 + 8.18228i) q^{73} +(0.385912 - 3.67171i) q^{74} +(-11.8641 + 2.52179i) q^{76} +(7.13847 + 9.82525i) q^{77} +(-0.929653 - 1.27956i) q^{78} +(13.3534 - 2.83835i) q^{79} +(0.852208 - 8.10822i) q^{81} +(0.860951 - 4.05046i) q^{82} +(2.14076 + 4.80822i) q^{83} +(8.15398 + 9.05591i) q^{84} +(-2.04700 + 2.27342i) q^{86} +(8.21652 - 4.74381i) q^{87} +(-4.51507 - 2.60678i) q^{88} +(0.460162 + 1.41623i) q^{89} +(6.80468 + 4.94389i) q^{91} -4.46616i q^{92} +(6.13511 - 6.87784i) q^{93} -3.30769 q^{94} +(-7.30821 - 3.25382i) q^{96} +(-7.43435 + 2.41557i) q^{97} +(4.12075 + 2.37912i) q^{98} +(-0.381343 - 0.660505i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 20 q^{4} + 8 q^{6} - 4 q^{9} - 56 q^{11} + 12 q^{14} + 16 q^{16} + 26 q^{19} - 16 q^{21} + 164 q^{24} + 64 q^{26} - 84 q^{29} - 20 q^{31} - 64 q^{34} - 26 q^{36} - 74 q^{39} + 72 q^{41} + 112 q^{44}+ \cdots - 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.276293 0.380285i 0.195369 0.268902i −0.700082 0.714062i \(-0.746853\pi\)
0.895451 + 0.445160i \(0.146853\pi\)
\(3\) −0.673286 + 1.51222i −0.388722 + 0.873083i 0.608133 + 0.793835i \(0.291919\pi\)
−0.996855 + 0.0792482i \(0.974748\pi\)
\(4\) 0.549755 + 1.69197i 0.274878 + 0.845986i
\(5\) 0 0
\(6\) 0.389052 + 0.673858i 0.158830 + 0.275101i
\(7\) −3.07510 2.76883i −1.16228 1.04652i −0.998194 0.0600733i \(-0.980867\pi\)
−0.164084 0.986446i \(-0.552467\pi\)
\(8\) 1.68943 + 0.548929i 0.597303 + 0.194076i
\(9\) 0.173882 + 0.193116i 0.0579608 + 0.0643720i
\(10\) 0 0
\(11\) −2.87081 0.610210i −0.865583 0.183985i −0.246339 0.969184i \(-0.579228\pi\)
−0.619244 + 0.785198i \(0.712561\pi\)
\(12\) −2.92878 0.307828i −0.845467 0.0888622i
\(13\) −2.02152 + 0.212471i −0.560670 + 0.0589288i −0.380625 0.924730i \(-0.624291\pi\)
−0.180045 + 0.983658i \(0.557624\pi\)
\(14\) −1.90257 + 0.404405i −0.508484 + 0.108082i
\(15\) 0 0
\(16\) −2.20303 + 1.60059i −0.550757 + 0.400148i
\(17\) −0.0399441 0.187922i −0.00968786 0.0455778i 0.973038 0.230644i \(-0.0740833\pi\)
−0.982726 + 0.185066i \(0.940750\pi\)
\(18\) 0.121482 0.0127682i 0.0286335 0.00300950i
\(19\) −0.712651 + 6.78042i −0.163493 + 1.55554i 0.538052 + 0.842911i \(0.319160\pi\)
−0.701546 + 0.712624i \(0.747506\pi\)
\(20\) 0 0
\(21\) 6.25751 2.78602i 1.36550 0.607960i
\(22\) −1.02524 + 0.923131i −0.218582 + 0.196812i
\(23\) −2.38756 0.775764i −0.497840 0.161758i 0.0493251 0.998783i \(-0.484293\pi\)
−0.547165 + 0.837025i \(0.684293\pi\)
\(24\) −1.96757 + 2.18521i −0.401629 + 0.446054i
\(25\) 0 0
\(26\) −0.477734 + 0.827460i −0.0936914 + 0.162278i
\(27\) −5.13206 + 1.66751i −0.987666 + 0.320912i
\(28\) 2.99423 6.72516i 0.565857 1.27094i
\(29\) −4.63691 3.36892i −0.861053 0.625592i 0.0671180 0.997745i \(-0.478620\pi\)
−0.928171 + 0.372153i \(0.878620\pi\)
\(30\) 0 0
\(31\) −5.30321 1.69587i −0.952485 0.304587i
\(32\) 4.83275i 0.854318i
\(33\) 2.85565 3.93047i 0.497105 0.684207i
\(34\) −0.0825003 0.0367315i −0.0141487 0.00629940i
\(35\) 0 0
\(36\) −0.231154 + 0.400371i −0.0385257 + 0.0667285i
\(37\) 6.80193 3.92710i 1.11823 0.645611i 0.177282 0.984160i \(-0.443269\pi\)
0.940949 + 0.338549i \(0.109936\pi\)
\(38\) 2.38159 + 2.14440i 0.386345 + 0.347867i
\(39\) 1.03976 3.20005i 0.166495 0.512418i
\(40\) 0 0
\(41\) 8.04782 3.58312i 1.25686 0.559589i 0.333218 0.942850i \(-0.391866\pi\)
0.923640 + 0.383261i \(0.125199\pi\)
\(42\) 0.669425 3.14940i 0.103295 0.485963i
\(43\) −6.47245 0.680282i −0.987040 0.103742i −0.402770 0.915301i \(-0.631952\pi\)
−0.584270 + 0.811559i \(0.698619\pi\)
\(44\) −0.545786 5.19280i −0.0822803 0.782845i
\(45\) 0 0
\(46\) −0.954677 + 0.693613i −0.140759 + 0.102268i
\(47\) −4.13611 5.69287i −0.603314 0.830391i 0.392692 0.919670i \(-0.371544\pi\)
−0.996007 + 0.0892791i \(0.971544\pi\)
\(48\) −0.937190 4.40913i −0.135272 0.636403i
\(49\) 1.05811 + 10.0672i 0.151158 + 1.43817i
\(50\) 0 0
\(51\) 0.311074 + 0.0661209i 0.0435591 + 0.00925877i
\(52\) −1.47084 3.30356i −0.203969 0.458121i
\(53\) −5.80788 + 5.22944i −0.797774 + 0.718319i −0.963458 0.267860i \(-0.913684\pi\)
0.165684 + 0.986179i \(0.447017\pi\)
\(54\) −0.783826 + 2.41237i −0.106665 + 0.328282i
\(55\) 0 0
\(56\) −3.67527 6.36575i −0.491129 0.850660i
\(57\) −9.77371 5.64285i −1.29456 0.747414i
\(58\) −2.56230 + 0.832541i −0.336446 + 0.109318i
\(59\) −4.29740 1.91333i −0.559474 0.249094i 0.107462 0.994209i \(-0.465728\pi\)
−0.666936 + 0.745115i \(0.732394\pi\)
\(60\) 0 0
\(61\) 2.19934 0.281597 0.140798 0.990038i \(-0.455033\pi\)
0.140798 + 0.990038i \(0.455033\pi\)
\(62\) −2.11015 + 1.54817i −0.267990 + 0.196618i
\(63\) 1.07530i 0.135475i
\(64\) −2.56823 1.86593i −0.321029 0.233241i
\(65\) 0 0
\(66\) −0.705701 2.17192i −0.0868658 0.267345i
\(67\) 1.41260 + 0.815567i 0.172577 + 0.0996373i 0.583800 0.811897i \(-0.301565\pi\)
−0.411223 + 0.911535i \(0.634898\pi\)
\(68\) 0.296000 0.170895i 0.0358952 0.0207241i
\(69\) 2.78064 3.08821i 0.334749 0.371777i
\(70\) 0 0
\(71\) 9.25749 + 10.2815i 1.09866 + 1.22019i 0.973654 + 0.228032i \(0.0732290\pi\)
0.125008 + 0.992156i \(0.460104\pi\)
\(72\) 0.187755 + 0.421705i 0.0221272 + 0.0496984i
\(73\) −1.73920 + 8.18228i −0.203558 + 0.957663i 0.751153 + 0.660128i \(0.229498\pi\)
−0.954711 + 0.297535i \(0.903835\pi\)
\(74\) 0.385912 3.67171i 0.0448613 0.426827i
\(75\) 0 0
\(76\) −11.8641 + 2.52179i −1.36090 + 0.289269i
\(77\) 7.13847 + 9.82525i 0.813504 + 1.11969i
\(78\) −0.929653 1.27956i −0.105263 0.144881i
\(79\) 13.3534 2.83835i 1.50237 0.319340i 0.618023 0.786160i \(-0.287934\pi\)
0.884352 + 0.466821i \(0.154601\pi\)
\(80\) 0 0
\(81\) 0.852208 8.10822i 0.0946898 0.900913i
\(82\) 0.860951 4.05046i 0.0950761 0.447298i
\(83\) 2.14076 + 4.80822i 0.234979 + 0.527771i 0.992092 0.125513i \(-0.0400576\pi\)
−0.757113 + 0.653284i \(0.773391\pi\)
\(84\) 8.15398 + 9.05591i 0.889672 + 0.988081i
\(85\) 0 0
\(86\) −2.04700 + 2.27342i −0.220733 + 0.245149i
\(87\) 8.21652 4.74381i 0.880904 0.508590i
\(88\) −4.51507 2.60678i −0.481309 0.277884i
\(89\) 0.460162 + 1.41623i 0.0487771 + 0.150120i 0.972478 0.232993i \(-0.0748519\pi\)
−0.923701 + 0.383113i \(0.874852\pi\)
\(90\) 0 0
\(91\) 6.80468 + 4.94389i 0.713324 + 0.518261i
\(92\) 4.46616i 0.465629i
\(93\) 6.13511 6.87784i 0.636181 0.713199i
\(94\) −3.30769 −0.341163
\(95\) 0 0
\(96\) −7.30821 3.25382i −0.745891 0.332092i
\(97\) −7.43435 + 2.41557i −0.754844 + 0.245264i −0.661064 0.750329i \(-0.729895\pi\)
−0.0937795 + 0.995593i \(0.529895\pi\)
\(98\) 4.12075 + 2.37912i 0.416259 + 0.240327i
\(99\) −0.381343 0.660505i −0.0383264 0.0663833i
\(100\) 0 0
\(101\) −3.69501 + 11.3721i −0.367667 + 1.13156i 0.580627 + 0.814170i \(0.302808\pi\)
−0.948294 + 0.317394i \(0.897192\pi\)
\(102\) 0.111093 0.100028i 0.0109998 0.00990426i
\(103\) 3.62407 + 8.13979i 0.357090 + 0.802037i 0.999367 + 0.0355650i \(0.0113231\pi\)
−0.642277 + 0.766472i \(0.722010\pi\)
\(104\) −3.53185 0.750719i −0.346327 0.0736140i
\(105\) 0 0
\(106\) 0.383999 + 3.65351i 0.0372973 + 0.354860i
\(107\) 3.18206 + 14.9704i 0.307621 + 1.44724i 0.811948 + 0.583730i \(0.198407\pi\)
−0.504327 + 0.863513i \(0.668259\pi\)
\(108\) −5.64276 7.76659i −0.542974 0.747340i
\(109\) −4.08287 + 2.96638i −0.391068 + 0.284127i −0.765893 0.642968i \(-0.777703\pi\)
0.374825 + 0.927096i \(0.377703\pi\)
\(110\) 0 0
\(111\) 1.35901 + 12.9301i 0.128991 + 1.22727i
\(112\) 11.2063 + 1.17783i 1.05890 + 0.111294i
\(113\) −0.730279 + 3.43569i −0.0686989 + 0.323203i −0.999055 0.0434532i \(-0.986164\pi\)
0.930357 + 0.366656i \(0.119497\pi\)
\(114\) −4.84630 + 2.15771i −0.453898 + 0.202088i
\(115\) 0 0
\(116\) 3.15094 9.69761i 0.292558 0.900401i
\(117\) −0.392539 0.353444i −0.0362903 0.0326759i
\(118\) −1.91495 + 1.10560i −0.176286 + 0.101779i
\(119\) −0.397493 + 0.688477i −0.0364381 + 0.0631126i
\(120\) 0 0
\(121\) −2.17978 0.970503i −0.198162 0.0882275i
\(122\) 0.607663 0.836376i 0.0550152 0.0757220i
\(123\) 14.5826i 1.31487i
\(124\) −0.0461062 9.90520i −0.00414046 0.889513i
\(125\) 0 0
\(126\) −0.408921 0.297099i −0.0364296 0.0264677i
\(127\) −5.74781 + 12.9098i −0.510036 + 1.14556i 0.456663 + 0.889640i \(0.349045\pi\)
−0.966698 + 0.255919i \(0.917622\pi\)
\(128\) −10.6116 + 3.44792i −0.937943 + 0.304756i
\(129\) 5.38655 9.32978i 0.474259 0.821441i
\(130\) 0 0
\(131\) −5.64304 + 6.26723i −0.493034 + 0.547570i −0.937391 0.348280i \(-0.886766\pi\)
0.444356 + 0.895850i \(0.353432\pi\)
\(132\) 8.22016 + 2.67089i 0.715473 + 0.232471i
\(133\) 20.9653 18.8773i 1.81792 1.63687i
\(134\) 0.700440 0.311856i 0.0605088 0.0269403i
\(135\) 0 0
\(136\) 0.0356732 0.339408i 0.00305895 0.0291040i
\(137\) 16.8514 1.77115i 1.43971 0.151320i 0.647733 0.761867i \(-0.275717\pi\)
0.791980 + 0.610547i \(0.209050\pi\)
\(138\) −0.406129 1.91069i −0.0345720 0.162648i
\(139\) −10.3895 + 7.54843i −0.881228 + 0.640250i −0.933576 0.358379i \(-0.883329\pi\)
0.0523481 + 0.998629i \(0.483329\pi\)
\(140\) 0 0
\(141\) 11.3937 2.42180i 0.959522 0.203953i
\(142\) 6.46767 0.679780i 0.542755 0.0570459i
\(143\) 5.93307 + 0.623591i 0.496148 + 0.0521473i
\(144\) −0.692168 0.147125i −0.0576807 0.0122604i
\(145\) 0 0
\(146\) 2.63107 + 2.92210i 0.217749 + 0.241835i
\(147\) −15.9363 5.17801i −1.31440 0.427075i
\(148\) 10.3839 + 9.34974i 0.853555 + 0.768544i
\(149\) 1.11083 + 1.92401i 0.0910026 + 0.157621i 0.907933 0.419115i \(-0.137660\pi\)
−0.816931 + 0.576736i \(0.804326\pi\)
\(150\) 0 0
\(151\) −7.07903 21.7870i −0.576083 1.77300i −0.632460 0.774593i \(-0.717955\pi\)
0.0563769 0.998410i \(-0.482045\pi\)
\(152\) −4.92594 + 11.0639i −0.399547 + 0.897397i
\(153\) 0.0293452 0.0403902i 0.00237242 0.00326536i
\(154\) 5.70871 0.460021
\(155\) 0 0
\(156\) 5.98601 0.479265
\(157\) −7.71578 + 10.6199i −0.615786 + 0.847557i −0.997038 0.0769142i \(-0.975493\pi\)
0.381251 + 0.924471i \(0.375493\pi\)
\(158\) 2.61007 5.86231i 0.207646 0.466381i
\(159\) −3.99772 12.3037i −0.317040 0.975749i
\(160\) 0 0
\(161\) 5.19401 + 8.99629i 0.409345 + 0.709007i
\(162\) −2.84798 2.56433i −0.223758 0.201473i
\(163\) −12.7709 4.14953i −1.00030 0.325016i −0.237312 0.971433i \(-0.576267\pi\)
−0.762984 + 0.646417i \(0.776267\pi\)
\(164\) 10.4869 + 11.6468i 0.818887 + 0.909466i
\(165\) 0 0
\(166\) 2.41997 + 0.514381i 0.187826 + 0.0399237i
\(167\) 18.5908 + 1.95397i 1.43860 + 0.151203i 0.791485 0.611189i \(-0.209308\pi\)
0.647115 + 0.762392i \(0.275975\pi\)
\(168\) 12.1010 1.27186i 0.933609 0.0981263i
\(169\) −8.67450 + 1.84382i −0.667269 + 0.141832i
\(170\) 0 0
\(171\) −1.43333 + 1.04137i −0.109609 + 0.0796357i
\(172\) −2.40725 11.3252i −0.183551 0.863539i
\(173\) 12.5018 1.31399i 0.950496 0.0999011i 0.383427 0.923571i \(-0.374744\pi\)
0.567069 + 0.823670i \(0.308077\pi\)
\(174\) 0.466169 4.43530i 0.0353402 0.336240i
\(175\) 0 0
\(176\) 7.30118 3.25070i 0.550347 0.245030i
\(177\) 5.78676 5.21042i 0.434959 0.391639i
\(178\) 0.665712 + 0.216303i 0.0498972 + 0.0162126i
\(179\) 11.1160 12.3455i 0.830847 0.922749i −0.167155 0.985931i \(-0.553458\pi\)
0.998002 + 0.0631814i \(0.0201247\pi\)
\(180\) 0 0
\(181\) −0.275725 + 0.477570i −0.0204945 + 0.0354975i −0.876091 0.482146i \(-0.839857\pi\)
0.855596 + 0.517644i \(0.173191\pi\)
\(182\) 3.76018 1.22176i 0.278723 0.0905625i
\(183\) −1.48078 + 3.32590i −0.109463 + 0.245857i
\(184\) −3.60777 2.62120i −0.265968 0.193237i
\(185\) 0 0
\(186\) −0.920451 4.23339i −0.0674907 0.310407i
\(187\) 0.563864i 0.0412338i
\(188\) 7.35833 10.1279i 0.536662 0.738651i
\(189\) 20.3986 + 9.08206i 1.48378 + 0.660623i
\(190\) 0 0
\(191\) 7.78153 13.4780i 0.563051 0.975234i −0.434177 0.900828i \(-0.642961\pi\)
0.997228 0.0744059i \(-0.0237060\pi\)
\(192\) 4.55086 2.62744i 0.328430 0.189619i
\(193\) −6.64851 5.98635i −0.478571 0.430907i 0.394209 0.919021i \(-0.371018\pi\)
−0.872780 + 0.488114i \(0.837685\pi\)
\(194\) −1.13546 + 3.49458i −0.0815210 + 0.250896i
\(195\) 0 0
\(196\) −16.4517 + 7.32478i −1.17512 + 0.523199i
\(197\) 2.69890 12.6973i 0.192289 0.904649i −0.771136 0.636670i \(-0.780311\pi\)
0.963425 0.267978i \(-0.0863555\pi\)
\(198\) −0.356543 0.0374741i −0.0253384 0.00266317i
\(199\) −0.367816 3.49954i −0.0260738 0.248076i −0.999793 0.0203255i \(-0.993530\pi\)
0.973720 0.227750i \(-0.0731369\pi\)
\(200\) 0 0
\(201\) −2.18440 + 1.58706i −0.154076 + 0.111943i
\(202\) 3.30372 + 4.54718i 0.232449 + 0.319939i
\(203\) 4.93101 + 23.1986i 0.346089 + 1.62822i
\(204\) 0.0591400 + 0.562679i 0.00414063 + 0.0393954i
\(205\) 0 0
\(206\) 4.09675 + 0.870790i 0.285434 + 0.0606708i
\(207\) −0.265342 0.595967i −0.0184425 0.0414226i
\(208\) 4.11340 3.70372i 0.285213 0.256807i
\(209\) 6.18337 19.0305i 0.427713 1.31636i
\(210\) 0 0
\(211\) −5.04331 8.73527i −0.347196 0.601361i 0.638554 0.769577i \(-0.279533\pi\)
−0.985750 + 0.168216i \(0.946199\pi\)
\(212\) −12.0410 6.95186i −0.826978 0.477456i
\(213\) −21.7808 + 7.07702i −1.49240 + 0.484910i
\(214\) 6.57220 + 2.92613i 0.449266 + 0.200026i
\(215\) 0 0
\(216\) −9.58560 −0.652217
\(217\) 11.6123 + 19.8986i 0.788296 + 1.35081i
\(218\) 2.37224i 0.160669i
\(219\) −11.2025 8.13907i −0.756992 0.549987i
\(220\) 0 0
\(221\) 0.120676 + 0.371402i 0.00811754 + 0.0249832i
\(222\) 5.29261 + 3.05569i 0.355217 + 0.205085i
\(223\) −12.0643 + 6.96535i −0.807889 + 0.466435i −0.846222 0.532830i \(-0.821128\pi\)
0.0383336 + 0.999265i \(0.487795\pi\)
\(224\) 13.3811 14.8612i 0.894061 0.992955i
\(225\) 0 0
\(226\) 1.10477 + 1.22697i 0.0734883 + 0.0816170i
\(227\) 8.41245 + 18.8947i 0.558354 + 1.25408i 0.943544 + 0.331247i \(0.107469\pi\)
−0.385190 + 0.922837i \(0.625864\pi\)
\(228\) 4.17440 19.6390i 0.276457 1.30063i
\(229\) 2.09921 19.9726i 0.138719 1.31983i −0.674675 0.738115i \(-0.735716\pi\)
0.813395 0.581712i \(-0.197617\pi\)
\(230\) 0 0
\(231\) −19.6642 + 4.17976i −1.29381 + 0.275008i
\(232\) −5.98444 8.23688i −0.392898 0.540778i
\(233\) 10.6205 + 14.6179i 0.695774 + 0.957651i 0.999987 + 0.00504685i \(0.00160647\pi\)
−0.304213 + 0.952604i \(0.598394\pi\)
\(234\) −0.242865 + 0.0516226i −0.0158766 + 0.00337468i
\(235\) 0 0
\(236\) 0.874777 8.32294i 0.0569431 0.541777i
\(237\) −4.69843 + 22.1044i −0.305196 + 1.43583i
\(238\) 0.151993 + 0.341382i 0.00985225 + 0.0221285i
\(239\) 13.3887 + 14.8696i 0.866040 + 0.961835i 0.999573 0.0292090i \(-0.00929884\pi\)
−0.133533 + 0.991044i \(0.542632\pi\)
\(240\) 0 0
\(241\) −5.06259 + 5.62258i −0.326110 + 0.362182i −0.883798 0.467869i \(-0.845022\pi\)
0.557688 + 0.830051i \(0.311689\pi\)
\(242\) −0.971328 + 0.560796i −0.0624393 + 0.0360493i
\(243\) −2.33199 1.34637i −0.149597 0.0863700i
\(244\) 1.20910 + 3.72122i 0.0774046 + 0.238227i
\(245\) 0 0
\(246\) 5.54553 + 4.02907i 0.353570 + 0.256884i
\(247\) 13.8582i 0.881777i
\(248\) −8.02849 5.77613i −0.509809 0.366785i
\(249\) −8.71245 −0.552129
\(250\) 0 0
\(251\) −15.3427 6.83101i −0.968423 0.431170i −0.139309 0.990249i \(-0.544488\pi\)
−0.829114 + 0.559079i \(0.811155\pi\)
\(252\) 1.81938 0.591153i 0.114610 0.0372391i
\(253\) 6.38085 + 3.68398i 0.401161 + 0.231610i
\(254\) 3.32132 + 5.75269i 0.208398 + 0.360956i
\(255\) 0 0
\(256\) 0.341231 1.05020i 0.0213269 0.0656375i
\(257\) 4.03285 3.63120i 0.251562 0.226508i −0.533695 0.845677i \(-0.679197\pi\)
0.785258 + 0.619169i \(0.212530\pi\)
\(258\) −2.05971 4.62618i −0.128232 0.288013i
\(259\) −31.7901 6.75719i −1.97534 0.419871i
\(260\) 0 0
\(261\) −0.155686 1.48126i −0.00963675 0.0916876i
\(262\) 0.824200 + 3.87755i 0.0509192 + 0.239556i
\(263\) −11.9483 16.4454i −0.736763 1.01407i −0.998798 0.0490087i \(-0.984394\pi\)
0.262036 0.965058i \(-0.415606\pi\)
\(264\) 6.98197 5.07270i 0.429711 0.312203i
\(265\) 0 0
\(266\) −1.38616 13.1885i −0.0849911 0.808636i
\(267\) −2.45148 0.257661i −0.150028 0.0157686i
\(268\) −0.603331 + 2.83845i −0.0368543 + 0.173386i
\(269\) −14.2060 + 6.32491i −0.866154 + 0.385636i −0.791205 0.611551i \(-0.790546\pi\)
−0.0749486 + 0.997187i \(0.523879\pi\)
\(270\) 0 0
\(271\) −4.00648 + 12.3307i −0.243377 + 0.749036i 0.752523 + 0.658566i \(0.228837\pi\)
−0.995899 + 0.0904697i \(0.971163\pi\)
\(272\) 0.388785 + 0.350064i 0.0235736 + 0.0212257i
\(273\) −12.0578 + 6.96156i −0.729769 + 0.421333i
\(274\) 3.98239 6.89770i 0.240585 0.416705i
\(275\) 0 0
\(276\) 6.75384 + 3.00700i 0.406533 + 0.181000i
\(277\) 1.63427 2.24938i 0.0981937 0.135152i −0.757093 0.653307i \(-0.773381\pi\)
0.855287 + 0.518155i \(0.173381\pi\)
\(278\) 6.03656i 0.362049i
\(279\) −0.594636 1.31902i −0.0355999 0.0789675i
\(280\) 0 0
\(281\) 5.78584 + 4.20366i 0.345154 + 0.250769i 0.746833 0.665011i \(-0.231573\pi\)
−0.401679 + 0.915780i \(0.631573\pi\)
\(282\) 2.22702 5.00198i 0.132617 0.297863i
\(283\) −5.54082 + 1.80032i −0.329367 + 0.107018i −0.469033 0.883181i \(-0.655397\pi\)
0.139665 + 0.990199i \(0.455397\pi\)
\(284\) −12.3066 + 21.3157i −0.730264 + 1.26485i
\(285\) 0 0
\(286\) 1.87641 2.08396i 0.110954 0.123227i
\(287\) −34.6689 11.2646i −2.04644 0.664928i
\(288\) −0.933282 + 0.840331i −0.0549942 + 0.0495170i
\(289\) 15.4966 6.89951i 0.911562 0.405854i
\(290\) 0 0
\(291\) 1.35256 12.8688i 0.0792886 0.754381i
\(292\) −14.8003 + 1.55558i −0.866123 + 0.0910332i
\(293\) 4.93683 + 23.2260i 0.288413 + 1.35688i 0.848830 + 0.528665i \(0.177307\pi\)
−0.560418 + 0.828210i \(0.689359\pi\)
\(294\) −6.37220 + 4.62968i −0.371634 + 0.270008i
\(295\) 0 0
\(296\) 13.6471 2.90078i 0.793221 0.168604i
\(297\) 15.7507 1.65547i 0.913950 0.0960600i
\(298\) 1.03859 + 0.109160i 0.0601637 + 0.00632346i
\(299\) 4.99133 + 1.06094i 0.288656 + 0.0613557i
\(300\) 0 0
\(301\) 18.0198 + 20.0131i 1.03865 + 1.15353i
\(302\) −10.2412 3.32756i −0.589313 0.191479i
\(303\) −14.7093 13.2443i −0.845029 0.760867i
\(304\) −9.28271 16.0781i −0.532400 0.922144i
\(305\) 0 0
\(306\) −0.00725191 0.0223191i −0.000414564 0.00127590i
\(307\) 5.22601 11.7378i 0.298264 0.669912i −0.700791 0.713366i \(-0.747170\pi\)
0.999055 + 0.0434544i \(0.0138363\pi\)
\(308\) −12.6997 + 17.4796i −0.723630 + 0.995991i
\(309\) −14.7492 −0.839054
\(310\) 0 0
\(311\) 35.0877 1.98964 0.994819 0.101659i \(-0.0324152\pi\)
0.994819 + 0.101659i \(0.0324152\pi\)
\(312\) 3.51320 4.83551i 0.198896 0.273757i
\(313\) 8.07908 18.1459i 0.456657 1.02567i −0.527692 0.849436i \(-0.676943\pi\)
0.984349 0.176232i \(-0.0563908\pi\)
\(314\) 1.90676 + 5.86839i 0.107604 + 0.331173i
\(315\) 0 0
\(316\) 12.1435 + 21.0332i 0.683126 + 1.18321i
\(317\) 4.01112 + 3.61163i 0.225287 + 0.202849i 0.774043 0.633133i \(-0.218232\pi\)
−0.548756 + 0.835983i \(0.684898\pi\)
\(318\) −5.78347 1.87916i −0.324321 0.105378i
\(319\) 11.2560 + 12.5010i 0.630213 + 0.699923i
\(320\) 0 0
\(321\) −24.7810 5.26737i −1.38314 0.293996i
\(322\) 4.85622 + 0.510410i 0.270627 + 0.0284440i
\(323\) 1.30266 0.136915i 0.0724818 0.00761815i
\(324\) 14.1874 3.01562i 0.788188 0.167535i
\(325\) 0 0
\(326\) −5.10652 + 3.71011i −0.282824 + 0.205484i
\(327\) −1.73689 8.17143i −0.0960503 0.451881i
\(328\) 15.5631 1.63575i 0.859328 0.0903190i
\(329\) −3.04364 + 28.9583i −0.167802 + 1.59653i
\(330\) 0 0
\(331\) 6.89017 3.06770i 0.378718 0.168616i −0.208544 0.978013i \(-0.566872\pi\)
0.587262 + 0.809397i \(0.300206\pi\)
\(332\) −6.95849 + 6.26545i −0.381897 + 0.343861i
\(333\) 1.94112 + 0.630709i 0.106373 + 0.0345626i
\(334\) 5.87958 6.52994i 0.321716 0.357302i
\(335\) 0 0
\(336\) −9.32619 + 16.1534i −0.508785 + 0.881242i
\(337\) 1.78047 0.578511i 0.0969886 0.0315135i −0.260121 0.965576i \(-0.583762\pi\)
0.357109 + 0.934063i \(0.383762\pi\)
\(338\) −1.69553 + 3.80822i −0.0922246 + 0.207140i
\(339\) −4.70385 3.41755i −0.255478 0.185616i
\(340\) 0 0
\(341\) 14.1897 + 8.10459i 0.768415 + 0.438888i
\(342\) 0.832797i 0.0450325i
\(343\) 7.59500 10.4536i 0.410092 0.564443i
\(344\) −10.5613 4.70220i −0.569428 0.253526i
\(345\) 0 0
\(346\) 2.95448 5.11730i 0.158834 0.275108i
\(347\) −16.1824 + 9.34290i −0.868716 + 0.501553i −0.866921 0.498445i \(-0.833905\pi\)
−0.00179443 + 0.999998i \(0.500571\pi\)
\(348\) 12.5435 + 11.2942i 0.672401 + 0.605433i
\(349\) −0.461299 + 1.41973i −0.0246928 + 0.0759965i −0.962644 0.270772i \(-0.912721\pi\)
0.937951 + 0.346768i \(0.112721\pi\)
\(350\) 0 0
\(351\) 10.0203 4.46132i 0.534844 0.238128i
\(352\) 2.94900 13.8739i 0.157182 0.739483i
\(353\) −6.33709 0.666055i −0.337289 0.0354505i −0.0656301 0.997844i \(-0.520906\pi\)
−0.271659 + 0.962393i \(0.587572\pi\)
\(354\) −0.382603 3.64022i −0.0203351 0.193476i
\(355\) 0 0
\(356\) −2.14325 + 1.55716i −0.113592 + 0.0825295i
\(357\) −0.773506 1.06464i −0.0409383 0.0563467i
\(358\) −1.62356 7.63823i −0.0858076 0.403693i
\(359\) 2.09759 + 19.9572i 0.110707 + 1.05330i 0.898984 + 0.437982i \(0.144307\pi\)
−0.788277 + 0.615320i \(0.789027\pi\)
\(360\) 0 0
\(361\) −26.8815 5.71383i −1.41481 0.300728i
\(362\) 0.105432 + 0.236804i 0.00554137 + 0.0124461i
\(363\) 2.93524 2.64290i 0.154060 0.138716i
\(364\) −4.62402 + 14.2313i −0.242364 + 0.745921i
\(365\) 0 0
\(366\) 0.855658 + 1.48204i 0.0447260 + 0.0774676i
\(367\) −26.3963 15.2399i −1.37788 0.795517i −0.385973 0.922510i \(-0.626134\pi\)
−0.991904 + 0.126993i \(0.959467\pi\)
\(368\) 6.50154 2.11248i 0.338916 0.110120i
\(369\) 2.09133 + 0.931121i 0.108870 + 0.0484722i
\(370\) 0 0
\(371\) 32.3392 1.67897
\(372\) 15.0099 + 6.59931i 0.778228 + 0.342158i
\(373\) 29.9469i 1.55059i −0.631600 0.775295i \(-0.717601\pi\)
0.631600 0.775295i \(-0.282399\pi\)
\(374\) 0.214429 + 0.155792i 0.0110879 + 0.00805580i
\(375\) 0 0
\(376\) −3.86269 11.8881i −0.199203 0.613084i
\(377\) 10.0894 + 5.82514i 0.519632 + 0.300010i
\(378\) 9.08978 5.24799i 0.467528 0.269927i
\(379\) −16.7750 + 18.6305i −0.861675 + 0.956987i −0.999439 0.0334783i \(-0.989342\pi\)
0.137765 + 0.990465i \(0.456008\pi\)
\(380\) 0 0
\(381\) −15.6526 17.3840i −0.801906 0.890607i
\(382\) −2.97550 6.68308i −0.152240 0.341936i
\(383\) 0.717708 3.37655i 0.0366732 0.172534i −0.955999 0.293368i \(-0.905224\pi\)
0.992673 + 0.120835i \(0.0385571\pi\)
\(384\) 1.93062 18.3686i 0.0985213 0.937368i
\(385\) 0 0
\(386\) −4.11346 + 0.874343i −0.209370 + 0.0445029i
\(387\) −0.994073 1.36822i −0.0505316 0.0695507i
\(388\) −8.17414 11.2507i −0.414979 0.571170i
\(389\) −30.2488 + 6.42958i −1.53368 + 0.325993i −0.895909 0.444237i \(-0.853475\pi\)
−0.637766 + 0.770230i \(0.720141\pi\)
\(390\) 0 0
\(391\) −0.0504145 + 0.479662i −0.00254957 + 0.0242575i
\(392\) −3.73858 + 17.5886i −0.188827 + 0.888361i
\(393\) −5.67808 12.7532i −0.286421 0.643312i
\(394\) −4.08292 4.53454i −0.205695 0.228447i
\(395\) 0 0
\(396\) 0.907911 1.00834i 0.0456243 0.0506709i
\(397\) 0.708339 0.408960i 0.0355505 0.0205251i −0.482119 0.876106i \(-0.660133\pi\)
0.517670 + 0.855580i \(0.326800\pi\)
\(398\) −1.43245 0.827023i −0.0718021 0.0414549i
\(399\) 14.4310 + 44.4141i 0.722454 + 2.22348i
\(400\) 0 0
\(401\) −13.3225 9.67939i −0.665296 0.483366i 0.203151 0.979147i \(-0.434882\pi\)
−0.868447 + 0.495782i \(0.834882\pi\)
\(402\) 1.26919i 0.0633015i
\(403\) 11.0809 + 2.30146i 0.551978 + 0.114644i
\(404\) −21.2726 −1.05835
\(405\) 0 0
\(406\) 10.1845 + 4.53442i 0.505447 + 0.225040i
\(407\) −21.9234 + 7.12336i −1.08670 + 0.353092i
\(408\) 0.489242 + 0.282464i 0.0242211 + 0.0139841i
\(409\) 18.7941 + 32.5524i 0.929309 + 1.60961i 0.784481 + 0.620153i \(0.212930\pi\)
0.144828 + 0.989457i \(0.453737\pi\)
\(410\) 0 0
\(411\) −8.66743 + 26.6756i −0.427533 + 1.31581i
\(412\) −11.7800 + 10.6067i −0.580357 + 0.522555i
\(413\) 7.91725 + 17.7824i 0.389582 + 0.875016i
\(414\) −0.299949 0.0637562i −0.0147417 0.00313345i
\(415\) 0 0
\(416\) −1.02682 9.76953i −0.0503439 0.478991i
\(417\) −4.41980 20.7935i −0.216439 1.01826i
\(418\) −5.52858 7.60943i −0.270412 0.372190i
\(419\) −6.80968 + 4.94752i −0.332674 + 0.241702i −0.741565 0.670881i \(-0.765916\pi\)
0.408890 + 0.912584i \(0.365916\pi\)
\(420\) 0 0
\(421\) 0.556276 + 5.29261i 0.0271112 + 0.257946i 0.999679 + 0.0253272i \(0.00806277\pi\)
−0.972568 + 0.232619i \(0.925271\pi\)
\(422\) −4.71533 0.495601i −0.229538 0.0241255i
\(423\) 0.380187 1.78864i 0.0184853 0.0869667i
\(424\) −12.6826 + 5.64666i −0.615921 + 0.274226i
\(425\) 0 0
\(426\) −3.32661 + 10.2383i −0.161175 + 0.496045i
\(427\) −6.76319 6.08960i −0.327294 0.294697i
\(428\) −23.5801 + 13.6140i −1.13979 + 0.658058i
\(429\) −4.93766 + 8.55228i −0.238393 + 0.412908i
\(430\) 0 0
\(431\) −18.8226 8.38035i −0.906651 0.403667i −0.100200 0.994967i \(-0.531948\pi\)
−0.806452 + 0.591300i \(0.798615\pi\)
\(432\) 8.63707 11.8879i 0.415551 0.571957i
\(433\) 20.6799i 0.993814i 0.867804 + 0.496907i \(0.165531\pi\)
−0.867804 + 0.496907i \(0.834469\pi\)
\(434\) 10.7756 + 1.08187i 0.517244 + 0.0519315i
\(435\) 0 0
\(436\) −7.26361 5.27732i −0.347864 0.252738i
\(437\) 6.96150 15.6358i 0.333014 0.747961i
\(438\) −6.19033 + 2.01136i −0.295785 + 0.0961065i
\(439\) 9.83969 17.0428i 0.469623 0.813410i −0.529774 0.848139i \(-0.677723\pi\)
0.999397 + 0.0347286i \(0.0110567\pi\)
\(440\) 0 0
\(441\) −1.76015 + 1.95485i −0.0838168 + 0.0930879i
\(442\) 0.174581 + 0.0567247i 0.00830396 + 0.00269812i
\(443\) −4.98434 + 4.48792i −0.236813 + 0.213228i −0.778989 0.627037i \(-0.784267\pi\)
0.542176 + 0.840265i \(0.317601\pi\)
\(444\) −21.1303 + 9.40780i −1.00280 + 0.446475i
\(445\) 0 0
\(446\) −0.684478 + 6.51237i −0.0324110 + 0.308370i
\(447\) −3.65744 + 0.384413i −0.172991 + 0.0181821i
\(448\) 2.73112 + 12.8489i 0.129033 + 0.607054i
\(449\) 24.7774 18.0018i 1.16932 0.849560i 0.178391 0.983960i \(-0.442911\pi\)
0.990927 + 0.134400i \(0.0429107\pi\)
\(450\) 0 0
\(451\) −25.2902 + 5.37561i −1.19087 + 0.253127i
\(452\) −6.21457 + 0.653178i −0.292309 + 0.0307229i
\(453\) 37.7131 + 3.96380i 1.77191 + 0.186236i
\(454\) 9.50967 + 2.02134i 0.446311 + 0.0948663i
\(455\) 0 0
\(456\) −13.4145 14.8983i −0.628190 0.697675i
\(457\) 8.71783 + 2.83259i 0.407803 + 0.132503i 0.505733 0.862690i \(-0.331222\pi\)
−0.0979301 + 0.995193i \(0.531222\pi\)
\(458\) −7.01529 6.31659i −0.327803 0.295155i
\(459\) 0.518357 + 0.897821i 0.0241948 + 0.0419067i
\(460\) 0 0
\(461\) 1.42697 + 4.39178i 0.0664608 + 0.204545i 0.978772 0.204952i \(-0.0657040\pi\)
−0.912311 + 0.409498i \(0.865704\pi\)
\(462\) −3.84359 + 8.63285i −0.178820 + 0.401636i
\(463\) 10.1809 14.0128i 0.473148 0.651232i −0.504022 0.863691i \(-0.668147\pi\)
0.977170 + 0.212458i \(0.0681470\pi\)
\(464\) 15.6075 0.724561
\(465\) 0 0
\(466\) 8.49335 0.393447
\(467\) 9.70326 13.3554i 0.449013 0.618014i −0.523172 0.852227i \(-0.675251\pi\)
0.972185 + 0.234214i \(0.0752515\pi\)
\(468\) 0.382217 0.858473i 0.0176680 0.0396829i
\(469\) −2.08573 6.41920i −0.0963099 0.296411i
\(470\) 0 0
\(471\) −10.8647 18.8182i −0.500619 0.867097i
\(472\) −6.20987 5.59140i −0.285833 0.257365i
\(473\) 18.1661 + 5.90252i 0.835278 + 0.271398i
\(474\) 7.10781 + 7.89403i 0.326473 + 0.362585i
\(475\) 0 0
\(476\) −1.38341 0.294053i −0.0634084 0.0134779i
\(477\) −2.01978 0.212287i −0.0924793 0.00971996i
\(478\) 9.35389 0.983133i 0.427837 0.0449675i
\(479\) −23.8502 + 5.06952i −1.08975 + 0.231633i −0.717540 0.696518i \(-0.754732\pi\)
−0.372206 + 0.928150i \(0.621398\pi\)
\(480\) 0 0
\(481\) −12.9159 + 9.38394i −0.588914 + 0.427871i
\(482\) 0.739423 + 3.47871i 0.0336798 + 0.158451i
\(483\) −17.1015 + 1.79744i −0.778143 + 0.0817862i
\(484\) 0.443716 4.22168i 0.0201689 0.191894i
\(485\) 0 0
\(486\) −1.15632 + 0.514826i −0.0524517 + 0.0233530i
\(487\) 3.66540 3.30034i 0.166095 0.149553i −0.581892 0.813266i \(-0.697687\pi\)
0.747987 + 0.663713i \(0.231021\pi\)
\(488\) 3.71563 + 1.20728i 0.168199 + 0.0546511i
\(489\) 14.8735 16.5187i 0.672603 0.747001i
\(490\) 0 0
\(491\) 6.10250 10.5698i 0.275402 0.477010i −0.694834 0.719170i \(-0.744522\pi\)
0.970236 + 0.242159i \(0.0778557\pi\)
\(492\) −24.6733 + 8.01684i −1.11236 + 0.361427i
\(493\) −0.447877 + 1.00595i −0.0201713 + 0.0453056i
\(494\) −5.27007 3.82893i −0.237112 0.172272i
\(495\) 0 0
\(496\) 14.3975 4.75224i 0.646468 0.213382i
\(497\) 57.2490i 2.56797i
\(498\) −2.40719 + 3.31322i −0.107869 + 0.148469i
\(499\) 13.7476 + 6.12082i 0.615427 + 0.274006i 0.690682 0.723159i \(-0.257310\pi\)
−0.0752551 + 0.997164i \(0.523977\pi\)
\(500\) 0 0
\(501\) −15.4718 + 26.7979i −0.691228 + 1.19724i
\(502\) −6.83682 + 3.94724i −0.305142 + 0.176174i
\(503\) −11.0371 9.93783i −0.492119 0.443106i 0.385328 0.922780i \(-0.374088\pi\)
−0.877447 + 0.479674i \(0.840755\pi\)
\(504\) 0.590264 1.81665i 0.0262925 0.0809199i
\(505\) 0 0
\(506\) 3.16395 1.40868i 0.140655 0.0626235i
\(507\) 3.05214 14.3592i 0.135551 0.637715i
\(508\) −25.0029 2.62791i −1.10932 0.116595i
\(509\) −4.03529 38.3932i −0.178861 1.70175i −0.604295 0.796760i \(-0.706545\pi\)
0.425434 0.904989i \(-0.360121\pi\)
\(510\) 0 0
\(511\) 28.0035 20.3458i 1.23880 0.900044i
\(512\) −13.4218 18.4735i −0.593164 0.816421i
\(513\) −7.64904 35.9859i −0.337713 1.58882i
\(514\) −0.266640 2.53691i −0.0117610 0.111898i
\(515\) 0 0
\(516\) 18.7470 + 3.98480i 0.825291 + 0.175421i
\(517\) 8.40016 + 18.8671i 0.369439 + 0.829773i
\(518\) −11.3530 + 10.2223i −0.498824 + 0.449143i
\(519\) −6.43024 + 19.7903i −0.282256 + 0.868696i
\(520\) 0 0
\(521\) 6.04097 + 10.4633i 0.264660 + 0.458404i 0.967474 0.252969i \(-0.0814070\pi\)
−0.702815 + 0.711373i \(0.748074\pi\)
\(522\) −0.606315 0.350056i −0.0265377 0.0153215i
\(523\) −6.83569 + 2.22105i −0.298904 + 0.0971197i −0.454630 0.890681i \(-0.650228\pi\)
0.155726 + 0.987800i \(0.450228\pi\)
\(524\) −13.7063 6.10242i −0.598761 0.266586i
\(525\) 0 0
\(526\) −9.55517 −0.416625
\(527\) −0.106859 + 1.06433i −0.00465486 + 0.0463630i
\(528\) 13.2297i 0.575748i
\(529\) −13.5088 9.81470i −0.587338 0.426726i
\(530\) 0 0
\(531\) −0.377749 1.16259i −0.0163929 0.0504521i
\(532\) 43.4656 + 25.0949i 1.88447 + 1.08800i
\(533\) −15.5075 + 8.95329i −0.671707 + 0.387810i
\(534\) −0.775313 + 0.861073i −0.0335511 + 0.0372623i
\(535\) 0 0
\(536\) 1.93880 + 2.15326i 0.0837436 + 0.0930067i
\(537\) 11.1850 + 25.1219i 0.482669 + 1.08409i
\(538\) −1.51975 + 7.14985i −0.0655210 + 0.308252i
\(539\) 3.10549 29.5467i 0.133763 1.27267i
\(540\) 0 0
\(541\) 42.1938 8.96857i 1.81405 0.385589i 0.829196 0.558958i \(-0.188799\pi\)
0.984857 + 0.173370i \(0.0554656\pi\)
\(542\) 3.58221 + 4.93049i 0.153869 + 0.211783i
\(543\) −0.536551 0.738500i −0.0230256 0.0316921i
\(544\) 0.908182 0.193040i 0.0389380 0.00827652i
\(545\) 0 0
\(546\) −0.684105 + 6.50882i −0.0292770 + 0.278552i
\(547\) 4.81664 22.6605i 0.205945 0.968893i −0.746783 0.665068i \(-0.768403\pi\)
0.952728 0.303825i \(-0.0982639\pi\)
\(548\) 12.2609 + 27.5384i 0.523760 + 1.17638i
\(549\) 0.382427 + 0.424728i 0.0163216 + 0.0181270i
\(550\) 0 0
\(551\) 26.1472 29.0394i 1.11391 1.23712i
\(552\) 6.39290 3.69094i 0.272100 0.157097i
\(553\) −48.9219 28.2451i −2.08037 1.20110i
\(554\) −0.403867 1.24298i −0.0171587 0.0528090i
\(555\) 0 0
\(556\) −18.4834 13.4290i −0.783872 0.569516i
\(557\) 8.14169i 0.344975i 0.985012 + 0.172487i \(0.0551804\pi\)
−0.985012 + 0.172487i \(0.944820\pi\)
\(558\) −0.665896 0.138304i −0.0281896 0.00585488i
\(559\) 13.2288 0.559517
\(560\) 0 0
\(561\) −0.852689 0.379641i −0.0360005 0.0160285i
\(562\) 3.19718 1.03883i 0.134865 0.0438202i
\(563\) 3.04172 + 1.75614i 0.128193 + 0.0740124i 0.562725 0.826644i \(-0.309753\pi\)
−0.434532 + 0.900656i \(0.643086\pi\)
\(564\) 10.3614 + 17.9464i 0.436292 + 0.755680i
\(565\) 0 0
\(566\) −0.846255 + 2.60451i −0.0355708 + 0.109476i
\(567\) −25.0709 + 22.5739i −1.05288 + 0.948017i
\(568\) 9.99607 + 22.4515i 0.419426 + 0.942046i
\(569\) −21.0750 4.47963i −0.883510 0.187796i −0.256254 0.966609i \(-0.582489\pi\)
−0.627256 + 0.778814i \(0.715822\pi\)
\(570\) 0 0
\(571\) 0.179305 + 1.70597i 0.00750368 + 0.0713928i 0.997633 0.0687647i \(-0.0219058\pi\)
−0.990129 + 0.140157i \(0.955239\pi\)
\(572\) 2.20664 + 10.3814i 0.0922642 + 0.434069i
\(573\) 15.1426 + 20.8420i 0.632590 + 0.870685i
\(574\) −13.8625 + 10.0717i −0.578611 + 0.420386i
\(575\) 0 0
\(576\) −0.0862296 0.820420i −0.00359290 0.0341841i
\(577\) −11.9040 1.25116i −0.495568 0.0520863i −0.146552 0.989203i \(-0.546818\pi\)
−0.349016 + 0.937117i \(0.613484\pi\)
\(578\) 1.65781 7.79940i 0.0689559 0.324412i
\(579\) 13.5291 6.02352i 0.562248 0.250329i
\(580\) 0 0
\(581\) 6.73011 20.7132i 0.279212 0.859326i
\(582\) −4.52010 4.06991i −0.187364 0.168703i
\(583\) 19.8644 11.4687i 0.822700 0.474986i
\(584\) −7.42974 + 12.8687i −0.307445 + 0.532510i
\(585\) 0 0
\(586\) 10.1965 + 4.53977i 0.421213 + 0.187536i
\(587\) −25.3329 + 34.8677i −1.04560 + 1.43914i −0.153037 + 0.988220i \(0.548905\pi\)
−0.892563 + 0.450924i \(0.851095\pi\)
\(588\) 29.8104i 1.22936i
\(589\) 15.2780 34.7494i 0.629521 1.43183i
\(590\) 0 0
\(591\) 17.3841 + 12.6303i 0.715087 + 0.519541i
\(592\) −8.69917 + 19.5386i −0.357534 + 0.803033i
\(593\) 13.4182 4.35984i 0.551020 0.179037i −0.0202567 0.999795i \(-0.506448\pi\)
0.571277 + 0.820758i \(0.306448\pi\)
\(594\) 3.72227 6.44716i 0.152727 0.264530i
\(595\) 0 0
\(596\) −2.64469 + 2.93723i −0.108331 + 0.120313i
\(597\) 5.53973 + 1.79997i 0.226726 + 0.0736678i
\(598\) 1.78253 1.60500i 0.0728931 0.0656332i
\(599\) 29.1370 12.9726i 1.19051 0.530047i 0.286712 0.958017i \(-0.407438\pi\)
0.903793 + 0.427970i \(0.140771\pi\)
\(600\) 0 0
\(601\) 0.814514 7.74958i 0.0332247 0.316112i −0.965270 0.261256i \(-0.915863\pi\)
0.998494 0.0548560i \(-0.0174700\pi\)
\(602\) 12.5894 1.32320i 0.513107 0.0539297i
\(603\) 0.0881279 + 0.414609i 0.00358884 + 0.0168842i
\(604\) 32.9713 23.9551i 1.34158 0.974717i
\(605\) 0 0
\(606\) −9.10071 + 1.93442i −0.369691 + 0.0785803i
\(607\) −31.2237 + 3.28174i −1.26733 + 0.133202i −0.714229 0.699912i \(-0.753223\pi\)
−0.553102 + 0.833114i \(0.686556\pi\)
\(608\) −32.7681 3.44407i −1.32892 0.139675i
\(609\) −38.4014 8.16248i −1.55610 0.330760i
\(610\) 0 0
\(611\) 9.57082 + 10.6295i 0.387194 + 0.430023i
\(612\) 0.0844718 + 0.0274466i 0.00341457 + 0.00110946i
\(613\) 7.47353 + 6.72920i 0.301853 + 0.271790i 0.806112 0.591763i \(-0.201568\pi\)
−0.504259 + 0.863552i \(0.668234\pi\)
\(614\) −3.01980 5.23045i −0.121869 0.211084i
\(615\) 0 0
\(616\) 6.66657 + 20.5176i 0.268604 + 0.826677i
\(617\) 11.7101 26.3014i 0.471432 1.05885i −0.508779 0.860897i \(-0.669903\pi\)
0.980211 0.197956i \(-0.0634304\pi\)
\(618\) −4.07511 + 5.60891i −0.163925 + 0.225623i
\(619\) −5.49470 −0.220851 −0.110425 0.993884i \(-0.535221\pi\)
−0.110425 + 0.993884i \(0.535221\pi\)
\(620\) 0 0
\(621\) 13.5467 0.543609
\(622\) 9.69448 13.3433i 0.388713 0.535018i
\(623\) 2.50627 5.62917i 0.100411 0.225528i
\(624\) 2.83136 + 8.71404i 0.113345 + 0.348841i
\(625\) 0 0
\(626\) −4.66842 8.08595i −0.186588 0.323179i
\(627\) 24.6152 + 22.1636i 0.983035 + 0.885129i
\(628\) −22.2103 7.21657i −0.886288 0.287972i
\(629\) −1.00969 1.12137i −0.0402588 0.0447119i
\(630\) 0 0
\(631\) 17.9688 + 3.81939i 0.715327 + 0.152048i 0.551178 0.834388i \(-0.314179\pi\)
0.164150 + 0.986435i \(0.447512\pi\)
\(632\) 24.1177 + 2.53487i 0.959350 + 0.100832i
\(633\) 16.6053 1.74529i 0.660001 0.0693689i
\(634\) 2.48170 0.527501i 0.0985607 0.0209497i
\(635\) 0 0
\(636\) 18.6198 13.5281i 0.738323 0.536423i
\(637\) −4.27797 20.1263i −0.169499 0.797432i
\(638\) 7.86390 0.826529i 0.311335 0.0327226i
\(639\) −0.375804 + 3.57554i −0.0148666 + 0.141446i
\(640\) 0 0
\(641\) −33.5694 + 14.9461i −1.32591 + 0.590334i −0.942797 0.333367i \(-0.891815\pi\)
−0.383115 + 0.923701i \(0.625149\pi\)
\(642\) −8.84993 + 7.96852i −0.349279 + 0.314492i
\(643\) −31.7175 10.3056i −1.25081 0.406414i −0.392602 0.919709i \(-0.628425\pi\)
−0.858213 + 0.513294i \(0.828425\pi\)
\(644\) −12.3660 + 13.7339i −0.487290 + 0.541191i
\(645\) 0 0
\(646\) 0.307849 0.533210i 0.0121122 0.0209789i
\(647\) −38.2080 + 12.4145i −1.50211 + 0.488066i −0.940633 0.339424i \(-0.889768\pi\)
−0.561480 + 0.827490i \(0.689768\pi\)
\(648\) 5.89058 13.2305i 0.231404 0.519742i
\(649\) 11.1695 + 8.11512i 0.438441 + 0.318546i
\(650\) 0 0
\(651\) −37.9096 + 4.16296i −1.48580 + 0.163159i
\(652\) 23.8893i 0.935577i
\(653\) 10.0217 13.7937i 0.392180 0.539789i −0.566580 0.824007i \(-0.691734\pi\)
0.958760 + 0.284217i \(0.0917337\pi\)
\(654\) −3.58737 1.59720i −0.140277 0.0624554i
\(655\) 0 0
\(656\) −11.9945 + 20.7750i −0.468305 + 0.811127i
\(657\) −1.88254 + 1.08689i −0.0734451 + 0.0424035i
\(658\) 10.1715 + 9.15845i 0.396526 + 0.357033i
\(659\) −1.80245 + 5.54737i −0.0702134 + 0.216095i −0.980006 0.198969i \(-0.936241\pi\)
0.909792 + 0.415064i \(0.136241\pi\)
\(660\) 0 0
\(661\) −23.8585 + 10.6225i −0.927989 + 0.413167i −0.814363 0.580356i \(-0.802913\pi\)
−0.113626 + 0.993524i \(0.536247\pi\)
\(662\) 0.737107 3.46781i 0.0286485 0.134780i
\(663\) −0.642893 0.0675708i −0.0249679 0.00262423i
\(664\) 0.977288 + 9.29828i 0.0379261 + 0.360843i
\(665\) 0 0
\(666\) 0.776168 0.563919i 0.0300759 0.0218514i
\(667\) 8.45741 + 11.6406i 0.327472 + 0.450727i
\(668\) 6.91433 + 32.5293i 0.267523 + 1.25860i
\(669\) −2.41043 22.9337i −0.0931925 0.886667i
\(670\) 0 0
\(671\) −6.31390 1.34206i −0.243745 0.0518097i
\(672\) 13.4642 + 30.2410i 0.519392 + 1.16657i
\(673\) 1.22624 1.10411i 0.0472680 0.0425603i −0.645158 0.764049i \(-0.723209\pi\)
0.692426 + 0.721489i \(0.256542\pi\)
\(674\) 0.271934 0.836926i 0.0104745 0.0322372i
\(675\) 0 0
\(676\) −7.88855 13.6634i −0.303406 0.525514i
\(677\) 37.7718 + 21.8076i 1.45169 + 0.838133i 0.998577 0.0533208i \(-0.0169806\pi\)
0.453112 + 0.891454i \(0.350314\pi\)
\(678\) −2.59929 + 0.844559i −0.0998250 + 0.0324351i
\(679\) 29.5496 + 13.1563i 1.13401 + 0.504894i
\(680\) 0 0
\(681\) −34.2370 −1.31196
\(682\) 7.00257 3.15688i 0.268142 0.120883i
\(683\) 16.6116i 0.635627i −0.948153 0.317814i \(-0.897051\pi\)
0.948153 0.317814i \(-0.102949\pi\)
\(684\) −2.54995 1.85265i −0.0974999 0.0708378i
\(685\) 0 0
\(686\) −1.87691 5.77653i −0.0716607 0.220549i
\(687\) 28.7897 + 16.6217i 1.09840 + 0.634159i
\(688\) 15.3479 8.86109i 0.585131 0.337826i
\(689\) 10.6297 11.8054i 0.404958 0.449752i
\(690\) 0 0
\(691\) −18.4384 20.4780i −0.701432 0.779019i 0.282172 0.959364i \(-0.408945\pi\)
−0.983603 + 0.180345i \(0.942279\pi\)
\(692\) 9.09618 + 20.4304i 0.345785 + 0.776646i
\(693\) −0.656160 + 3.08699i −0.0249255 + 0.117265i
\(694\) −0.918117 + 8.73530i −0.0348512 + 0.331587i
\(695\) 0 0
\(696\) 16.4853 3.50405i 0.624872 0.132821i
\(697\) −0.994810 1.36924i −0.0376811 0.0518636i
\(698\) 0.412449 + 0.567687i 0.0156114 + 0.0214873i
\(699\) −29.2562 + 6.21860i −1.10657 + 0.235209i
\(700\) 0 0
\(701\) −1.86978 + 17.7898i −0.0706206 + 0.671910i 0.900750 + 0.434339i \(0.143018\pi\)
−0.971370 + 0.237571i \(0.923649\pi\)
\(702\) 1.07197 5.04320i 0.0404587 0.190343i
\(703\) 21.7800 + 48.9187i 0.821448 + 1.84500i
\(704\) 6.23431 + 6.92390i 0.234964 + 0.260954i
\(705\) 0 0
\(706\) −2.00419 + 2.22588i −0.0754286 + 0.0837719i
\(707\) 42.8499 24.7394i 1.61154 0.930420i
\(708\) 11.9972 + 6.92658i 0.450882 + 0.260317i
\(709\) −1.19405 3.67492i −0.0448436 0.138014i 0.926128 0.377210i \(-0.123116\pi\)
−0.970971 + 0.239195i \(0.923116\pi\)
\(710\) 0 0
\(711\) 2.87005 + 2.08522i 0.107635 + 0.0782017i
\(712\) 2.64522i 0.0991339i
\(713\) 11.3461 + 8.16302i 0.424915 + 0.305707i
\(714\) −0.618581 −0.0231498
\(715\) 0 0
\(716\) 26.9994 + 12.0209i 1.00901 + 0.449242i
\(717\) −31.5006 + 10.2352i −1.17641 + 0.382239i
\(718\) 8.16898 + 4.71637i 0.304864 + 0.176013i
\(719\) −18.5818 32.1846i −0.692984 1.20028i −0.970856 0.239665i \(-0.922962\pi\)
0.277872 0.960618i \(-0.410371\pi\)
\(720\) 0 0
\(721\) 11.3933 35.0651i 0.424310 1.30589i
\(722\) −9.60005 + 8.64393i −0.357277 + 0.321694i
\(723\) −5.09403 11.4414i −0.189449 0.425510i
\(724\) −0.959617 0.203973i −0.0356639 0.00758059i
\(725\) 0 0
\(726\) −0.194069 1.84644i −0.00720257 0.0685279i
\(727\) 5.67306 + 26.6896i 0.210402 + 0.989863i 0.948892 + 0.315600i \(0.102206\pi\)
−0.738491 + 0.674264i \(0.764461\pi\)
\(728\) 8.78218 + 12.0876i 0.325489 + 0.447998i
\(729\) 23.3936 16.9964i 0.866429 0.629497i
\(730\) 0 0
\(731\) 0.130696 + 1.24349i 0.00483397 + 0.0459922i
\(732\) −6.44140 0.677018i −0.238081 0.0250233i
\(733\) −6.03998 + 28.4159i −0.223092 + 1.04956i 0.713910 + 0.700238i \(0.246923\pi\)
−0.937001 + 0.349326i \(0.886411\pi\)
\(734\) −13.0886 + 5.82744i −0.483110 + 0.215095i
\(735\) 0 0
\(736\) 3.74908 11.5385i 0.138193 0.425314i
\(737\) −3.55765 3.20332i −0.131048 0.117996i
\(738\) 0.931912 0.538040i 0.0343042 0.0198055i
\(739\) −19.8898 + 34.4501i −0.731658 + 1.26727i 0.224516 + 0.974470i \(0.427920\pi\)
−0.956174 + 0.292799i \(0.905413\pi\)
\(740\) 0 0
\(741\) 20.9567 + 9.33054i 0.769865 + 0.342766i
\(742\) 8.93511 12.2981i 0.328018 0.451479i
\(743\) 31.2123i 1.14507i −0.819880 0.572535i \(-0.805960\pi\)
0.819880 0.572535i \(-0.194040\pi\)
\(744\) 14.1403 8.25189i 0.518408 0.302529i
\(745\) 0 0
\(746\) −11.3883 8.27411i −0.416957 0.302937i
\(747\) −0.556304 + 1.24948i −0.0203541 + 0.0457161i
\(748\) −0.954042 + 0.309987i −0.0348832 + 0.0113342i
\(749\) 31.6654 54.8460i 1.15703 2.00403i
\(750\) 0 0
\(751\) −12.3876 + 13.7579i −0.452031 + 0.502031i −0.925483 0.378788i \(-0.876341\pi\)
0.473452 + 0.880819i \(0.343008\pi\)
\(752\) 18.2240 + 5.92132i 0.664559 + 0.215928i
\(753\) 20.6600 18.6024i 0.752894 0.677909i
\(754\) 5.00285 2.22741i 0.182193 0.0811176i
\(755\) 0 0
\(756\) −4.15234 + 39.5068i −0.151019 + 1.43685i
\(757\) 28.8703 3.03439i 1.04931 0.110287i 0.435855 0.900017i \(-0.356446\pi\)
0.613455 + 0.789730i \(0.289779\pi\)
\(758\) 2.45009 + 11.5268i 0.0889914 + 0.418672i
\(759\) −9.86715 + 7.16890i −0.358155 + 0.260215i
\(760\) 0 0
\(761\) −35.9040 + 7.63164i −1.30152 + 0.276647i −0.805982 0.591940i \(-0.798362\pi\)
−0.495538 + 0.868586i \(0.665029\pi\)
\(762\) −10.9356 + 1.14937i −0.396154 + 0.0416374i
\(763\) 20.7686 + 2.18287i 0.751874 + 0.0790252i
\(764\) 27.0823 + 5.75653i 0.979805 + 0.208264i
\(765\) 0 0
\(766\) −1.08575 1.20585i −0.0392299 0.0435692i
\(767\) 9.09382 + 2.95476i 0.328359 + 0.106690i
\(768\) 1.35839 + 1.22310i 0.0490168 + 0.0441349i
\(769\) −8.18667 14.1797i −0.295219 0.511334i 0.679817 0.733382i \(-0.262059\pi\)
−0.975036 + 0.222048i \(0.928726\pi\)
\(770\) 0 0
\(771\) 2.77592 + 8.54341i 0.0999724 + 0.307683i
\(772\) 6.47368 14.5401i 0.232993 0.523311i
\(773\) −9.36312 + 12.8872i −0.336768 + 0.463521i −0.943494 0.331390i \(-0.892482\pi\)
0.606726 + 0.794911i \(0.292482\pi\)
\(774\) −0.794971 −0.0285746
\(775\) 0 0
\(776\) −13.8858 −0.498470
\(777\) 31.6222 43.5242i 1.13444 1.56142i
\(778\) −5.91247 + 13.2796i −0.211972 + 0.476098i
\(779\) 18.5598 + 57.1211i 0.664973 + 2.04658i
\(780\) 0 0
\(781\) −20.3027 35.1652i −0.726486 1.25831i
\(782\) 0.168479 + 0.151699i 0.00602480 + 0.00542475i
\(783\) 29.4146 + 9.55739i 1.05119 + 0.341553i
\(784\) −18.4445 20.4847i −0.658733 0.731597i
\(785\) 0 0
\(786\) −6.41866 1.36433i −0.228946 0.0486639i
\(787\) 26.2854 + 2.76271i 0.936974 + 0.0984800i 0.560691 0.828025i \(-0.310535\pi\)
0.376283 + 0.926505i \(0.377202\pi\)
\(788\) 22.9673 2.41396i 0.818176 0.0859938i
\(789\) 32.9137 6.99603i 1.17176 0.249065i
\(790\) 0 0
\(791\) 11.7585 8.54307i 0.418085 0.303757i
\(792\) −0.281681 1.32521i −0.0100091 0.0470892i
\(793\) −4.44602 + 0.467296i −0.157883 + 0.0165942i
\(794\) 0.0401880 0.382363i 0.00142622 0.0135696i
\(795\) 0 0
\(796\) 5.71891 2.54622i 0.202701 0.0902485i
\(797\) −7.69252 + 6.92638i −0.272483 + 0.245345i −0.794031 0.607877i \(-0.792021\pi\)
0.521548 + 0.853222i \(0.325355\pi\)
\(798\) 20.8772 + 6.78341i 0.739045 + 0.240130i
\(799\) −0.904604 + 1.00466i −0.0320026 + 0.0355425i
\(800\) 0 0
\(801\) −0.193483 + 0.335123i −0.00683640 + 0.0118410i
\(802\) −7.36185 + 2.39201i −0.259956 + 0.0844649i
\(803\) 9.98582 22.4285i 0.352392 0.791485i
\(804\) −3.88616 2.82346i −0.137054 0.0995757i
\(805\) 0 0
\(806\) 3.93679 3.57802i 0.138667 0.126030i
\(807\) 25.7411i 0.906130i
\(808\) −12.4849 + 17.1840i −0.439218 + 0.604532i
\(809\) 22.7087 + 10.1106i 0.798396 + 0.355469i 0.765047 0.643975i \(-0.222716\pi\)
0.0333497 + 0.999444i \(0.489382\pi\)
\(810\) 0 0
\(811\) −18.6645 + 32.3279i −0.655400 + 1.13519i 0.326393 + 0.945234i \(0.394167\pi\)
−0.981793 + 0.189952i \(0.939167\pi\)
\(812\) −36.5405 + 21.0967i −1.28232 + 0.740348i
\(813\) −15.9493 14.3608i −0.559365 0.503655i
\(814\) −3.34839 + 10.3053i −0.117361 + 0.361200i
\(815\) 0 0
\(816\) −0.791138 + 0.352237i −0.0276954 + 0.0123308i
\(817\) 9.22520 43.4012i 0.322749 1.51841i
\(818\) 17.5719 + 1.84688i 0.614386 + 0.0645745i
\(819\) 0.228470 + 2.17375i 0.00798340 + 0.0759569i
\(820\) 0 0
\(821\) 8.62910 6.26941i 0.301158 0.218804i −0.426935 0.904282i \(-0.640407\pi\)
0.728093 + 0.685478i \(0.240407\pi\)
\(822\) 7.74958 + 10.6664i 0.270298 + 0.372033i
\(823\) −7.31302 34.4050i −0.254916 1.19928i −0.900246 0.435381i \(-0.856614\pi\)
0.645331 0.763903i \(-0.276720\pi\)
\(824\) 1.65444 + 15.7410i 0.0576352 + 0.548362i
\(825\) 0 0
\(826\) 8.94988 + 1.90236i 0.311406 + 0.0661914i
\(827\) −16.3023 36.6155i −0.566886 1.27325i −0.938635 0.344913i \(-0.887908\pi\)
0.371749 0.928333i \(-0.378758\pi\)
\(828\) 0.862487 0.776587i 0.0299735 0.0269883i
\(829\) −6.63136 + 20.4092i −0.230317 + 0.708842i 0.767392 + 0.641179i \(0.221554\pi\)
−0.997708 + 0.0676630i \(0.978446\pi\)
\(830\) 0 0
\(831\) 2.30123 + 3.98585i 0.0798289 + 0.138268i
\(832\) 5.58820 + 3.22635i 0.193736 + 0.111854i
\(833\) 1.84958 0.600966i 0.0640843 0.0208223i
\(834\) −9.12864 4.06433i −0.316099 0.140736i
\(835\) 0 0
\(836\) 35.5984 1.23120
\(837\) 30.0443 0.139849i 1.03848 0.00483387i
\(838\) 3.95658i 0.136678i
\(839\) 30.4163 + 22.0987i 1.05009 + 0.762933i 0.972229 0.234031i \(-0.0751918\pi\)
0.0778583 + 0.996964i \(0.475192\pi\)
\(840\) 0 0
\(841\) 1.18989 + 3.66211i 0.0410307 + 0.126279i
\(842\) 2.16640 + 1.25077i 0.0746589 + 0.0431043i
\(843\) −10.2524 + 5.91922i −0.353111 + 0.203869i
\(844\) 12.0073 13.3354i 0.413307 0.459024i
\(845\) 0 0
\(846\) −0.575150 0.638769i −0.0197741 0.0219613i
\(847\) 4.01589 + 9.01985i 0.137988 + 0.309926i
\(848\) 4.42472 20.8167i 0.151945 0.714847i
\(849\) 1.00806 9.59109i 0.0345967 0.329165i
\(850\) 0 0
\(851\) −19.2865 + 4.09947i −0.661133 + 0.140528i
\(852\) −23.9483 32.9620i −0.820454 1.12926i
\(853\) −7.58739 10.4431i −0.259787 0.357566i 0.659122 0.752036i \(-0.270928\pi\)
−0.918909 + 0.394470i \(0.870928\pi\)
\(854\) −4.18441 + 0.889423i −0.143188 + 0.0304354i
\(855\) 0 0
\(856\) −2.84182 + 27.0381i −0.0971315 + 0.924145i
\(857\) −3.58211 + 16.8525i −0.122363 + 0.575671i 0.873658 + 0.486541i \(0.161742\pi\)
−0.996020 + 0.0891292i \(0.971592\pi\)
\(858\) 1.88806 + 4.24066i 0.0644574 + 0.144774i
\(859\) 24.8392 + 27.5867i 0.847501 + 0.941246i 0.998884 0.0472295i \(-0.0150392\pi\)
−0.151383 + 0.988475i \(0.548373\pi\)
\(860\) 0 0
\(861\) 40.3767 44.8428i 1.37603 1.52824i
\(862\) −8.38747 + 4.84251i −0.285678 + 0.164936i
\(863\) 32.3554 + 18.6804i 1.10139 + 0.635888i 0.936586 0.350438i \(-0.113967\pi\)
0.164805 + 0.986326i \(0.447301\pi\)
\(864\) −8.05866 24.8020i −0.274161 0.843781i
\(865\) 0 0
\(866\) 7.86427 + 5.71373i 0.267239 + 0.194160i
\(867\) 28.0796i 0.953634i
\(868\) −27.2840 + 30.5871i −0.926081 + 1.03819i
\(869\) −40.0671 −1.35918
\(870\) 0 0
\(871\) −3.02889 1.34855i −0.102630 0.0456939i
\(872\) −8.52605 + 2.77028i −0.288728 + 0.0938136i
\(873\) −1.75919 1.01567i −0.0595395 0.0343751i
\(874\) −4.02264 6.96742i −0.136068 0.235676i
\(875\) 0 0
\(876\) 7.61246 23.4288i 0.257201 0.791584i
\(877\) −29.5901 + 26.6431i −0.999187 + 0.899672i −0.994955 0.100319i \(-0.968014\pi\)
−0.00423173 + 0.999991i \(0.501347\pi\)
\(878\) −3.76250 8.45071i −0.126978 0.285198i
\(879\) −38.4468 8.17211i −1.29678 0.275639i
\(880\) 0 0
\(881\) 1.99969 + 19.0258i 0.0673712 + 0.640994i 0.975150 + 0.221545i \(0.0711101\pi\)
−0.907779 + 0.419449i \(0.862223\pi\)
\(882\) 0.257081 + 1.20947i 0.00865636 + 0.0407250i
\(883\) −15.9477 21.9502i −0.536684 0.738682i 0.451447 0.892298i \(-0.350908\pi\)
−0.988131 + 0.153616i \(0.950908\pi\)
\(884\) −0.562060 + 0.408361i −0.0189041 + 0.0137347i
\(885\) 0 0
\(886\) 0.329549 + 3.13545i 0.0110714 + 0.105338i
\(887\) 33.2023 + 3.48970i 1.11482 + 0.117173i 0.643978 0.765044i \(-0.277283\pi\)
0.470844 + 0.882216i \(0.343949\pi\)
\(888\) −4.80176 + 22.5905i −0.161137 + 0.758088i
\(889\) 53.4201 23.7842i 1.79165 0.797695i
\(890\) 0 0
\(891\) −7.39425 + 22.7572i −0.247717 + 0.762394i
\(892\) −18.4176 16.5833i −0.616668 0.555250i
\(893\) 41.5477 23.9876i 1.39034 0.802714i
\(894\) −0.864340 + 1.49708i −0.0289078 + 0.0500699i
\(895\) 0 0
\(896\) 42.1785 + 18.7791i 1.40908 + 0.627365i
\(897\) −4.96497 + 6.83370i −0.165776 + 0.228170i
\(898\) 14.3963i 0.480410i
\(899\) 18.8773 + 25.7297i 0.629593 + 0.858132i
\(900\) 0 0
\(901\) 1.21472 + 0.882544i 0.0404681 + 0.0294018i
\(902\) −4.94326 + 11.1027i −0.164593 + 0.369681i
\(903\) −42.3967 + 13.7755i −1.41088 + 0.458421i
\(904\) −3.11971 + 5.40349i −0.103760 + 0.179717i
\(905\) 0 0
\(906\) 11.9272 13.2465i 0.396256 0.440087i
\(907\) 11.6469 + 3.78431i 0.386729 + 0.125656i 0.495927 0.868364i \(-0.334828\pi\)
−0.109198 + 0.994020i \(0.534828\pi\)
\(908\) −27.3445 + 24.6211i −0.907459 + 0.817080i
\(909\) −2.83863 + 1.26384i −0.0941513 + 0.0419189i
\(910\) 0 0
\(911\) −0.769337 + 7.31975i −0.0254893 + 0.242514i 0.974357 + 0.225006i \(0.0722401\pi\)
−0.999847 + 0.0175085i \(0.994427\pi\)
\(912\) 30.5637 3.21237i 1.01206 0.106372i
\(913\) −3.21169 15.1098i −0.106291 0.500062i
\(914\) 3.48587 2.53263i 0.115302 0.0837720i
\(915\) 0 0
\(916\) 34.9471 7.42825i 1.15469 0.245436i
\(917\) 34.7058 3.64772i 1.14609 0.120458i
\(918\) 0.484646 + 0.0509384i 0.0159957 + 0.00168122i
\(919\) −28.3046 6.01632i −0.933682 0.198460i −0.284137 0.958784i \(-0.591707\pi\)
−0.649545 + 0.760323i \(0.725040\pi\)
\(920\) 0 0
\(921\) 14.2316 + 15.8058i 0.468947 + 0.520819i
\(922\) 2.06439 + 0.670761i 0.0679871 + 0.0220903i
\(923\) −20.8988 18.8173i −0.687891 0.619380i
\(924\) −17.8825 30.9735i −0.588292 1.01895i
\(925\) 0 0
\(926\) −2.51595 7.74331i −0.0826794 0.254461i
\(927\) −0.941762 + 2.11523i −0.0309315 + 0.0694734i
\(928\) 16.2811 22.4091i 0.534455 0.735614i
\(929\) −11.9900 −0.393378 −0.196689 0.980466i \(-0.563019\pi\)
−0.196689 + 0.980466i \(0.563019\pi\)
\(930\) 0 0
\(931\) −69.0139 −2.26184
\(932\) −18.8944 + 26.0059i −0.618907 + 0.851852i
\(933\) −23.6240 + 53.0604i −0.773416 + 1.73712i
\(934\) −2.39791 7.38001i −0.0784620 0.241481i
\(935\) 0 0
\(936\) −0.469152 0.812595i −0.0153347 0.0265605i
\(937\) 20.9351 + 18.8501i 0.683920 + 0.615804i 0.936041 0.351891i \(-0.114461\pi\)
−0.252121 + 0.967696i \(0.581128\pi\)
\(938\) −3.01740 0.980413i −0.0985216 0.0320116i
\(939\) 22.0012 + 24.4348i 0.717981 + 0.797398i
\(940\) 0 0
\(941\) 0.265776 + 0.0564923i 0.00866404 + 0.00184160i 0.212242 0.977217i \(-0.431924\pi\)
−0.203578 + 0.979059i \(0.565257\pi\)
\(942\) −10.1581 1.06766i −0.330969 0.0347863i
\(943\) −21.9943 + 2.31169i −0.716232 + 0.0752790i
\(944\) 12.5298 2.66328i 0.407809 0.0866824i
\(945\) 0 0
\(946\) 7.26381 5.27747i 0.236167 0.171585i
\(947\) 6.66928 + 31.3765i 0.216722 + 1.01960i 0.943153 + 0.332359i \(0.107844\pi\)
−0.726431 + 0.687240i \(0.758822\pi\)
\(948\) −39.9830 + 4.20238i −1.29859 + 0.136487i
\(949\) 1.77733 16.9102i 0.0576947 0.548928i
\(950\) 0 0
\(951\) −8.16223 + 3.63406i −0.264678 + 0.117842i
\(952\) −1.04946 + 0.944939i −0.0340132 + 0.0306256i
\(953\) −32.3171 10.5005i −1.04685 0.340144i −0.265421 0.964133i \(-0.585511\pi\)
−0.781433 + 0.623989i \(0.785511\pi\)
\(954\) −0.638781 + 0.709438i −0.0206813 + 0.0229689i
\(955\) 0 0
\(956\) −17.7985 + 30.8279i −0.575644 + 0.997045i
\(957\) −26.4828 + 8.60480i −0.856069 + 0.278154i
\(958\) −4.66180 + 10.4706i −0.150616 + 0.338289i
\(959\) −56.7238 41.2122i −1.83171 1.33081i
\(960\) 0 0
\(961\) 25.2481 + 17.9871i 0.814454 + 0.580228i
\(962\) 7.50444i 0.241953i
\(963\) −2.33772 + 3.21760i −0.0753320 + 0.103686i
\(964\) −12.2964 5.47473i −0.396042 0.176329i
\(965\) 0 0
\(966\) −4.04148 + 7.00005i −0.130032 + 0.225223i
\(967\) −34.4182 + 19.8713i −1.10681 + 0.639019i −0.938002 0.346629i \(-0.887326\pi\)
−0.168811 + 0.985648i \(0.553993\pi\)
\(968\) −3.14986 2.83614i −0.101240 0.0911571i
\(969\) −0.670015 + 2.06209i −0.0215240 + 0.0662440i
\(970\) 0 0
\(971\) 12.2536 5.45567i 0.393238 0.175081i −0.200586 0.979676i \(-0.564284\pi\)
0.593823 + 0.804595i \(0.297618\pi\)
\(972\) 0.996006 4.68584i 0.0319469 0.150298i
\(973\) 52.8491 + 5.55467i 1.69427 + 0.178074i
\(974\) −0.242345 2.30576i −0.00776524 0.0738813i
\(975\) 0 0
\(976\) −4.84521 + 3.52025i −0.155091 + 0.112681i
\(977\) 7.15755 + 9.85153i 0.228990 + 0.315178i 0.908015 0.418937i \(-0.137597\pi\)
−0.679025 + 0.734115i \(0.737597\pi\)
\(978\) −2.17237 10.2202i −0.0694646 0.326805i
\(979\) −0.456840 4.34654i −0.0146007 0.138916i
\(980\) 0 0
\(981\) −1.28279 0.272666i −0.0409565 0.00870557i
\(982\) −2.33347 5.24107i −0.0744641 0.167249i
\(983\) 29.0697 26.1745i 0.927179 0.834835i −0.0593813 0.998235i \(-0.518913\pi\)
0.986560 + 0.163400i \(0.0522461\pi\)
\(984\) −8.00479 + 24.6362i −0.255183 + 0.785374i
\(985\) 0 0
\(986\) 0.258801 + 0.448257i 0.00824192 + 0.0142754i
\(987\) −41.7423 24.0999i −1.32867 0.767109i
\(988\) 23.4477 7.61862i 0.745971 0.242381i
\(989\) 14.9256 + 6.64531i 0.474607 + 0.211308i
\(990\) 0 0
\(991\) 0.867505 0.0275572 0.0137786 0.999905i \(-0.495614\pi\)
0.0137786 + 0.999905i \(0.495614\pi\)
\(992\) 8.19571 25.6291i 0.260214 0.813725i
\(993\) 12.4849i 0.396197i
\(994\) −21.7709 15.8175i −0.690532 0.501701i
\(995\) 0 0
\(996\) −4.78972 14.7412i −0.151768 0.467094i
\(997\) 0.916838 + 0.529337i 0.0290365 + 0.0167643i 0.514448 0.857522i \(-0.327997\pi\)
−0.485411 + 0.874286i \(0.661330\pi\)
\(998\) 6.12603 3.53686i 0.193916 0.111957i
\(999\) −28.3595 + 31.4964i −0.897254 + 0.996502i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.c.174.7 80
5.2 odd 4 775.2.bl.c.701.4 40
5.3 odd 4 155.2.q.a.81.2 40
5.4 even 2 inner 775.2.ck.c.174.4 80
31.18 even 15 inner 775.2.ck.c.49.4 80
155.18 odd 60 155.2.q.a.111.2 yes 40
155.38 odd 60 4805.2.a.x.1.13 20
155.49 even 30 inner 775.2.ck.c.49.7 80
155.142 odd 60 775.2.bl.c.576.4 40
155.148 even 60 4805.2.a.y.1.13 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.81.2 40 5.3 odd 4
155.2.q.a.111.2 yes 40 155.18 odd 60
775.2.bl.c.576.4 40 155.142 odd 60
775.2.bl.c.701.4 40 5.2 odd 4
775.2.ck.c.49.4 80 31.18 even 15 inner
775.2.ck.c.49.7 80 155.49 even 30 inner
775.2.ck.c.174.4 80 5.4 even 2 inner
775.2.ck.c.174.7 80 1.1 even 1 trivial
4805.2.a.x.1.13 20 155.38 odd 60
4805.2.a.y.1.13 20 155.148 even 60