Properties

Label 7742.2.a.w
Level $7742$
Weight $2$
Character orbit 7742.a
Self dual yes
Analytic conductor $61.820$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7742,2,Mod(1,7742)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7742.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7742.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,2,3,4,2,0,3,-1,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8201812449\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1106)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + (\beta_{2} + \beta_1 + 1) q^{5} + ( - \beta_1 + 1) q^{6} + q^{8} + (\beta_{2} - \beta_1) q^{9} + (\beta_{2} + \beta_1 + 1) q^{10} + 2 \beta_{2} q^{11} + ( - \beta_1 + 1) q^{12}+ \cdots + ( - 2 \beta_{2} - 4 \beta_1 + 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 2 q^{3} + 3 q^{4} + 4 q^{5} + 2 q^{6} + 3 q^{8} - q^{9} + 4 q^{10} + 2 q^{12} + 4 q^{13} - 2 q^{15} + 3 q^{16} + 12 q^{17} - q^{18} + 10 q^{19} + 4 q^{20} + 4 q^{23} + 2 q^{24} + q^{25}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
0.311108
−1.48119
1.00000 −1.17009 1.00000 3.70928 −1.17009 0 1.00000 −1.63090 3.70928
1.2 1.00000 0.688892 1.00000 −0.903212 0.688892 0 1.00000 −2.52543 −0.903212
1.3 1.00000 2.48119 1.00000 1.19394 2.48119 0 1.00000 3.15633 1.19394
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(79\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7742.2.a.w 3
7.b odd 2 1 1106.2.a.i 3
21.c even 2 1 9954.2.a.q 3
28.d even 2 1 8848.2.a.l 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1106.2.a.i 3 7.b odd 2 1
7742.2.a.w 3 1.a even 1 1 trivial
8848.2.a.l 3 28.d even 2 1
9954.2.a.q 3 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7742))\):

\( T_{3}^{3} - 2T_{3}^{2} - 2T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{3} - 4T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} - 16T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{3} - 4T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$17$ \( (T - 4)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 10 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$23$ \( T^{3} - 4T^{2} + 4 \) Copy content Toggle raw display
$29$ \( T^{3} + 6 T^{2} + \cdots - 118 \) Copy content Toggle raw display
$31$ \( T^{3} - 10 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$37$ \( T^{3} - 2 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots - 398 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$53$ \( T^{3} + 8 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$59$ \( T^{3} - 8 T^{2} + \cdots + 206 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 1202 \) Copy content Toggle raw display
$67$ \( T^{3} + 8 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$71$ \( T^{3} - 8 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$73$ \( T^{3} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$79$ \( (T - 1)^{3} \) Copy content Toggle raw display
$83$ \( T^{3} - 14 T^{2} + \cdots + 1292 \) Copy content Toggle raw display
$89$ \( T^{3} + 8 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$97$ \( T^{3} + 18 T^{2} + \cdots + 104 \) Copy content Toggle raw display
show more
show less