Properties

Label 2480.2.a.m.1.1
Level $2480$
Weight $2$
Character 2480.1
Self dual yes
Analytic conductor $19.803$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2480,2,Mod(1,2480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2480.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2480 = 2^{4} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,1,0,2,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.8028997013\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2480.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} +2.00000 q^{7} -2.00000 q^{9} -2.00000 q^{11} -6.00000 q^{13} +1.00000 q^{15} -7.00000 q^{17} +5.00000 q^{19} +2.00000 q^{21} -4.00000 q^{23} +1.00000 q^{25} -5.00000 q^{27} -1.00000 q^{31} -2.00000 q^{33} +2.00000 q^{35} -7.00000 q^{37} -6.00000 q^{39} -3.00000 q^{41} -9.00000 q^{43} -2.00000 q^{45} +2.00000 q^{47} -3.00000 q^{49} -7.00000 q^{51} +9.00000 q^{53} -2.00000 q^{55} +5.00000 q^{57} +5.00000 q^{59} -8.00000 q^{61} -4.00000 q^{63} -6.00000 q^{65} -8.00000 q^{67} -4.00000 q^{69} +3.00000 q^{71} -1.00000 q^{73} +1.00000 q^{75} -4.00000 q^{77} +1.00000 q^{81} +11.0000 q^{83} -7.00000 q^{85} +10.0000 q^{89} -12.0000 q^{91} -1.00000 q^{93} +5.00000 q^{95} +18.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −9.00000 −1.37249 −0.686244 0.727372i \(-0.740742\pi\)
−0.686244 + 0.727372i \(0.740742\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −7.00000 −0.980196
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 5.00000 0.662266
\(58\) 0 0
\(59\) 5.00000 0.650945 0.325472 0.945552i \(-0.394477\pi\)
0.325472 + 0.945552i \(0.394477\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 11.0000 1.20741 0.603703 0.797209i \(-0.293691\pi\)
0.603703 + 0.797209i \(0.293691\pi\)
\(84\) 0 0
\(85\) −7.00000 −0.759257
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) 5.00000 0.512989
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 17.0000 1.69156 0.845782 0.533529i \(-0.179135\pi\)
0.845782 + 0.533529i \(0.179135\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) −7.00000 −0.664411
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 12.0000 1.10940
\(118\) 0 0
\(119\) −14.0000 −1.28338
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −3.00000 −0.270501
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −9.00000 −0.792406
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 10.0000 0.867110
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 0 0
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 14.0000 1.13183
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) −13.0000 −1.00597 −0.502985 0.864295i \(-0.667765\pi\)
−0.502985 + 0.864295i \(0.667765\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −10.0000 −0.764719
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 5.00000 0.375823
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) −7.00000 −0.514650
\(186\) 0 0
\(187\) 14.0000 1.02378
\(188\) 0 0
\(189\) −10.0000 −0.727393
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) −6.00000 −0.429669
\(196\) 0 0
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 −0.209529
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) −10.0000 −0.691714
\(210\) 0 0
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) 0 0
\(213\) 3.00000 0.205557
\(214\) 0 0
\(215\) −9.00000 −0.613795
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) 0 0
\(219\) −1.00000 −0.0675737
\(220\) 0 0
\(221\) 42.0000 2.82523
\(222\) 0 0
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.0000 −0.646846 −0.323423 0.946254i \(-0.604834\pi\)
−0.323423 + 0.946254i \(0.604834\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −30.0000 −1.90885
\(248\) 0 0
\(249\) 11.0000 0.697097
\(250\) 0 0
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) −7.00000 −0.438357
\(256\) 0 0
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) −14.0000 −0.869918
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.0000 1.29492 0.647458 0.762101i \(-0.275832\pi\)
0.647458 + 0.762101i \(0.275832\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) 0 0
\(273\) −12.0000 −0.726273
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 0 0
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 0 0
\(285\) 5.00000 0.296174
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) 18.0000 1.05518
\(292\) 0 0
\(293\) −16.0000 −0.934730 −0.467365 0.884064i \(-0.654797\pi\)
−0.467365 + 0.884064i \(0.654797\pi\)
\(294\) 0 0
\(295\) 5.00000 0.291111
\(296\) 0 0
\(297\) 10.0000 0.580259
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −18.0000 −1.03750
\(302\) 0 0
\(303\) 17.0000 0.976624
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 3.00000 0.170114 0.0850572 0.996376i \(-0.472893\pi\)
0.0850572 + 0.996376i \(0.472893\pi\)
\(312\) 0 0
\(313\) −11.0000 −0.621757 −0.310878 0.950450i \(-0.600623\pi\)
−0.310878 + 0.950450i \(0.600623\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.00000 0.111629
\(322\) 0 0
\(323\) −35.0000 −1.94745
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) −5.00000 −0.276501
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) 14.0000 0.767195
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 0 0
\(351\) 30.0000 1.60128
\(352\) 0 0
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) 3.00000 0.159223
\(356\) 0 0
\(357\) −14.0000 −0.740959
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −1.00000 −0.0523424
\(366\) 0 0
\(367\) −13.0000 −0.678594 −0.339297 0.940679i \(-0.610189\pi\)
−0.339297 + 0.940679i \(0.610189\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 18.0000 0.934513
\(372\) 0 0
\(373\) −16.0000 −0.828449 −0.414224 0.910175i \(-0.635947\pi\)
−0.414224 + 0.910175i \(0.635947\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −9.00000 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 0 0
\(387\) 18.0000 0.914991
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 28.0000 1.41602
\(392\) 0 0
\(393\) −7.00000 −0.353103
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 10.0000 0.500626
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 6.00000 0.298881
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 14.0000 0.693954
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 3.00000 0.147979
\(412\) 0 0
\(413\) 10.0000 0.492068
\(414\) 0 0
\(415\) 11.0000 0.539969
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) −33.0000 −1.60832 −0.804161 0.594412i \(-0.797385\pi\)
−0.804161 + 0.594412i \(0.797385\pi\)
\(422\) 0 0
\(423\) −4.00000 −0.194487
\(424\) 0 0
\(425\) −7.00000 −0.339550
\(426\) 0 0
\(427\) −16.0000 −0.774294
\(428\) 0 0
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) 13.0000 0.626188 0.313094 0.949722i \(-0.398635\pi\)
0.313094 + 0.949722i \(0.398635\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −20.0000 −0.956730
\(438\) 0 0
\(439\) 15.0000 0.715911 0.357955 0.933739i \(-0.383474\pi\)
0.357955 + 0.933739i \(0.383474\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) 26.0000 1.23530 0.617649 0.786454i \(-0.288085\pi\)
0.617649 + 0.786454i \(0.288085\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) 0 0
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) −12.0000 −0.563809
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) 35.0000 1.63366
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 0 0
\(473\) 18.0000 0.827641
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 0 0
\(481\) 42.0000 1.91504
\(482\) 0 0
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) 18.0000 0.817338
\(486\) 0 0
\(487\) 7.00000 0.317200 0.158600 0.987343i \(-0.449302\pi\)
0.158600 + 0.987343i \(0.449302\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) −13.0000 −0.580797
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 17.0000 0.756490
\(506\) 0 0
\(507\) 23.0000 1.02147
\(508\) 0 0
\(509\) 20.0000 0.886484 0.443242 0.896402i \(-0.353828\pi\)
0.443242 + 0.896402i \(0.353828\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 0 0
\(513\) −25.0000 −1.10378
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −4.00000 −0.175920
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) −19.0000 −0.830812 −0.415406 0.909636i \(-0.636360\pi\)
−0.415406 + 0.909636i \(0.636360\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 7.00000 0.304925
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) 2.00000 0.0864675
\(536\) 0 0
\(537\) 10.0000 0.431532
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) −38.0000 −1.62476 −0.812381 0.583127i \(-0.801829\pi\)
−0.812381 + 0.583127i \(0.801829\pi\)
\(548\) 0 0
\(549\) 16.0000 0.682863
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.00000 −0.297133
\(556\) 0 0
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) 54.0000 2.28396
\(560\) 0 0
\(561\) 14.0000 0.591080
\(562\) 0 0
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 22.0000 0.912714
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 12.0000 0.496139
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) −14.0000 −0.573944
\(596\) 0 0
\(597\) −10.0000 −0.409273
\(598\) 0 0
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 16.0000 0.651570
\(604\) 0 0
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) 19.0000 0.767403 0.383701 0.923457i \(-0.374649\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(614\) 0 0
\(615\) −3.00000 −0.120972
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 20.0000 0.802572
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −10.0000 −0.399362
\(628\) 0 0
\(629\) 49.0000 1.95376
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 28.0000 1.11290
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −8.00000 −0.315981 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) 37.0000 1.45462 0.727310 0.686309i \(-0.240770\pi\)
0.727310 + 0.686309i \(0.240770\pi\)
\(648\) 0 0
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 0 0
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) 0 0
\(655\) −7.00000 −0.273513
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −15.0000 −0.584317 −0.292159 0.956370i \(-0.594373\pi\)
−0.292159 + 0.956370i \(0.594373\pi\)
\(660\) 0 0
\(661\) −23.0000 −0.894596 −0.447298 0.894385i \(-0.647614\pi\)
−0.447298 + 0.894385i \(0.647614\pi\)
\(662\) 0 0
\(663\) 42.0000 1.63114
\(664\) 0 0
\(665\) 10.0000 0.387783
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −19.0000 −0.734582
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 43.0000 1.65262 0.826312 0.563212i \(-0.190435\pi\)
0.826312 + 0.563212i \(0.190435\pi\)
\(678\) 0 0
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 0 0
\(685\) 3.00000 0.114624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −54.0000 −2.05724
\(690\) 0 0
\(691\) −27.0000 −1.02713 −0.513564 0.858051i \(-0.671675\pi\)
−0.513564 + 0.858051i \(0.671675\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 21.0000 0.795432
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −35.0000 −1.32005
\(704\) 0 0
\(705\) 2.00000 0.0753244
\(706\) 0 0
\(707\) 34.0000 1.27870
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 12.0000 0.448775
\(716\) 0 0
\(717\) −10.0000 −0.373457
\(718\) 0 0
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) 2.00000 0.0743808
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 63.0000 2.33014
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 50.0000 1.83928 0.919640 0.392763i \(-0.128481\pi\)
0.919640 + 0.392763i \(0.128481\pi\)
\(740\) 0 0
\(741\) −30.0000 −1.10208
\(742\) 0 0
\(743\) −9.00000 −0.330178 −0.165089 0.986279i \(-0.552791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) 0 0
\(747\) −22.0000 −0.804938
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) −2.00000 −0.0728841
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) 43.0000 1.56286 0.781431 0.623992i \(-0.214490\pi\)
0.781431 + 0.623992i \(0.214490\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 14.0000 0.506171
\(766\) 0 0
\(767\) −30.0000 −1.08324
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) −14.0000 −0.502247
\(778\) 0 0
\(779\) −15.0000 −0.537431
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) 21.0000 0.747620
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) 9.00000 0.319197
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −14.0000 −0.495284
\(800\) 0 0
\(801\) −20.0000 −0.706665
\(802\) 0 0
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −17.0000 −0.596951 −0.298475 0.954417i \(-0.596478\pi\)
−0.298475 + 0.954417i \(0.596478\pi\)
\(812\) 0 0
\(813\) 28.0000 0.982003
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 0 0
\(817\) −45.0000 −1.57435
\(818\) 0 0
\(819\) 24.0000 0.838628
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 11.0000 0.383436 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 27.0000 0.938882 0.469441 0.882964i \(-0.344455\pi\)
0.469441 + 0.882964i \(0.344455\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) −7.00000 −0.242827
\(832\) 0 0
\(833\) 21.0000 0.727607
\(834\) 0 0
\(835\) −13.0000 −0.449884
\(836\) 0 0
\(837\) 5.00000 0.172825
\(838\) 0 0
\(839\) 15.0000 0.517858 0.258929 0.965896i \(-0.416631\pi\)
0.258929 + 0.965896i \(0.416631\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 27.0000 0.929929
\(844\) 0 0
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) 0 0
\(849\) 26.0000 0.892318
\(850\) 0 0
\(851\) 28.0000 0.959828
\(852\) 0 0
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) 0 0
\(855\) −10.0000 −0.341993
\(856\) 0 0
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 50.0000 1.70598 0.852989 0.521929i \(-0.174787\pi\)
0.852989 + 0.521929i \(0.174787\pi\)
\(860\) 0 0
\(861\) −6.00000 −0.204479
\(862\) 0 0
\(863\) 1.00000 0.0340404 0.0170202 0.999855i \(-0.494582\pi\)
0.0170202 + 0.999855i \(0.494582\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) −36.0000 −1.21842
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 0 0
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) 0 0
\(883\) 11.0000 0.370179 0.185090 0.982722i \(-0.440742\pi\)
0.185090 + 0.982722i \(0.440742\pi\)
\(884\) 0 0
\(885\) 5.00000 0.168073
\(886\) 0 0
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 10.0000 0.334637
\(894\) 0 0
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) 24.0000 0.801337
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −63.0000 −2.09883
\(902\) 0 0
\(903\) −18.0000 −0.599002
\(904\) 0 0
\(905\) −18.0000 −0.598340
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) −34.0000 −1.12771
\(910\) 0 0
\(911\) 38.0000 1.25900 0.629498 0.777002i \(-0.283261\pi\)
0.629498 + 0.777002i \(0.283261\pi\)
\(912\) 0 0
\(913\) −22.0000 −0.728094
\(914\) 0 0
\(915\) −8.00000 −0.264472
\(916\) 0 0
\(917\) −14.0000 −0.462321
\(918\) 0 0
\(919\) 25.0000 0.824674 0.412337 0.911031i \(-0.364713\pi\)
0.412337 + 0.911031i \(0.364713\pi\)
\(920\) 0 0
\(921\) 2.00000 0.0659022
\(922\) 0 0
\(923\) −18.0000 −0.592477
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) −32.0000 −1.05102
\(928\) 0 0
\(929\) 40.0000 1.31236 0.656179 0.754606i \(-0.272172\pi\)
0.656179 + 0.754606i \(0.272172\pi\)
\(930\) 0 0
\(931\) −15.0000 −0.491605
\(932\) 0 0
\(933\) 3.00000 0.0982156
\(934\) 0 0
\(935\) 14.0000 0.457849
\(936\) 0 0
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) 0 0
\(939\) −11.0000 −0.358971
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 12.0000 0.390774
\(944\) 0 0
\(945\) −10.0000 −0.325300
\(946\) 0 0
\(947\) −3.00000 −0.0974869 −0.0487435 0.998811i \(-0.515522\pi\)
−0.0487435 + 0.998811i \(0.515522\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −21.0000 −0.680257 −0.340128 0.940379i \(-0.610471\pi\)
−0.340128 + 0.940379i \(0.610471\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) −35.0000 −1.12436
\(970\) 0 0
\(971\) −57.0000 −1.82922 −0.914609 0.404341i \(-0.867501\pi\)
−0.914609 + 0.404341i \(0.867501\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.00000 −0.192154
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) 0 0
\(985\) −22.0000 −0.700978
\(986\) 0 0
\(987\) 4.00000 0.127321
\(988\) 0 0
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) 0 0
\(993\) −32.0000 −1.01549
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) −12.0000 −0.380044 −0.190022 0.981780i \(-0.560856\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 0 0
\(999\) 35.0000 1.10735
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2480.2.a.m.1.1 1
4.3 odd 2 155.2.a.a.1.1 1
8.3 odd 2 9920.2.a.x.1.1 1
8.5 even 2 9920.2.a.j.1.1 1
12.11 even 2 1395.2.a.e.1.1 1
20.3 even 4 775.2.b.a.249.2 2
20.7 even 4 775.2.b.a.249.1 2
20.19 odd 2 775.2.a.c.1.1 1
28.27 even 2 7595.2.a.b.1.1 1
60.59 even 2 6975.2.a.b.1.1 1
124.123 even 2 4805.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.a.a.1.1 1 4.3 odd 2
775.2.a.c.1.1 1 20.19 odd 2
775.2.b.a.249.1 2 20.7 even 4
775.2.b.a.249.2 2 20.3 even 4
1395.2.a.e.1.1 1 12.11 even 2
2480.2.a.m.1.1 1 1.1 even 1 trivial
4805.2.a.b.1.1 1 124.123 even 2
6975.2.a.b.1.1 1 60.59 even 2
7595.2.a.b.1.1 1 28.27 even 2
9920.2.a.j.1.1 1 8.5 even 2
9920.2.a.x.1.1 1 8.3 odd 2