Properties

Label 775.2.b.a.249.1
Level $775$
Weight $2$
Character 775.249
Analytic conductor $6.188$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(249,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-4,0,4,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 249.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 775.249
Dual form 775.2.b.a.249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} +1.00000i q^{3} -2.00000 q^{4} +2.00000 q^{6} -2.00000i q^{7} +2.00000 q^{9} +2.00000 q^{11} -2.00000i q^{12} +6.00000i q^{13} -4.00000 q^{14} -4.00000 q^{16} -7.00000i q^{17} -4.00000i q^{18} +5.00000 q^{19} +2.00000 q^{21} -4.00000i q^{22} -4.00000i q^{23} +12.0000 q^{26} +5.00000i q^{27} +4.00000i q^{28} +1.00000 q^{31} +8.00000i q^{32} +2.00000i q^{33} -14.0000 q^{34} -4.00000 q^{36} -7.00000i q^{37} -10.0000i q^{38} -6.00000 q^{39} -3.00000 q^{41} -4.00000i q^{42} -9.00000i q^{43} -4.00000 q^{44} -8.00000 q^{46} -2.00000i q^{47} -4.00000i q^{48} +3.00000 q^{49} +7.00000 q^{51} -12.0000i q^{52} -9.00000i q^{53} +10.0000 q^{54} +5.00000i q^{57} +5.00000 q^{59} -8.00000 q^{61} -2.00000i q^{62} -4.00000i q^{63} +8.00000 q^{64} +4.00000 q^{66} +8.00000i q^{67} +14.0000i q^{68} +4.00000 q^{69} -3.00000 q^{71} +1.00000i q^{73} -14.0000 q^{74} -10.0000 q^{76} -4.00000i q^{77} +12.0000i q^{78} +1.00000 q^{81} +6.00000i q^{82} +11.0000i q^{83} -4.00000 q^{84} -18.0000 q^{86} -10.0000 q^{89} +12.0000 q^{91} +8.00000i q^{92} +1.00000i q^{93} -4.00000 q^{94} -8.00000 q^{96} +18.0000i q^{97} -6.00000i q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 4 q^{6} + 4 q^{9} + 4 q^{11} - 8 q^{14} - 8 q^{16} + 10 q^{19} + 4 q^{21} + 24 q^{26} + 2 q^{31} - 28 q^{34} - 8 q^{36} - 12 q^{39} - 6 q^{41} - 8 q^{44} - 16 q^{46} + 6 q^{49} + 14 q^{51}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) − 2.00000i − 0.577350i
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) − 7.00000i − 1.69775i −0.528594 0.848875i \(-0.677281\pi\)
0.528594 0.848875i \(-0.322719\pi\)
\(18\) − 4.00000i − 0.942809i
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) − 4.00000i − 0.852803i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 12.0000 2.35339
\(27\) 5.00000i 0.962250i
\(28\) 4.00000i 0.755929i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 8.00000i 1.41421i
\(33\) 2.00000i 0.348155i
\(34\) −14.0000 −2.40098
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) − 7.00000i − 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(38\) − 10.0000i − 1.62221i
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) − 9.00000i − 1.37249i −0.727372 0.686244i \(-0.759258\pi\)
0.727372 0.686244i \(-0.240742\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) − 2.00000i − 0.291730i −0.989305 0.145865i \(-0.953403\pi\)
0.989305 0.145865i \(-0.0465965\pi\)
\(48\) − 4.00000i − 0.577350i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 7.00000 0.980196
\(52\) − 12.0000i − 1.66410i
\(53\) − 9.00000i − 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) 10.0000 1.36083
\(55\) 0 0
\(56\) 0 0
\(57\) 5.00000i 0.662266i
\(58\) 0 0
\(59\) 5.00000 0.650945 0.325472 0.945552i \(-0.394477\pi\)
0.325472 + 0.945552i \(0.394477\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) − 2.00000i − 0.254000i
\(63\) − 4.00000i − 0.503953i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 14.0000i 1.69775i
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) 1.00000i 0.117041i 0.998286 + 0.0585206i \(0.0186383\pi\)
−0.998286 + 0.0585206i \(0.981362\pi\)
\(74\) −14.0000 −1.62747
\(75\) 0 0
\(76\) −10.0000 −1.14708
\(77\) − 4.00000i − 0.455842i
\(78\) 12.0000i 1.35873i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000i 0.662589i
\(83\) 11.0000i 1.20741i 0.797209 + 0.603703i \(0.206309\pi\)
−0.797209 + 0.603703i \(0.793691\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) −18.0000 −1.94099
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 8.00000i 0.834058i
\(93\) 1.00000i 0.103695i
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) −8.00000 −0.816497
\(97\) 18.0000i 1.82762i 0.406138 + 0.913812i \(0.366875\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) − 6.00000i − 0.606092i
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 17.0000 1.69156 0.845782 0.533529i \(-0.179135\pi\)
0.845782 + 0.533529i \(0.179135\pi\)
\(102\) − 14.0000i − 1.38621i
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −18.0000 −1.74831
\(107\) − 2.00000i − 0.193347i −0.995316 0.0966736i \(-0.969180\pi\)
0.995316 0.0966736i \(-0.0308203\pi\)
\(108\) − 10.0000i − 0.962250i
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 8.00000i 0.755929i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 10.0000 0.936586
\(115\) 0 0
\(116\) 0 0
\(117\) 12.0000i 1.10940i
\(118\) − 10.0000i − 0.920575i
\(119\) −14.0000 −1.28338
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 16.0000i 1.44857i
\(123\) − 3.00000i − 0.270501i
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) −8.00000 −0.712697
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 0 0
\(129\) 9.00000 0.792406
\(130\) 0 0
\(131\) 7.00000 0.611593 0.305796 0.952097i \(-0.401077\pi\)
0.305796 + 0.952097i \(0.401077\pi\)
\(132\) − 4.00000i − 0.348155i
\(133\) − 10.0000i − 0.867110i
\(134\) 16.0000 1.38219
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000i 0.256307i 0.991754 + 0.128154i \(0.0409051\pi\)
−0.991754 + 0.128154i \(0.959095\pi\)
\(138\) − 8.00000i − 0.681005i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 6.00000i 0.503509i
\(143\) 12.0000i 1.00349i
\(144\) −8.00000 −0.666667
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 3.00000i 0.247436i
\(148\) 14.0000i 1.15079i
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) − 14.0000i − 1.13183i
\(154\) −8.00000 −0.644658
\(155\) 0 0
\(156\) 12.0000 0.960769
\(157\) − 22.0000i − 1.75579i −0.478852 0.877896i \(-0.658947\pi\)
0.478852 0.877896i \(-0.341053\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) − 2.00000i − 0.157135i
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 22.0000 1.70753
\(167\) 13.0000i 1.00597i 0.864295 + 0.502985i \(0.167765\pi\)
−0.864295 + 0.502985i \(0.832235\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 10.0000 0.764719
\(172\) 18.0000i 1.37249i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −8.00000 −0.603023
\(177\) 5.00000i 0.375823i
\(178\) 20.0000i 1.49906i
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) − 24.0000i − 1.77900i
\(183\) − 8.00000i − 0.591377i
\(184\) 0 0
\(185\) 0 0
\(186\) 2.00000 0.146647
\(187\) − 14.0000i − 1.02378i
\(188\) 4.00000i 0.291730i
\(189\) 10.0000 0.727393
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 8.00000i 0.577350i
\(193\) 6.00000i 0.431889i 0.976406 + 0.215945i \(0.0692831\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) 36.0000 2.58465
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) − 22.0000i − 1.56744i −0.621117 0.783718i \(-0.713321\pi\)
0.621117 0.783718i \(-0.286679\pi\)
\(198\) − 8.00000i − 0.568535i
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) − 34.0000i − 2.39223i
\(203\) 0 0
\(204\) −14.0000 −0.980196
\(205\) 0 0
\(206\) 32.0000 2.22955
\(207\) − 8.00000i − 0.556038i
\(208\) − 24.0000i − 1.66410i
\(209\) 10.0000 0.691714
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 18.0000i 1.23625i
\(213\) − 3.00000i − 0.205557i
\(214\) −4.00000 −0.273434
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.00000i − 0.135769i
\(218\) − 10.0000i − 0.677285i
\(219\) −1.00000 −0.0675737
\(220\) 0 0
\(221\) 42.0000 2.82523
\(222\) − 14.0000i − 0.939618i
\(223\) − 19.0000i − 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) 16.0000 1.06904
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) − 10.0000i − 0.662266i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 24.0000 1.56893
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) 0 0
\(238\) 28.0000i 1.81497i
\(239\) −10.0000 −0.646846 −0.323423 0.946254i \(-0.604834\pi\)
−0.323423 + 0.946254i \(0.604834\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 16.0000i 1.02640i
\(244\) 16.0000 1.02430
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) 30.0000i 1.90885i
\(248\) 0 0
\(249\) −11.0000 −0.697097
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 8.00000i 0.503953i
\(253\) − 8.00000i − 0.502956i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 12.0000i − 0.748539i −0.927320 0.374270i \(-0.877893\pi\)
0.927320 0.374270i \(-0.122107\pi\)
\(258\) − 18.0000i − 1.12063i
\(259\) −14.0000 −0.869918
\(260\) 0 0
\(261\) 0 0
\(262\) − 14.0000i − 0.864923i
\(263\) 21.0000i 1.29492i 0.762101 + 0.647458i \(0.224168\pi\)
−0.762101 + 0.647458i \(0.775832\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −20.0000 −1.22628
\(267\) − 10.0000i − 0.611990i
\(268\) − 16.0000i − 0.977356i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 28.0000i 1.69775i
\(273\) 12.0000i 0.726273i
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) − 7.00000i − 0.420589i −0.977638 0.210295i \(-0.932558\pi\)
0.977638 0.210295i \(-0.0674423\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) − 4.00000i − 0.238197i
\(283\) 26.0000i 1.54554i 0.634686 + 0.772770i \(0.281129\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 6.00000i 0.354169i
\(288\) 16.0000i 0.942809i
\(289\) −32.0000 −1.88235
\(290\) 0 0
\(291\) −18.0000 −1.05518
\(292\) − 2.00000i − 0.117041i
\(293\) 16.0000i 0.934730i 0.884064 + 0.467365i \(0.154797\pi\)
−0.884064 + 0.467365i \(0.845203\pi\)
\(294\) 6.00000 0.349927
\(295\) 0 0
\(296\) 0 0
\(297\) 10.0000i 0.580259i
\(298\) − 30.0000i − 1.73785i
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −18.0000 −1.03750
\(302\) − 24.0000i − 1.38104i
\(303\) 17.0000i 0.976624i
\(304\) −20.0000 −1.14708
\(305\) 0 0
\(306\) −28.0000 −1.60065
\(307\) − 2.00000i − 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 8.00000i 0.455842i
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) 11.0000i 0.621757i 0.950450 + 0.310878i \(0.100623\pi\)
−0.950450 + 0.310878i \(0.899377\pi\)
\(314\) −44.0000 −2.48306
\(315\) 0 0
\(316\) 0 0
\(317\) − 12.0000i − 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) − 18.0000i − 1.00939i
\(319\) 0 0
\(320\) 0 0
\(321\) 2.00000 0.111629
\(322\) 16.0000i 0.891645i
\(323\) − 35.0000i − 1.94745i
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 32.0000 1.77232
\(327\) 5.00000i 0.276501i
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) − 22.0000i − 1.20741i
\(333\) − 14.0000i − 0.767195i
\(334\) 26.0000 1.42266
\(335\) 0 0
\(336\) −8.00000 −0.436436
\(337\) 13.0000i 0.708155i 0.935216 + 0.354078i \(0.115205\pi\)
−0.935216 + 0.354078i \(0.884795\pi\)
\(338\) 46.0000i 2.50207i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) − 20.0000i − 1.08148i
\(343\) − 20.0000i − 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 12.0000 0.645124
\(347\) − 12.0000i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) 0 0
\(351\) −30.0000 −1.60128
\(352\) 16.0000i 0.852803i
\(353\) − 34.0000i − 1.80964i −0.425797 0.904819i \(-0.640006\pi\)
0.425797 0.904819i \(-0.359994\pi\)
\(354\) 10.0000 0.531494
\(355\) 0 0
\(356\) 20.0000 1.06000
\(357\) − 14.0000i − 0.740959i
\(358\) − 20.0000i − 1.05703i
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 36.0000i 1.89212i
\(363\) − 7.00000i − 0.367405i
\(364\) −24.0000 −1.25794
\(365\) 0 0
\(366\) −16.0000 −0.836333
\(367\) 13.0000i 0.678594i 0.940679 + 0.339297i \(0.110189\pi\)
−0.940679 + 0.339297i \(0.889811\pi\)
\(368\) 16.0000i 0.834058i
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −18.0000 −0.934513
\(372\) − 2.00000i − 0.103695i
\(373\) 16.0000i 0.828449i 0.910175 + 0.414224i \(0.135947\pi\)
−0.910175 + 0.414224i \(0.864053\pi\)
\(374\) −28.0000 −1.44785
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) − 20.0000i − 1.02869i
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 16.0000i 0.818631i
\(383\) − 9.00000i − 0.459879i −0.973205 0.229939i \(-0.926147\pi\)
0.973205 0.229939i \(-0.0738528\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) − 18.0000i − 0.914991i
\(388\) − 36.0000i − 1.82762i
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) 0 0
\(393\) 7.00000i 0.353103i
\(394\) −44.0000 −2.21669
\(395\) 0 0
\(396\) −8.00000 −0.402015
\(397\) − 22.0000i − 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 10.0000 0.500626
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 16.0000i 0.798007i
\(403\) 6.00000i 0.298881i
\(404\) −34.0000 −1.69156
\(405\) 0 0
\(406\) 0 0
\(407\) − 14.0000i − 0.693954i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) −3.00000 −0.147979
\(412\) − 32.0000i − 1.57653i
\(413\) − 10.0000i − 0.492068i
\(414\) −16.0000 −0.786357
\(415\) 0 0
\(416\) −48.0000 −2.35339
\(417\) 0 0
\(418\) − 20.0000i − 0.978232i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) −33.0000 −1.60832 −0.804161 0.594412i \(-0.797385\pi\)
−0.804161 + 0.594412i \(0.797385\pi\)
\(422\) 56.0000i 2.72604i
\(423\) − 4.00000i − 0.194487i
\(424\) 0 0
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 16.0000i 0.774294i
\(428\) 4.00000i 0.193347i
\(429\) −12.0000 −0.579365
\(430\) 0 0
\(431\) −13.0000 −0.626188 −0.313094 0.949722i \(-0.601365\pi\)
−0.313094 + 0.949722i \(0.601365\pi\)
\(432\) − 20.0000i − 0.962250i
\(433\) 6.00000i 0.288342i 0.989553 + 0.144171i \(0.0460515\pi\)
−0.989553 + 0.144171i \(0.953949\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) − 20.0000i − 0.956730i
\(438\) 2.00000i 0.0955637i
\(439\) 15.0000 0.715911 0.357955 0.933739i \(-0.383474\pi\)
0.357955 + 0.933739i \(0.383474\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) − 84.0000i − 3.99547i
\(443\) 26.0000i 1.23530i 0.786454 + 0.617649i \(0.211915\pi\)
−0.786454 + 0.617649i \(0.788085\pi\)
\(444\) −14.0000 −0.664411
\(445\) 0 0
\(446\) −38.0000 −1.79935
\(447\) 15.0000i 0.709476i
\(448\) − 16.0000i − 0.755929i
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) − 12.0000i − 0.564433i
\(453\) 12.0000i 0.563809i
\(454\) 56.0000 2.62821
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.00000i − 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 0 0
\(459\) 35.0000 1.63366
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) − 8.00000i − 0.372194i
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 12.0000 0.555889
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) − 24.0000i − 1.10940i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) 0 0
\(473\) − 18.0000i − 0.827641i
\(474\) 0 0
\(475\) 0 0
\(476\) 28.0000 1.28338
\(477\) − 18.0000i − 0.824163i
\(478\) 20.0000i 0.914779i
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 0 0
\(481\) 42.0000 1.91504
\(482\) − 4.00000i − 0.182195i
\(483\) − 8.00000i − 0.364013i
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) 32.0000 1.45155
\(487\) − 7.00000i − 0.317200i −0.987343 0.158600i \(-0.949302\pi\)
0.987343 0.158600i \(-0.0506981\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 6.00000i 0.270501i
\(493\) 0 0
\(494\) 60.0000 2.69953
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 6.00000i 0.269137i
\(498\) 22.0000i 0.985844i
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) −13.0000 −0.580797
\(502\) − 4.00000i − 0.178529i
\(503\) 36.0000i 1.60516i 0.596544 + 0.802580i \(0.296540\pi\)
−0.596544 + 0.802580i \(0.703460\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) − 23.0000i − 1.02147i
\(508\) − 16.0000i − 0.709885i
\(509\) −20.0000 −0.886484 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) − 32.0000i − 1.41421i
\(513\) 25.0000i 1.10378i
\(514\) −24.0000 −1.05859
\(515\) 0 0
\(516\) −18.0000 −0.792406
\(517\) − 4.00000i − 0.175920i
\(518\) 28.0000i 1.23025i
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) − 19.0000i − 0.830812i −0.909636 0.415406i \(-0.863640\pi\)
0.909636 0.415406i \(-0.136360\pi\)
\(524\) −14.0000 −0.611593
\(525\) 0 0
\(526\) 42.0000 1.83129
\(527\) − 7.00000i − 0.304925i
\(528\) − 8.00000i − 0.348155i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 20.0000i 0.867110i
\(533\) − 18.0000i − 0.779667i
\(534\) −20.0000 −0.865485
\(535\) 0 0
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 56.0000i 2.40541i
\(543\) − 18.0000i − 0.772454i
\(544\) 56.0000 2.40098
\(545\) 0 0
\(546\) 24.0000 1.02711
\(547\) 38.0000i 1.62476i 0.583127 + 0.812381i \(0.301829\pi\)
−0.583127 + 0.812381i \(0.698171\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) −16.0000 −0.682863
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −14.0000 −0.594803
\(555\) 0 0
\(556\) 0 0
\(557\) − 2.00000i − 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) − 4.00000i − 0.169334i
\(559\) 54.0000 2.28396
\(560\) 0 0
\(561\) 14.0000 0.591080
\(562\) − 54.0000i − 2.27785i
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) −4.00000 −0.168430
\(565\) 0 0
\(566\) 52.0000 2.18572
\(567\) − 2.00000i − 0.0839921i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) − 24.0000i − 1.00349i
\(573\) − 8.00000i − 0.334205i
\(574\) 12.0000 0.500870
\(575\) 0 0
\(576\) 16.0000 0.666667
\(577\) − 32.0000i − 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) 64.0000i 2.66205i
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 22.0000 0.912714
\(582\) 36.0000i 1.49225i
\(583\) − 18.0000i − 0.745484i
\(584\) 0 0
\(585\) 0 0
\(586\) 32.0000 1.32191
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) − 6.00000i − 0.247436i
\(589\) 5.00000 0.206021
\(590\) 0 0
\(591\) 22.0000 0.904959
\(592\) 28.0000i 1.15079i
\(593\) − 24.0000i − 0.985562i −0.870153 0.492781i \(-0.835980\pi\)
0.870153 0.492781i \(-0.164020\pi\)
\(594\) 20.0000 0.820610
\(595\) 0 0
\(596\) −30.0000 −1.22885
\(597\) − 10.0000i − 0.409273i
\(598\) − 48.0000i − 1.96287i
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 36.0000i 1.46725i
\(603\) 16.0000i 0.651570i
\(604\) −24.0000 −0.976546
\(605\) 0 0
\(606\) 34.0000 1.38116
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) 40.0000i 1.62221i
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 28.0000i 1.13183i
\(613\) − 19.0000i − 0.767403i −0.923457 0.383701i \(-0.874649\pi\)
0.923457 0.383701i \(-0.125351\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) − 2.00000i − 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 32.0000i 1.28723i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 20.0000 0.802572
\(622\) 6.00000i 0.240578i
\(623\) 20.0000i 0.801283i
\(624\) 24.0000 0.960769
\(625\) 0 0
\(626\) 22.0000 0.879297
\(627\) 10.0000i 0.399362i
\(628\) 44.0000i 1.75579i
\(629\) −49.0000 −1.95376
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) − 28.0000i − 1.11290i
\(634\) −24.0000 −0.953162
\(635\) 0 0
\(636\) −18.0000 −0.713746
\(637\) 18.0000i 0.713186i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −8.00000 −0.315981 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) − 4.00000i − 0.157867i
\(643\) − 19.0000i − 0.749287i −0.927169 0.374643i \(-0.877765\pi\)
0.927169 0.374643i \(-0.122235\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) −70.0000 −2.75411
\(647\) − 37.0000i − 1.45462i −0.686309 0.727310i \(-0.740770\pi\)
0.686309 0.727310i \(-0.259230\pi\)
\(648\) 0 0
\(649\) 10.0000 0.392534
\(650\) 0 0
\(651\) 2.00000 0.0783862
\(652\) − 32.0000i − 1.25322i
\(653\) − 4.00000i − 0.156532i −0.996933 0.0782660i \(-0.975062\pi\)
0.996933 0.0782660i \(-0.0249384\pi\)
\(654\) 10.0000 0.391031
\(655\) 0 0
\(656\) 12.0000 0.468521
\(657\) 2.00000i 0.0780274i
\(658\) 8.00000i 0.311872i
\(659\) −15.0000 −0.584317 −0.292159 0.956370i \(-0.594373\pi\)
−0.292159 + 0.956370i \(0.594373\pi\)
\(660\) 0 0
\(661\) −23.0000 −0.894596 −0.447298 0.894385i \(-0.647614\pi\)
−0.447298 + 0.894385i \(0.647614\pi\)
\(662\) − 64.0000i − 2.48743i
\(663\) 42.0000i 1.63114i
\(664\) 0 0
\(665\) 0 0
\(666\) −28.0000 −1.08498
\(667\) 0 0
\(668\) − 26.0000i − 1.00597i
\(669\) 19.0000 0.734582
\(670\) 0 0
\(671\) −16.0000 −0.617673
\(672\) 16.0000i 0.617213i
\(673\) − 19.0000i − 0.732396i −0.930537 0.366198i \(-0.880659\pi\)
0.930537 0.366198i \(-0.119341\pi\)
\(674\) 26.0000 1.00148
\(675\) 0 0
\(676\) 46.0000 1.76923
\(677\) 43.0000i 1.65262i 0.563212 + 0.826312i \(0.309565\pi\)
−0.563212 + 0.826312i \(0.690435\pi\)
\(678\) 12.0000i 0.460857i
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) − 4.00000i − 0.153168i
\(683\) − 14.0000i − 0.535695i −0.963461 0.267848i \(-0.913688\pi\)
0.963461 0.267848i \(-0.0863124\pi\)
\(684\) −20.0000 −0.764719
\(685\) 0 0
\(686\) −40.0000 −1.52721
\(687\) 0 0
\(688\) 36.0000i 1.37249i
\(689\) 54.0000 2.05724
\(690\) 0 0
\(691\) 27.0000 1.02713 0.513564 0.858051i \(-0.328325\pi\)
0.513564 + 0.858051i \(0.328325\pi\)
\(692\) − 12.0000i − 0.456172i
\(693\) − 8.00000i − 0.303895i
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 0 0
\(697\) 21.0000i 0.795432i
\(698\) − 10.0000i − 0.378506i
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 60.0000i 2.26455i
\(703\) − 35.0000i − 1.32005i
\(704\) 16.0000 0.603023
\(705\) 0 0
\(706\) −68.0000 −2.55921
\(707\) − 34.0000i − 1.27870i
\(708\) − 10.0000i − 0.375823i
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 4.00000i − 0.149801i
\(714\) −28.0000 −1.04787
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) − 10.0000i − 0.373457i
\(718\) 40.0000i 1.49279i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) − 12.0000i − 0.446594i
\(723\) 2.00000i 0.0743808i
\(724\) 36.0000 1.33793
\(725\) 0 0
\(726\) −14.0000 −0.519589
\(727\) − 12.0000i − 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −63.0000 −2.33014
\(732\) 16.0000i 0.591377i
\(733\) − 4.00000i − 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) 32.0000 1.17954
\(737\) 16.0000i 0.589368i
\(738\) 12.0000i 0.441726i
\(739\) 50.0000 1.83928 0.919640 0.392763i \(-0.128481\pi\)
0.919640 + 0.392763i \(0.128481\pi\)
\(740\) 0 0
\(741\) −30.0000 −1.10208
\(742\) 36.0000i 1.32160i
\(743\) − 9.00000i − 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 32.0000 1.17160
\(747\) 22.0000i 0.804938i
\(748\) 28.0000i 1.02378i
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 2.00000i 0.0728841i
\(754\) 0 0
\(755\) 0 0
\(756\) −20.0000 −0.727393
\(757\) 43.0000i 1.56286i 0.623992 + 0.781431i \(0.285510\pi\)
−0.623992 + 0.781431i \(0.714490\pi\)
\(758\) − 10.0000i − 0.363216i
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 16.0000i 0.579619i
\(763\) − 10.0000i − 0.362024i
\(764\) 16.0000 0.578860
\(765\) 0 0
\(766\) −18.0000 −0.650366
\(767\) 30.0000i 1.08324i
\(768\) 16.0000i 0.577350i
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) − 12.0000i − 0.431889i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) −36.0000 −1.29399
\(775\) 0 0
\(776\) 0 0
\(777\) − 14.0000i − 0.502247i
\(778\) 20.0000i 0.717035i
\(779\) −15.0000 −0.537431
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 56.0000i 2.00256i
\(783\) 0 0
\(784\) −12.0000 −0.428571
\(785\) 0 0
\(786\) 14.0000 0.499363
\(787\) 28.0000i 0.998092i 0.866575 + 0.499046i \(0.166316\pi\)
−0.866575 + 0.499046i \(0.833684\pi\)
\(788\) 44.0000i 1.56744i
\(789\) −21.0000 −0.747620
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) − 48.0000i − 1.70453i
\(794\) −44.0000 −1.56150
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) − 42.0000i − 1.48772i −0.668338 0.743858i \(-0.732994\pi\)
0.668338 0.743858i \(-0.267006\pi\)
\(798\) − 20.0000i − 0.707992i
\(799\) −14.0000 −0.495284
\(800\) 0 0
\(801\) −20.0000 −0.706665
\(802\) − 44.0000i − 1.55369i
\(803\) 2.00000i 0.0705785i
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) 12.0000 0.422682
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 17.0000 0.596951 0.298475 0.954417i \(-0.403522\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(812\) 0 0
\(813\) − 28.0000i − 0.982003i
\(814\) −28.0000 −0.981399
\(815\) 0 0
\(816\) −28.0000 −0.980196
\(817\) − 45.0000i − 1.57435i
\(818\) 0 0
\(819\) 24.0000 0.838628
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 6.00000i 0.209274i
\(823\) 11.0000i 0.383436i 0.981450 + 0.191718i \(0.0614059\pi\)
−0.981450 + 0.191718i \(0.938594\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −20.0000 −0.695889
\(827\) − 27.0000i − 0.938882i −0.882964 0.469441i \(-0.844455\pi\)
0.882964 0.469441i \(-0.155545\pi\)
\(828\) 16.0000i 0.556038i
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 7.00000 0.242827
\(832\) 48.0000i 1.66410i
\(833\) − 21.0000i − 0.727607i
\(834\) 0 0
\(835\) 0 0
\(836\) −20.0000 −0.691714
\(837\) 5.00000i 0.172825i
\(838\) 10.0000i 0.345444i
\(839\) 15.0000 0.517858 0.258929 0.965896i \(-0.416631\pi\)
0.258929 + 0.965896i \(0.416631\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 66.0000i 2.27451i
\(843\) 27.0000i 0.929929i
\(844\) 56.0000 1.92760
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) 14.0000i 0.481046i
\(848\) 36.0000i 1.23625i
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) −28.0000 −0.959828
\(852\) 6.00000i 0.205557i
\(853\) − 4.00000i − 0.136957i −0.997653 0.0684787i \(-0.978185\pi\)
0.997653 0.0684787i \(-0.0218145\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) 0 0
\(857\) − 42.0000i − 1.43469i −0.696717 0.717346i \(-0.745357\pi\)
0.696717 0.717346i \(-0.254643\pi\)
\(858\) 24.0000i 0.819346i
\(859\) 50.0000 1.70598 0.852989 0.521929i \(-0.174787\pi\)
0.852989 + 0.521929i \(0.174787\pi\)
\(860\) 0 0
\(861\) −6.00000 −0.204479
\(862\) 26.0000i 0.885564i
\(863\) 1.00000i 0.0340404i 0.999855 + 0.0170202i \(0.00541796\pi\)
−0.999855 + 0.0170202i \(0.994582\pi\)
\(864\) −40.0000 −1.36083
\(865\) 0 0
\(866\) 12.0000 0.407777
\(867\) − 32.0000i − 1.08678i
\(868\) 4.00000i 0.135769i
\(869\) 0 0
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) 36.0000i 1.21842i
\(874\) −40.0000 −1.35302
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) 18.0000i 0.607817i 0.952701 + 0.303908i \(0.0982917\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(878\) − 30.0000i − 1.01245i
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) − 12.0000i − 0.404061i
\(883\) 11.0000i 0.370179i 0.982722 + 0.185090i \(0.0592576\pi\)
−0.982722 + 0.185090i \(0.940742\pi\)
\(884\) −84.0000 −2.82523
\(885\) 0 0
\(886\) 52.0000 1.74697
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 38.0000i 1.27233i
\(893\) − 10.0000i − 0.334637i
\(894\) 30.0000 1.00335
\(895\) 0 0
\(896\) 0 0
\(897\) 24.0000i 0.801337i
\(898\) 20.0000i 0.667409i
\(899\) 0 0
\(900\) 0 0
\(901\) −63.0000 −2.09883
\(902\) 12.0000i 0.399556i
\(903\) − 18.0000i − 0.599002i
\(904\) 0 0
\(905\) 0 0
\(906\) 24.0000 0.797347
\(907\) − 12.0000i − 0.398453i −0.979953 0.199227i \(-0.936157\pi\)
0.979953 0.199227i \(-0.0638430\pi\)
\(908\) − 56.0000i − 1.85843i
\(909\) 34.0000 1.12771
\(910\) 0 0
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) − 20.0000i − 0.662266i
\(913\) 22.0000i 0.728094i
\(914\) −4.00000 −0.132308
\(915\) 0 0
\(916\) 0 0
\(917\) − 14.0000i − 0.462321i
\(918\) − 70.0000i − 2.31034i
\(919\) 25.0000 0.824674 0.412337 0.911031i \(-0.364713\pi\)
0.412337 + 0.911031i \(0.364713\pi\)
\(920\) 0 0
\(921\) 2.00000 0.0659022
\(922\) 36.0000i 1.18560i
\(923\) − 18.0000i − 0.592477i
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 32.0000i 1.05102i
\(928\) 0 0
\(929\) −40.0000 −1.31236 −0.656179 0.754606i \(-0.727828\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(930\) 0 0
\(931\) 15.0000 0.491605
\(932\) − 12.0000i − 0.393073i
\(933\) − 3.00000i − 0.0982156i
\(934\) 56.0000 1.83238
\(935\) 0 0
\(936\) 0 0
\(937\) 18.0000i 0.588034i 0.955800 + 0.294017i \(0.0949923\pi\)
−0.955800 + 0.294017i \(0.905008\pi\)
\(938\) − 32.0000i − 1.04484i
\(939\) −11.0000 −0.358971
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) − 44.0000i − 1.43360i
\(943\) 12.0000i 0.390774i
\(944\) −20.0000 −0.650945
\(945\) 0 0
\(946\) −36.0000 −1.17046
\(947\) 3.00000i 0.0974869i 0.998811 + 0.0487435i \(0.0155217\pi\)
−0.998811 + 0.0487435i \(0.984478\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 21.0000i 0.680257i 0.940379 + 0.340128i \(0.110471\pi\)
−0.940379 + 0.340128i \(0.889529\pi\)
\(954\) −36.0000 −1.16554
\(955\) 0 0
\(956\) 20.0000 0.646846
\(957\) 0 0
\(958\) − 80.0000i − 2.58468i
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) − 84.0000i − 2.70827i
\(963\) − 4.00000i − 0.128898i
\(964\) −4.00000 −0.128831
\(965\) 0 0
\(966\) −16.0000 −0.514792
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 0 0
\(969\) 35.0000 1.12436
\(970\) 0 0
\(971\) 57.0000 1.82922 0.914609 0.404341i \(-0.132499\pi\)
0.914609 + 0.404341i \(0.132499\pi\)
\(972\) − 32.0000i − 1.02640i
\(973\) 0 0
\(974\) −14.0000 −0.448589
\(975\) 0 0
\(976\) 32.0000 1.02430
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 32.0000i 1.02325i
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) − 24.0000i − 0.765871i
\(983\) − 4.00000i − 0.127580i −0.997963 0.0637901i \(-0.979681\pi\)
0.997963 0.0637901i \(-0.0203188\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 4.00000i − 0.127321i
\(988\) − 60.0000i − 1.90885i
\(989\) −36.0000 −1.14473
\(990\) 0 0
\(991\) −38.0000 −1.20711 −0.603555 0.797321i \(-0.706250\pi\)
−0.603555 + 0.797321i \(0.706250\pi\)
\(992\) 8.00000i 0.254000i
\(993\) 32.0000i 1.01549i
\(994\) 12.0000 0.380617
\(995\) 0 0
\(996\) 22.0000 0.697097
\(997\) − 12.0000i − 0.380044i −0.981780 0.190022i \(-0.939144\pi\)
0.981780 0.190022i \(-0.0608559\pi\)
\(998\) 80.0000i 2.53236i
\(999\) 35.0000 1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.b.a.249.1 2
5.2 odd 4 775.2.a.c.1.1 1
5.3 odd 4 155.2.a.a.1.1 1
5.4 even 2 inner 775.2.b.a.249.2 2
15.2 even 4 6975.2.a.b.1.1 1
15.8 even 4 1395.2.a.e.1.1 1
20.3 even 4 2480.2.a.m.1.1 1
35.13 even 4 7595.2.a.b.1.1 1
40.3 even 4 9920.2.a.j.1.1 1
40.13 odd 4 9920.2.a.x.1.1 1
155.123 even 4 4805.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.a.a.1.1 1 5.3 odd 4
775.2.a.c.1.1 1 5.2 odd 4
775.2.b.a.249.1 2 1.1 even 1 trivial
775.2.b.a.249.2 2 5.4 even 2 inner
1395.2.a.e.1.1 1 15.8 even 4
2480.2.a.m.1.1 1 20.3 even 4
4805.2.a.b.1.1 1 155.123 even 4
6975.2.a.b.1.1 1 15.2 even 4
7595.2.a.b.1.1 1 35.13 even 4
9920.2.a.j.1.1 1 40.3 even 4
9920.2.a.x.1.1 1 40.13 odd 4