Properties

Label 7742.2.a.bl.1.8
Level $7742$
Weight $2$
Character 7742.1
Self dual yes
Analytic conductor $61.820$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7742,2,Mod(1,7742)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7742.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7742.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,0,12,0,0,0,-12,12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8201812449\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 144x^{8} - 456x^{6} + 612x^{4} - 248x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.68362\) of defining polynomial
Character \(\chi\) \(=\) 7742.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.824076 q^{3} +1.00000 q^{4} -1.68362 q^{5} -0.824076 q^{6} -1.00000 q^{8} -2.32090 q^{9} +1.68362 q^{10} -3.87375 q^{11} +0.824076 q^{12} -0.453480 q^{13} -1.38743 q^{15} +1.00000 q^{16} -1.08584 q^{17} +2.32090 q^{18} +3.91515 q^{19} -1.68362 q^{20} +3.87375 q^{22} +7.28311 q^{23} -0.824076 q^{24} -2.16542 q^{25} +0.453480 q^{26} -4.38483 q^{27} +2.84539 q^{29} +1.38743 q^{30} +2.04446 q^{31} -1.00000 q^{32} -3.19227 q^{33} +1.08584 q^{34} -2.32090 q^{36} -2.27568 q^{37} -3.91515 q^{38} -0.373702 q^{39} +1.68362 q^{40} +9.09968 q^{41} +10.8295 q^{43} -3.87375 q^{44} +3.90751 q^{45} -7.28311 q^{46} -2.11107 q^{47} +0.824076 q^{48} +2.16542 q^{50} -0.894817 q^{51} -0.453480 q^{52} +9.66060 q^{53} +4.38483 q^{54} +6.52193 q^{55} +3.22639 q^{57} -2.84539 q^{58} +3.07898 q^{59} -1.38743 q^{60} -14.1835 q^{61} -2.04446 q^{62} +1.00000 q^{64} +0.763489 q^{65} +3.19227 q^{66} -2.35782 q^{67} -1.08584 q^{68} +6.00184 q^{69} +2.42535 q^{71} +2.32090 q^{72} -8.61161 q^{73} +2.27568 q^{74} -1.78447 q^{75} +3.91515 q^{76} +0.373702 q^{78} -1.00000 q^{79} -1.68362 q^{80} +3.34926 q^{81} -9.09968 q^{82} -8.54786 q^{83} +1.82815 q^{85} -10.8295 q^{86} +2.34482 q^{87} +3.87375 q^{88} +2.34290 q^{89} -3.90751 q^{90} +7.28311 q^{92} +1.68479 q^{93} +2.11107 q^{94} -6.59164 q^{95} -0.824076 q^{96} +12.8858 q^{97} +8.99058 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 12 q^{4} - 12 q^{8} + 12 q^{9} + 4 q^{11} - 12 q^{15} + 12 q^{16} - 12 q^{18} - 4 q^{22} - 4 q^{23} - 20 q^{25} - 4 q^{29} + 12 q^{30} - 12 q^{32} + 12 q^{36} - 16 q^{37} - 24 q^{39} + 4 q^{43}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.824076 0.475781 0.237890 0.971292i \(-0.423544\pi\)
0.237890 + 0.971292i \(0.423544\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.68362 −0.752938 −0.376469 0.926429i \(-0.622862\pi\)
−0.376469 + 0.926429i \(0.622862\pi\)
\(6\) −0.824076 −0.336428
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −2.32090 −0.773633
\(10\) 1.68362 0.532408
\(11\) −3.87375 −1.16798 −0.583990 0.811761i \(-0.698509\pi\)
−0.583990 + 0.811761i \(0.698509\pi\)
\(12\) 0.824076 0.237890
\(13\) −0.453480 −0.125773 −0.0628864 0.998021i \(-0.520031\pi\)
−0.0628864 + 0.998021i \(0.520031\pi\)
\(14\) 0 0
\(15\) −1.38743 −0.358234
\(16\) 1.00000 0.250000
\(17\) −1.08584 −0.263355 −0.131678 0.991293i \(-0.542036\pi\)
−0.131678 + 0.991293i \(0.542036\pi\)
\(18\) 2.32090 0.547041
\(19\) 3.91515 0.898198 0.449099 0.893482i \(-0.351745\pi\)
0.449099 + 0.893482i \(0.351745\pi\)
\(20\) −1.68362 −0.376469
\(21\) 0 0
\(22\) 3.87375 0.825886
\(23\) 7.28311 1.51863 0.759317 0.650721i \(-0.225533\pi\)
0.759317 + 0.650721i \(0.225533\pi\)
\(24\) −0.824076 −0.168214
\(25\) −2.16542 −0.433084
\(26\) 0.453480 0.0889348
\(27\) −4.38483 −0.843860
\(28\) 0 0
\(29\) 2.84539 0.528375 0.264188 0.964471i \(-0.414896\pi\)
0.264188 + 0.964471i \(0.414896\pi\)
\(30\) 1.38743 0.253309
\(31\) 2.04446 0.367196 0.183598 0.983001i \(-0.441225\pi\)
0.183598 + 0.983001i \(0.441225\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.19227 −0.555702
\(34\) 1.08584 0.186220
\(35\) 0 0
\(36\) −2.32090 −0.386816
\(37\) −2.27568 −0.374120 −0.187060 0.982349i \(-0.559896\pi\)
−0.187060 + 0.982349i \(0.559896\pi\)
\(38\) −3.91515 −0.635122
\(39\) −0.373702 −0.0598403
\(40\) 1.68362 0.266204
\(41\) 9.09968 1.42113 0.710565 0.703631i \(-0.248439\pi\)
0.710565 + 0.703631i \(0.248439\pi\)
\(42\) 0 0
\(43\) 10.8295 1.65149 0.825744 0.564045i \(-0.190755\pi\)
0.825744 + 0.564045i \(0.190755\pi\)
\(44\) −3.87375 −0.583990
\(45\) 3.90751 0.582498
\(46\) −7.28311 −1.07384
\(47\) −2.11107 −0.307931 −0.153965 0.988076i \(-0.549204\pi\)
−0.153965 + 0.988076i \(0.549204\pi\)
\(48\) 0.824076 0.118945
\(49\) 0 0
\(50\) 2.16542 0.306237
\(51\) −0.894817 −0.125299
\(52\) −0.453480 −0.0628864
\(53\) 9.66060 1.32699 0.663493 0.748182i \(-0.269073\pi\)
0.663493 + 0.748182i \(0.269073\pi\)
\(54\) 4.38483 0.596699
\(55\) 6.52193 0.879417
\(56\) 0 0
\(57\) 3.22639 0.427345
\(58\) −2.84539 −0.373618
\(59\) 3.07898 0.400850 0.200425 0.979709i \(-0.435768\pi\)
0.200425 + 0.979709i \(0.435768\pi\)
\(60\) −1.38743 −0.179117
\(61\) −14.1835 −1.81601 −0.908004 0.418962i \(-0.862394\pi\)
−0.908004 + 0.418962i \(0.862394\pi\)
\(62\) −2.04446 −0.259647
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.763489 0.0946992
\(66\) 3.19227 0.392941
\(67\) −2.35782 −0.288053 −0.144027 0.989574i \(-0.546005\pi\)
−0.144027 + 0.989574i \(0.546005\pi\)
\(68\) −1.08584 −0.131678
\(69\) 6.00184 0.722537
\(70\) 0 0
\(71\) 2.42535 0.287836 0.143918 0.989590i \(-0.454030\pi\)
0.143918 + 0.989590i \(0.454030\pi\)
\(72\) 2.32090 0.273520
\(73\) −8.61161 −1.00791 −0.503957 0.863729i \(-0.668123\pi\)
−0.503957 + 0.863729i \(0.668123\pi\)
\(74\) 2.27568 0.264543
\(75\) −1.78447 −0.206053
\(76\) 3.91515 0.449099
\(77\) 0 0
\(78\) 0.373702 0.0423135
\(79\) −1.00000 −0.112509
\(80\) −1.68362 −0.188235
\(81\) 3.34926 0.372140
\(82\) −9.09968 −1.00489
\(83\) −8.54786 −0.938249 −0.469125 0.883132i \(-0.655431\pi\)
−0.469125 + 0.883132i \(0.655431\pi\)
\(84\) 0 0
\(85\) 1.82815 0.198290
\(86\) −10.8295 −1.16778
\(87\) 2.34482 0.251391
\(88\) 3.87375 0.412943
\(89\) 2.34290 0.248347 0.124174 0.992261i \(-0.460372\pi\)
0.124174 + 0.992261i \(0.460372\pi\)
\(90\) −3.90751 −0.411888
\(91\) 0 0
\(92\) 7.28311 0.759317
\(93\) 1.68479 0.174705
\(94\) 2.11107 0.217740
\(95\) −6.59164 −0.676288
\(96\) −0.824076 −0.0841069
\(97\) 12.8858 1.30836 0.654178 0.756340i \(-0.273015\pi\)
0.654178 + 0.756340i \(0.273015\pi\)
\(98\) 0 0
\(99\) 8.99058 0.903587
\(100\) −2.16542 −0.216542
\(101\) 18.1323 1.80423 0.902116 0.431494i \(-0.142014\pi\)
0.902116 + 0.431494i \(0.142014\pi\)
\(102\) 0.894817 0.0886001
\(103\) −16.9795 −1.67304 −0.836521 0.547935i \(-0.815414\pi\)
−0.836521 + 0.547935i \(0.815414\pi\)
\(104\) 0.453480 0.0444674
\(105\) 0 0
\(106\) −9.66060 −0.938321
\(107\) −16.6598 −1.61056 −0.805281 0.592894i \(-0.797985\pi\)
−0.805281 + 0.592894i \(0.797985\pi\)
\(108\) −4.38483 −0.421930
\(109\) −10.3447 −0.990843 −0.495422 0.868653i \(-0.664986\pi\)
−0.495422 + 0.868653i \(0.664986\pi\)
\(110\) −6.52193 −0.621841
\(111\) −1.87534 −0.177999
\(112\) 0 0
\(113\) 14.8905 1.40078 0.700390 0.713760i \(-0.253009\pi\)
0.700390 + 0.713760i \(0.253009\pi\)
\(114\) −3.22639 −0.302179
\(115\) −12.2620 −1.14344
\(116\) 2.84539 0.264188
\(117\) 1.05248 0.0973020
\(118\) −3.07898 −0.283443
\(119\) 0 0
\(120\) 1.38743 0.126655
\(121\) 4.00594 0.364177
\(122\) 14.1835 1.28411
\(123\) 7.49883 0.676147
\(124\) 2.04446 0.183598
\(125\) 12.0639 1.07902
\(126\) 0 0
\(127\) −15.3006 −1.35771 −0.678853 0.734274i \(-0.737523\pi\)
−0.678853 + 0.734274i \(0.737523\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.92436 0.785746
\(130\) −0.763489 −0.0669624
\(131\) 17.2633 1.50830 0.754152 0.656699i \(-0.228048\pi\)
0.754152 + 0.656699i \(0.228048\pi\)
\(132\) −3.19227 −0.277851
\(133\) 0 0
\(134\) 2.35782 0.203684
\(135\) 7.38239 0.635375
\(136\) 1.08584 0.0931102
\(137\) −23.1413 −1.97709 −0.988546 0.150921i \(-0.951776\pi\)
−0.988546 + 0.150921i \(0.951776\pi\)
\(138\) −6.00184 −0.510911
\(139\) −9.77888 −0.829434 −0.414717 0.909950i \(-0.636119\pi\)
−0.414717 + 0.909950i \(0.636119\pi\)
\(140\) 0 0
\(141\) −1.73968 −0.146508
\(142\) −2.42535 −0.203531
\(143\) 1.75667 0.146900
\(144\) −2.32090 −0.193408
\(145\) −4.79055 −0.397834
\(146\) 8.61161 0.712702
\(147\) 0 0
\(148\) −2.27568 −0.187060
\(149\) −21.4966 −1.76107 −0.880534 0.473983i \(-0.842816\pi\)
−0.880534 + 0.473983i \(0.842816\pi\)
\(150\) 1.78447 0.145701
\(151\) −10.7081 −0.871411 −0.435706 0.900089i \(-0.643501\pi\)
−0.435706 + 0.900089i \(0.643501\pi\)
\(152\) −3.91515 −0.317561
\(153\) 2.52013 0.203740
\(154\) 0 0
\(155\) −3.44210 −0.276476
\(156\) −0.373702 −0.0299201
\(157\) −1.81460 −0.144821 −0.0724103 0.997375i \(-0.523069\pi\)
−0.0724103 + 0.997375i \(0.523069\pi\)
\(158\) 1.00000 0.0795557
\(159\) 7.96108 0.631354
\(160\) 1.68362 0.133102
\(161\) 0 0
\(162\) −3.34926 −0.263143
\(163\) 7.40489 0.579996 0.289998 0.957027i \(-0.406345\pi\)
0.289998 + 0.957027i \(0.406345\pi\)
\(164\) 9.09968 0.710565
\(165\) 5.37457 0.418409
\(166\) 8.54786 0.663443
\(167\) −8.17952 −0.632950 −0.316475 0.948601i \(-0.602499\pi\)
−0.316475 + 0.948601i \(0.602499\pi\)
\(168\) 0 0
\(169\) −12.7944 −0.984181
\(170\) −1.82815 −0.140212
\(171\) −9.08667 −0.694875
\(172\) 10.8295 0.825744
\(173\) −3.70505 −0.281690 −0.140845 0.990032i \(-0.544982\pi\)
−0.140845 + 0.990032i \(0.544982\pi\)
\(174\) −2.34482 −0.177760
\(175\) 0 0
\(176\) −3.87375 −0.291995
\(177\) 2.53732 0.190716
\(178\) −2.34290 −0.175608
\(179\) −25.3448 −1.89436 −0.947181 0.320699i \(-0.896082\pi\)
−0.947181 + 0.320699i \(0.896082\pi\)
\(180\) 3.90751 0.291249
\(181\) 9.60410 0.713867 0.356934 0.934130i \(-0.383822\pi\)
0.356934 + 0.934130i \(0.383822\pi\)
\(182\) 0 0
\(183\) −11.6883 −0.864021
\(184\) −7.28311 −0.536918
\(185\) 3.83139 0.281689
\(186\) −1.68479 −0.123535
\(187\) 4.20628 0.307594
\(188\) −2.11107 −0.153965
\(189\) 0 0
\(190\) 6.59164 0.478208
\(191\) 4.81241 0.348214 0.174107 0.984727i \(-0.444296\pi\)
0.174107 + 0.984727i \(0.444296\pi\)
\(192\) 0.824076 0.0594726
\(193\) −20.0451 −1.44288 −0.721439 0.692478i \(-0.756519\pi\)
−0.721439 + 0.692478i \(0.756519\pi\)
\(194\) −12.8858 −0.925148
\(195\) 0.629173 0.0450560
\(196\) 0 0
\(197\) 10.1512 0.723243 0.361622 0.932325i \(-0.382223\pi\)
0.361622 + 0.932325i \(0.382223\pi\)
\(198\) −8.99058 −0.638933
\(199\) −1.81283 −0.128508 −0.0642540 0.997934i \(-0.520467\pi\)
−0.0642540 + 0.997934i \(0.520467\pi\)
\(200\) 2.16542 0.153118
\(201\) −1.94302 −0.137050
\(202\) −18.1323 −1.27578
\(203\) 0 0
\(204\) −0.894817 −0.0626497
\(205\) −15.3204 −1.07002
\(206\) 16.9795 1.18302
\(207\) −16.9034 −1.17487
\(208\) −0.453480 −0.0314432
\(209\) −15.1663 −1.04908
\(210\) 0 0
\(211\) −25.9414 −1.78588 −0.892939 0.450178i \(-0.851360\pi\)
−0.892939 + 0.450178i \(0.851360\pi\)
\(212\) 9.66060 0.663493
\(213\) 1.99868 0.136947
\(214\) 16.6598 1.13884
\(215\) −18.2328 −1.24347
\(216\) 4.38483 0.298350
\(217\) 0 0
\(218\) 10.3447 0.700632
\(219\) −7.09663 −0.479546
\(220\) 6.52193 0.439708
\(221\) 0.492408 0.0331230
\(222\) 1.87534 0.125864
\(223\) 4.06874 0.272463 0.136232 0.990677i \(-0.456501\pi\)
0.136232 + 0.990677i \(0.456501\pi\)
\(224\) 0 0
\(225\) 5.02572 0.335048
\(226\) −14.8905 −0.990501
\(227\) −5.39652 −0.358180 −0.179090 0.983833i \(-0.557315\pi\)
−0.179090 + 0.983833i \(0.557315\pi\)
\(228\) 3.22639 0.213673
\(229\) −26.2002 −1.73136 −0.865680 0.500598i \(-0.833113\pi\)
−0.865680 + 0.500598i \(0.833113\pi\)
\(230\) 12.2620 0.808533
\(231\) 0 0
\(232\) −2.84539 −0.186809
\(233\) 17.0742 1.11857 0.559284 0.828976i \(-0.311076\pi\)
0.559284 + 0.828976i \(0.311076\pi\)
\(234\) −1.05248 −0.0688029
\(235\) 3.55424 0.231853
\(236\) 3.07898 0.200425
\(237\) −0.824076 −0.0535295
\(238\) 0 0
\(239\) 13.4401 0.869370 0.434685 0.900583i \(-0.356860\pi\)
0.434685 + 0.900583i \(0.356860\pi\)
\(240\) −1.38743 −0.0895584
\(241\) 11.4319 0.736396 0.368198 0.929747i \(-0.379975\pi\)
0.368198 + 0.929747i \(0.379975\pi\)
\(242\) −4.00594 −0.257512
\(243\) 15.9145 1.02092
\(244\) −14.1835 −0.908004
\(245\) 0 0
\(246\) −7.49883 −0.478108
\(247\) −1.77545 −0.112969
\(248\) −2.04446 −0.129824
\(249\) −7.04409 −0.446401
\(250\) −12.0639 −0.762985
\(251\) 4.03097 0.254433 0.127216 0.991875i \(-0.459396\pi\)
0.127216 + 0.991875i \(0.459396\pi\)
\(252\) 0 0
\(253\) −28.2130 −1.77373
\(254\) 15.3006 0.960043
\(255\) 1.50653 0.0943428
\(256\) 1.00000 0.0625000
\(257\) −28.3361 −1.76756 −0.883779 0.467904i \(-0.845009\pi\)
−0.883779 + 0.467904i \(0.845009\pi\)
\(258\) −8.92436 −0.555607
\(259\) 0 0
\(260\) 0.763489 0.0473496
\(261\) −6.60385 −0.408768
\(262\) −17.2633 −1.06653
\(263\) 6.38103 0.393471 0.196735 0.980457i \(-0.436966\pi\)
0.196735 + 0.980457i \(0.436966\pi\)
\(264\) 3.19227 0.196470
\(265\) −16.2648 −0.999139
\(266\) 0 0
\(267\) 1.93073 0.118159
\(268\) −2.35782 −0.144027
\(269\) 15.9075 0.969898 0.484949 0.874542i \(-0.338838\pi\)
0.484949 + 0.874542i \(0.338838\pi\)
\(270\) −7.38239 −0.449278
\(271\) −26.4747 −1.60822 −0.804112 0.594477i \(-0.797359\pi\)
−0.804112 + 0.594477i \(0.797359\pi\)
\(272\) −1.08584 −0.0658389
\(273\) 0 0
\(274\) 23.1413 1.39801
\(275\) 8.38830 0.505833
\(276\) 6.00184 0.361268
\(277\) −15.3441 −0.921936 −0.460968 0.887417i \(-0.652498\pi\)
−0.460968 + 0.887417i \(0.652498\pi\)
\(278\) 9.77888 0.586499
\(279\) −4.74499 −0.284075
\(280\) 0 0
\(281\) 9.57774 0.571360 0.285680 0.958325i \(-0.407781\pi\)
0.285680 + 0.958325i \(0.407781\pi\)
\(282\) 1.73968 0.103597
\(283\) 19.7850 1.17609 0.588047 0.808826i \(-0.299897\pi\)
0.588047 + 0.808826i \(0.299897\pi\)
\(284\) 2.42535 0.143918
\(285\) −5.43201 −0.321765
\(286\) −1.75667 −0.103874
\(287\) 0 0
\(288\) 2.32090 0.136760
\(289\) −15.8209 −0.930644
\(290\) 4.79055 0.281311
\(291\) 10.6189 0.622491
\(292\) −8.61161 −0.503957
\(293\) 0.438727 0.0256307 0.0128154 0.999918i \(-0.495921\pi\)
0.0128154 + 0.999918i \(0.495921\pi\)
\(294\) 0 0
\(295\) −5.18384 −0.301815
\(296\) 2.27568 0.132271
\(297\) 16.9857 0.985612
\(298\) 21.4966 1.24526
\(299\) −3.30275 −0.191003
\(300\) −1.78447 −0.103027
\(301\) 0 0
\(302\) 10.7081 0.616181
\(303\) 14.9424 0.858418
\(304\) 3.91515 0.224550
\(305\) 23.8796 1.36734
\(306\) −2.52013 −0.144066
\(307\) −2.19659 −0.125366 −0.0626831 0.998033i \(-0.519966\pi\)
−0.0626831 + 0.998033i \(0.519966\pi\)
\(308\) 0 0
\(309\) −13.9924 −0.796001
\(310\) 3.44210 0.195498
\(311\) −17.5465 −0.994970 −0.497485 0.867473i \(-0.665743\pi\)
−0.497485 + 0.867473i \(0.665743\pi\)
\(312\) 0.373702 0.0211567
\(313\) 26.4011 1.49228 0.746140 0.665789i \(-0.231905\pi\)
0.746140 + 0.665789i \(0.231905\pi\)
\(314\) 1.81460 0.102404
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) 5.49375 0.308560 0.154280 0.988027i \(-0.450694\pi\)
0.154280 + 0.988027i \(0.450694\pi\)
\(318\) −7.96108 −0.446435
\(319\) −11.0223 −0.617131
\(320\) −1.68362 −0.0941173
\(321\) −13.7289 −0.766274
\(322\) 0 0
\(323\) −4.25124 −0.236545
\(324\) 3.34926 0.186070
\(325\) 0.981976 0.0544702
\(326\) −7.40489 −0.410119
\(327\) −8.52483 −0.471424
\(328\) −9.09968 −0.502446
\(329\) 0 0
\(330\) −5.37457 −0.295860
\(331\) −0.449521 −0.0247079 −0.0123540 0.999924i \(-0.503932\pi\)
−0.0123540 + 0.999924i \(0.503932\pi\)
\(332\) −8.54786 −0.469125
\(333\) 5.28162 0.289431
\(334\) 8.17952 0.447563
\(335\) 3.96967 0.216886
\(336\) 0 0
\(337\) −5.62376 −0.306346 −0.153173 0.988199i \(-0.548949\pi\)
−0.153173 + 0.988199i \(0.548949\pi\)
\(338\) 12.7944 0.695921
\(339\) 12.2709 0.666464
\(340\) 1.82815 0.0991452
\(341\) −7.91974 −0.428878
\(342\) 9.08667 0.491351
\(343\) 0 0
\(344\) −10.8295 −0.583889
\(345\) −10.1048 −0.544026
\(346\) 3.70505 0.199185
\(347\) 27.2048 1.46043 0.730214 0.683218i \(-0.239420\pi\)
0.730214 + 0.683218i \(0.239420\pi\)
\(348\) 2.34482 0.125695
\(349\) 3.71469 0.198843 0.0994215 0.995045i \(-0.468301\pi\)
0.0994215 + 0.995045i \(0.468301\pi\)
\(350\) 0 0
\(351\) 1.98843 0.106135
\(352\) 3.87375 0.206472
\(353\) 11.5710 0.615861 0.307930 0.951409i \(-0.400364\pi\)
0.307930 + 0.951409i \(0.400364\pi\)
\(354\) −2.53732 −0.134857
\(355\) −4.08337 −0.216723
\(356\) 2.34290 0.124174
\(357\) 0 0
\(358\) 25.3448 1.33952
\(359\) −23.8032 −1.25629 −0.628143 0.778098i \(-0.716185\pi\)
−0.628143 + 0.778098i \(0.716185\pi\)
\(360\) −3.90751 −0.205944
\(361\) −3.67157 −0.193240
\(362\) −9.60410 −0.504780
\(363\) 3.30120 0.173268
\(364\) 0 0
\(365\) 14.4987 0.758896
\(366\) 11.6883 0.610955
\(367\) 29.1639 1.52235 0.761173 0.648549i \(-0.224624\pi\)
0.761173 + 0.648549i \(0.224624\pi\)
\(368\) 7.28311 0.379659
\(369\) −21.1194 −1.09943
\(370\) −3.83139 −0.199184
\(371\) 0 0
\(372\) 1.68479 0.0873525
\(373\) −11.8178 −0.611904 −0.305952 0.952047i \(-0.598975\pi\)
−0.305952 + 0.952047i \(0.598975\pi\)
\(374\) −4.20628 −0.217502
\(375\) 9.94154 0.513379
\(376\) 2.11107 0.108870
\(377\) −1.29033 −0.0664552
\(378\) 0 0
\(379\) 24.7462 1.27113 0.635563 0.772049i \(-0.280768\pi\)
0.635563 + 0.772049i \(0.280768\pi\)
\(380\) −6.59164 −0.338144
\(381\) −12.6088 −0.645970
\(382\) −4.81241 −0.246224
\(383\) −1.20077 −0.0613564 −0.0306782 0.999529i \(-0.509767\pi\)
−0.0306782 + 0.999529i \(0.509767\pi\)
\(384\) −0.824076 −0.0420535
\(385\) 0 0
\(386\) 20.0451 1.02027
\(387\) −25.1342 −1.27765
\(388\) 12.8858 0.654178
\(389\) −26.0638 −1.32149 −0.660743 0.750612i \(-0.729759\pi\)
−0.660743 + 0.750612i \(0.729759\pi\)
\(390\) −0.629173 −0.0318594
\(391\) −7.90831 −0.399941
\(392\) 0 0
\(393\) 14.2263 0.717622
\(394\) −10.1512 −0.511410
\(395\) 1.68362 0.0847122
\(396\) 8.99058 0.451794
\(397\) 24.3057 1.21987 0.609934 0.792452i \(-0.291196\pi\)
0.609934 + 0.792452i \(0.291196\pi\)
\(398\) 1.81283 0.0908689
\(399\) 0 0
\(400\) −2.16542 −0.108271
\(401\) 4.02693 0.201095 0.100548 0.994932i \(-0.467941\pi\)
0.100548 + 0.994932i \(0.467941\pi\)
\(402\) 1.94302 0.0969091
\(403\) −0.927124 −0.0461833
\(404\) 18.1323 0.902116
\(405\) −5.63889 −0.280199
\(406\) 0 0
\(407\) 8.81542 0.436964
\(408\) 0.894817 0.0443001
\(409\) −1.80916 −0.0894570 −0.0447285 0.998999i \(-0.514242\pi\)
−0.0447285 + 0.998999i \(0.514242\pi\)
\(410\) 15.3204 0.756621
\(411\) −19.0702 −0.940662
\(412\) −16.9795 −0.836521
\(413\) 0 0
\(414\) 16.9034 0.830755
\(415\) 14.3914 0.706444
\(416\) 0.453480 0.0222337
\(417\) −8.05855 −0.394629
\(418\) 15.1663 0.741810
\(419\) −32.1832 −1.57225 −0.786127 0.618065i \(-0.787917\pi\)
−0.786127 + 0.618065i \(0.787917\pi\)
\(420\) 0 0
\(421\) −0.858901 −0.0418603 −0.0209301 0.999781i \(-0.506663\pi\)
−0.0209301 + 0.999781i \(0.506663\pi\)
\(422\) 25.9414 1.26281
\(423\) 4.89957 0.238225
\(424\) −9.66060 −0.469160
\(425\) 2.35131 0.114055
\(426\) −1.99868 −0.0968361
\(427\) 0 0
\(428\) −16.6598 −0.805281
\(429\) 1.44763 0.0698922
\(430\) 18.2328 0.879265
\(431\) −22.0754 −1.06333 −0.531667 0.846953i \(-0.678434\pi\)
−0.531667 + 0.846953i \(0.678434\pi\)
\(432\) −4.38483 −0.210965
\(433\) −8.15515 −0.391911 −0.195956 0.980613i \(-0.562781\pi\)
−0.195956 + 0.980613i \(0.562781\pi\)
\(434\) 0 0
\(435\) −3.94778 −0.189282
\(436\) −10.3447 −0.495422
\(437\) 28.5145 1.36403
\(438\) 7.09663 0.339090
\(439\) 26.3289 1.25661 0.628304 0.777968i \(-0.283749\pi\)
0.628304 + 0.777968i \(0.283749\pi\)
\(440\) −6.52193 −0.310921
\(441\) 0 0
\(442\) −0.492408 −0.0234215
\(443\) 15.9048 0.755661 0.377830 0.925875i \(-0.376670\pi\)
0.377830 + 0.925875i \(0.376670\pi\)
\(444\) −1.87534 −0.0889995
\(445\) −3.94456 −0.186990
\(446\) −4.06874 −0.192660
\(447\) −17.7148 −0.837882
\(448\) 0 0
\(449\) −37.4697 −1.76831 −0.884153 0.467198i \(-0.845263\pi\)
−0.884153 + 0.467198i \(0.845263\pi\)
\(450\) −5.02572 −0.236915
\(451\) −35.2499 −1.65985
\(452\) 14.8905 0.700390
\(453\) −8.82428 −0.414601
\(454\) 5.39652 0.253271
\(455\) 0 0
\(456\) −3.22639 −0.151089
\(457\) −8.81695 −0.412440 −0.206220 0.978506i \(-0.566116\pi\)
−0.206220 + 0.978506i \(0.566116\pi\)
\(458\) 26.2002 1.22426
\(459\) 4.76123 0.222235
\(460\) −12.2620 −0.571719
\(461\) 25.7035 1.19713 0.598565 0.801074i \(-0.295738\pi\)
0.598565 + 0.801074i \(0.295738\pi\)
\(462\) 0 0
\(463\) −2.56657 −0.119278 −0.0596392 0.998220i \(-0.518995\pi\)
−0.0596392 + 0.998220i \(0.518995\pi\)
\(464\) 2.84539 0.132094
\(465\) −2.83655 −0.131542
\(466\) −17.0742 −0.790947
\(467\) −29.8036 −1.37915 −0.689574 0.724216i \(-0.742202\pi\)
−0.689574 + 0.724216i \(0.742202\pi\)
\(468\) 1.05248 0.0486510
\(469\) 0 0
\(470\) −3.55424 −0.163945
\(471\) −1.49537 −0.0689029
\(472\) −3.07898 −0.141722
\(473\) −41.9509 −1.92891
\(474\) 0.824076 0.0378511
\(475\) −8.47795 −0.388995
\(476\) 0 0
\(477\) −22.4213 −1.02660
\(478\) −13.4401 −0.614737
\(479\) 10.2725 0.469364 0.234682 0.972072i \(-0.424595\pi\)
0.234682 + 0.972072i \(0.424595\pi\)
\(480\) 1.38743 0.0633273
\(481\) 1.03198 0.0470541
\(482\) −11.4319 −0.520711
\(483\) 0 0
\(484\) 4.00594 0.182088
\(485\) −21.6948 −0.985112
\(486\) −15.9145 −0.721898
\(487\) −13.3276 −0.603932 −0.301966 0.953319i \(-0.597643\pi\)
−0.301966 + 0.953319i \(0.597643\pi\)
\(488\) 14.1835 0.642056
\(489\) 6.10219 0.275951
\(490\) 0 0
\(491\) 16.1567 0.729141 0.364570 0.931176i \(-0.381216\pi\)
0.364570 + 0.931176i \(0.381216\pi\)
\(492\) 7.49883 0.338073
\(493\) −3.08964 −0.139150
\(494\) 1.77545 0.0798811
\(495\) −15.1367 −0.680345
\(496\) 2.04446 0.0917991
\(497\) 0 0
\(498\) 7.04409 0.315653
\(499\) −3.57847 −0.160194 −0.0800971 0.996787i \(-0.525523\pi\)
−0.0800971 + 0.996787i \(0.525523\pi\)
\(500\) 12.0639 0.539512
\(501\) −6.74055 −0.301145
\(502\) −4.03097 −0.179911
\(503\) −12.6373 −0.563468 −0.281734 0.959493i \(-0.590910\pi\)
−0.281734 + 0.959493i \(0.590910\pi\)
\(504\) 0 0
\(505\) −30.5279 −1.35847
\(506\) 28.2130 1.25422
\(507\) −10.5435 −0.468254
\(508\) −15.3006 −0.678853
\(509\) 13.9002 0.616115 0.308058 0.951368i \(-0.400321\pi\)
0.308058 + 0.951368i \(0.400321\pi\)
\(510\) −1.50653 −0.0667104
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −17.1673 −0.757954
\(514\) 28.3361 1.24985
\(515\) 28.5871 1.25970
\(516\) 8.92436 0.392873
\(517\) 8.17775 0.359657
\(518\) 0 0
\(519\) −3.05324 −0.134022
\(520\) −0.763489 −0.0334812
\(521\) 34.0296 1.49086 0.745431 0.666582i \(-0.232243\pi\)
0.745431 + 0.666582i \(0.232243\pi\)
\(522\) 6.60385 0.289043
\(523\) 3.49346 0.152758 0.0763792 0.997079i \(-0.475664\pi\)
0.0763792 + 0.997079i \(0.475664\pi\)
\(524\) 17.2633 0.754152
\(525\) 0 0
\(526\) −6.38103 −0.278226
\(527\) −2.21997 −0.0967032
\(528\) −3.19227 −0.138926
\(529\) 30.0438 1.30625
\(530\) 16.2648 0.706498
\(531\) −7.14601 −0.310110
\(532\) 0 0
\(533\) −4.12653 −0.178740
\(534\) −1.93073 −0.0835508
\(535\) 28.0487 1.21265
\(536\) 2.35782 0.101842
\(537\) −20.8861 −0.901301
\(538\) −15.9075 −0.685822
\(539\) 0 0
\(540\) 7.38239 0.317687
\(541\) 12.5398 0.539127 0.269564 0.962983i \(-0.413121\pi\)
0.269564 + 0.962983i \(0.413121\pi\)
\(542\) 26.4747 1.13719
\(543\) 7.91451 0.339644
\(544\) 1.08584 0.0465551
\(545\) 17.4166 0.746044
\(546\) 0 0
\(547\) −3.47324 −0.148505 −0.0742525 0.997239i \(-0.523657\pi\)
−0.0742525 + 0.997239i \(0.523657\pi\)
\(548\) −23.1413 −0.988546
\(549\) 32.9184 1.40492
\(550\) −8.38830 −0.357678
\(551\) 11.1401 0.474585
\(552\) −6.00184 −0.255455
\(553\) 0 0
\(554\) 15.3441 0.651908
\(555\) 3.15735 0.134022
\(556\) −9.77888 −0.414717
\(557\) 13.2035 0.559451 0.279725 0.960080i \(-0.409757\pi\)
0.279725 + 0.960080i \(0.409757\pi\)
\(558\) 4.74499 0.200871
\(559\) −4.91098 −0.207712
\(560\) 0 0
\(561\) 3.46630 0.146347
\(562\) −9.57774 −0.404013
\(563\) −43.4658 −1.83186 −0.915932 0.401333i \(-0.868547\pi\)
−0.915932 + 0.401333i \(0.868547\pi\)
\(564\) −1.73968 −0.0732538
\(565\) −25.0700 −1.05470
\(566\) −19.7850 −0.831625
\(567\) 0 0
\(568\) −2.42535 −0.101765
\(569\) −0.180875 −0.00758266 −0.00379133 0.999993i \(-0.501207\pi\)
−0.00379133 + 0.999993i \(0.501207\pi\)
\(570\) 5.43201 0.227522
\(571\) 4.49568 0.188138 0.0940692 0.995566i \(-0.470013\pi\)
0.0940692 + 0.995566i \(0.470013\pi\)
\(572\) 1.75667 0.0734501
\(573\) 3.96579 0.165673
\(574\) 0 0
\(575\) −15.7710 −0.657696
\(576\) −2.32090 −0.0967041
\(577\) −44.3300 −1.84548 −0.922740 0.385422i \(-0.874056\pi\)
−0.922740 + 0.385422i \(0.874056\pi\)
\(578\) 15.8209 0.658065
\(579\) −16.5187 −0.686494
\(580\) −4.79055 −0.198917
\(581\) 0 0
\(582\) −10.6189 −0.440167
\(583\) −37.4228 −1.54989
\(584\) 8.61161 0.356351
\(585\) −1.77198 −0.0732624
\(586\) −0.438727 −0.0181237
\(587\) −1.87636 −0.0774455 −0.0387228 0.999250i \(-0.512329\pi\)
−0.0387228 + 0.999250i \(0.512329\pi\)
\(588\) 0 0
\(589\) 8.00439 0.329815
\(590\) 5.18384 0.213415
\(591\) 8.36537 0.344105
\(592\) −2.27568 −0.0935299
\(593\) 34.2085 1.40478 0.702388 0.711794i \(-0.252117\pi\)
0.702388 + 0.711794i \(0.252117\pi\)
\(594\) −16.9857 −0.696933
\(595\) 0 0
\(596\) −21.4966 −0.880534
\(597\) −1.49391 −0.0611416
\(598\) 3.30275 0.135059
\(599\) 15.6146 0.637993 0.318997 0.947756i \(-0.396654\pi\)
0.318997 + 0.947756i \(0.396654\pi\)
\(600\) 1.78447 0.0728507
\(601\) 22.9408 0.935774 0.467887 0.883788i \(-0.345015\pi\)
0.467887 + 0.883788i \(0.345015\pi\)
\(602\) 0 0
\(603\) 5.47225 0.222847
\(604\) −10.7081 −0.435706
\(605\) −6.74449 −0.274203
\(606\) −14.9424 −0.606994
\(607\) −6.17361 −0.250579 −0.125289 0.992120i \(-0.539986\pi\)
−0.125289 + 0.992120i \(0.539986\pi\)
\(608\) −3.91515 −0.158780
\(609\) 0 0
\(610\) −23.8796 −0.966856
\(611\) 0.957328 0.0387293
\(612\) 2.52013 0.101870
\(613\) −33.9589 −1.37159 −0.685794 0.727795i \(-0.740545\pi\)
−0.685794 + 0.727795i \(0.740545\pi\)
\(614\) 2.19659 0.0886473
\(615\) −12.6252 −0.509097
\(616\) 0 0
\(617\) 14.0655 0.566255 0.283128 0.959082i \(-0.408628\pi\)
0.283128 + 0.959082i \(0.408628\pi\)
\(618\) 13.9924 0.562858
\(619\) 10.5281 0.423159 0.211579 0.977361i \(-0.432139\pi\)
0.211579 + 0.977361i \(0.432139\pi\)
\(620\) −3.44210 −0.138238
\(621\) −31.9352 −1.28152
\(622\) 17.5465 0.703550
\(623\) 0 0
\(624\) −0.373702 −0.0149601
\(625\) −9.48386 −0.379354
\(626\) −26.4011 −1.05520
\(627\) −12.4982 −0.499131
\(628\) −1.81460 −0.0724103
\(629\) 2.47103 0.0985265
\(630\) 0 0
\(631\) −43.6073 −1.73598 −0.867989 0.496583i \(-0.834588\pi\)
−0.867989 + 0.496583i \(0.834588\pi\)
\(632\) 1.00000 0.0397779
\(633\) −21.3777 −0.849686
\(634\) −5.49375 −0.218185
\(635\) 25.7604 1.02227
\(636\) 7.96108 0.315677
\(637\) 0 0
\(638\) 11.0223 0.436378
\(639\) −5.62899 −0.222680
\(640\) 1.68362 0.0665510
\(641\) 27.7079 1.09440 0.547198 0.837003i \(-0.315694\pi\)
0.547198 + 0.837003i \(0.315694\pi\)
\(642\) 13.7289 0.541837
\(643\) 19.9150 0.785371 0.392686 0.919673i \(-0.371546\pi\)
0.392686 + 0.919673i \(0.371546\pi\)
\(644\) 0 0
\(645\) −15.0252 −0.591619
\(646\) 4.25124 0.167263
\(647\) −17.0180 −0.669046 −0.334523 0.942388i \(-0.608575\pi\)
−0.334523 + 0.942388i \(0.608575\pi\)
\(648\) −3.34926 −0.131571
\(649\) −11.9272 −0.468184
\(650\) −0.981976 −0.0385162
\(651\) 0 0
\(652\) 7.40489 0.289998
\(653\) 9.10756 0.356406 0.178203 0.983994i \(-0.442972\pi\)
0.178203 + 0.983994i \(0.442972\pi\)
\(654\) 8.52483 0.333347
\(655\) −29.0649 −1.13566
\(656\) 9.09968 0.355283
\(657\) 19.9867 0.779755
\(658\) 0 0
\(659\) −9.25137 −0.360382 −0.180191 0.983632i \(-0.557672\pi\)
−0.180191 + 0.983632i \(0.557672\pi\)
\(660\) 5.37457 0.209205
\(661\) −14.4968 −0.563859 −0.281929 0.959435i \(-0.590974\pi\)
−0.281929 + 0.959435i \(0.590974\pi\)
\(662\) 0.449521 0.0174711
\(663\) 0.405782 0.0157593
\(664\) 8.54786 0.331721
\(665\) 0 0
\(666\) −5.28162 −0.204659
\(667\) 20.7233 0.802408
\(668\) −8.17952 −0.316475
\(669\) 3.35295 0.129633
\(670\) −3.96967 −0.153362
\(671\) 54.9432 2.12106
\(672\) 0 0
\(673\) 12.0066 0.462819 0.231409 0.972856i \(-0.425666\pi\)
0.231409 + 0.972856i \(0.425666\pi\)
\(674\) 5.62376 0.216619
\(675\) 9.49499 0.365462
\(676\) −12.7944 −0.492091
\(677\) 42.0166 1.61483 0.807415 0.589984i \(-0.200866\pi\)
0.807415 + 0.589984i \(0.200866\pi\)
\(678\) −12.2709 −0.471261
\(679\) 0 0
\(680\) −1.82815 −0.0701062
\(681\) −4.44714 −0.170415
\(682\) 7.91974 0.303263
\(683\) −50.7091 −1.94033 −0.970165 0.242445i \(-0.922051\pi\)
−0.970165 + 0.242445i \(0.922051\pi\)
\(684\) −9.08667 −0.347438
\(685\) 38.9611 1.48863
\(686\) 0 0
\(687\) −21.5910 −0.823747
\(688\) 10.8295 0.412872
\(689\) −4.38089 −0.166899
\(690\) 10.1048 0.384684
\(691\) 10.6774 0.406186 0.203093 0.979159i \(-0.434901\pi\)
0.203093 + 0.979159i \(0.434901\pi\)
\(692\) −3.70505 −0.140845
\(693\) 0 0
\(694\) −27.2048 −1.03268
\(695\) 16.4639 0.624513
\(696\) −2.34482 −0.0888800
\(697\) −9.88082 −0.374263
\(698\) −3.71469 −0.140603
\(699\) 14.0705 0.532193
\(700\) 0 0
\(701\) 3.72516 0.140697 0.0703487 0.997522i \(-0.477589\pi\)
0.0703487 + 0.997522i \(0.477589\pi\)
\(702\) −1.98843 −0.0750486
\(703\) −8.90964 −0.336034
\(704\) −3.87375 −0.145997
\(705\) 2.92896 0.110311
\(706\) −11.5710 −0.435479
\(707\) 0 0
\(708\) 2.53732 0.0953582
\(709\) −16.5287 −0.620749 −0.310374 0.950614i \(-0.600454\pi\)
−0.310374 + 0.950614i \(0.600454\pi\)
\(710\) 4.08337 0.153246
\(711\) 2.32090 0.0870405
\(712\) −2.34290 −0.0878039
\(713\) 14.8901 0.557637
\(714\) 0 0
\(715\) −2.95757 −0.110607
\(716\) −25.3448 −0.947181
\(717\) 11.0757 0.413630
\(718\) 23.8032 0.888328
\(719\) −33.1328 −1.23565 −0.617823 0.786317i \(-0.711985\pi\)
−0.617823 + 0.786317i \(0.711985\pi\)
\(720\) 3.90751 0.145624
\(721\) 0 0
\(722\) 3.67157 0.136642
\(723\) 9.42079 0.350363
\(724\) 9.60410 0.356934
\(725\) −6.16146 −0.228831
\(726\) −3.30120 −0.122519
\(727\) 45.9498 1.70418 0.852091 0.523393i \(-0.175334\pi\)
0.852091 + 0.523393i \(0.175334\pi\)
\(728\) 0 0
\(729\) 3.06700 0.113593
\(730\) −14.4987 −0.536621
\(731\) −11.7592 −0.434929
\(732\) −11.6883 −0.432011
\(733\) 29.4271 1.08692 0.543458 0.839436i \(-0.317115\pi\)
0.543458 + 0.839436i \(0.317115\pi\)
\(734\) −29.1639 −1.07646
\(735\) 0 0
\(736\) −7.28311 −0.268459
\(737\) 9.13360 0.336440
\(738\) 21.1194 0.777417
\(739\) 23.7340 0.873069 0.436534 0.899688i \(-0.356206\pi\)
0.436534 + 0.899688i \(0.356206\pi\)
\(740\) 3.83139 0.140845
\(741\) −1.46310 −0.0537484
\(742\) 0 0
\(743\) 35.7622 1.31199 0.655993 0.754767i \(-0.272250\pi\)
0.655993 + 0.754767i \(0.272250\pi\)
\(744\) −1.68479 −0.0617675
\(745\) 36.1921 1.32598
\(746\) 11.8178 0.432681
\(747\) 19.8387 0.725860
\(748\) 4.20628 0.153797
\(749\) 0 0
\(750\) −9.94154 −0.363014
\(751\) −7.91184 −0.288707 −0.144354 0.989526i \(-0.546110\pi\)
−0.144354 + 0.989526i \(0.546110\pi\)
\(752\) −2.11107 −0.0769827
\(753\) 3.32183 0.121054
\(754\) 1.29033 0.0469909
\(755\) 18.0283 0.656119
\(756\) 0 0
\(757\) −17.3642 −0.631112 −0.315556 0.948907i \(-0.602191\pi\)
−0.315556 + 0.948907i \(0.602191\pi\)
\(758\) −24.7462 −0.898822
\(759\) −23.2496 −0.843909
\(760\) 6.59164 0.239104
\(761\) −0.655566 −0.0237642 −0.0118821 0.999929i \(-0.503782\pi\)
−0.0118821 + 0.999929i \(0.503782\pi\)
\(762\) 12.6088 0.456770
\(763\) 0 0
\(764\) 4.81241 0.174107
\(765\) −4.24294 −0.153404
\(766\) 1.20077 0.0433855
\(767\) −1.39626 −0.0504160
\(768\) 0.824076 0.0297363
\(769\) −11.8682 −0.427980 −0.213990 0.976836i \(-0.568646\pi\)
−0.213990 + 0.976836i \(0.568646\pi\)
\(770\) 0 0
\(771\) −23.3511 −0.840970
\(772\) −20.0451 −0.721439
\(773\) −8.44453 −0.303729 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(774\) 25.1342 0.903432
\(775\) −4.42712 −0.159027
\(776\) −12.8858 −0.462574
\(777\) 0 0
\(778\) 26.0638 0.934431
\(779\) 35.6266 1.27646
\(780\) 0.629173 0.0225280
\(781\) −9.39521 −0.336187
\(782\) 7.90831 0.282801
\(783\) −12.4765 −0.445875
\(784\) 0 0
\(785\) 3.05509 0.109041
\(786\) −14.2263 −0.507436
\(787\) 11.2818 0.402152 0.201076 0.979576i \(-0.435556\pi\)
0.201076 + 0.979576i \(0.435556\pi\)
\(788\) 10.1512 0.361622
\(789\) 5.25845 0.187206
\(790\) −1.68362 −0.0599006
\(791\) 0 0
\(792\) −8.99058 −0.319466
\(793\) 6.43193 0.228404
\(794\) −24.3057 −0.862577
\(795\) −13.4034 −0.475371
\(796\) −1.81283 −0.0642540
\(797\) −50.3744 −1.78435 −0.892176 0.451687i \(-0.850822\pi\)
−0.892176 + 0.451687i \(0.850822\pi\)
\(798\) 0 0
\(799\) 2.29229 0.0810953
\(800\) 2.16542 0.0765592
\(801\) −5.43763 −0.192129
\(802\) −4.02693 −0.142196
\(803\) 33.3592 1.17722
\(804\) −1.94302 −0.0685251
\(805\) 0 0
\(806\) 0.927124 0.0326566
\(807\) 13.1090 0.461459
\(808\) −18.1323 −0.637892
\(809\) 18.2376 0.641200 0.320600 0.947215i \(-0.396115\pi\)
0.320600 + 0.947215i \(0.396115\pi\)
\(810\) 5.63889 0.198130
\(811\) 45.1798 1.58648 0.793239 0.608911i \(-0.208393\pi\)
0.793239 + 0.608911i \(0.208393\pi\)
\(812\) 0 0
\(813\) −21.8172 −0.765162
\(814\) −8.81542 −0.308980
\(815\) −12.4670 −0.436701
\(816\) −0.894817 −0.0313249
\(817\) 42.3993 1.48336
\(818\) 1.80916 0.0632557
\(819\) 0 0
\(820\) −15.3204 −0.535012
\(821\) −35.3415 −1.23343 −0.616714 0.787187i \(-0.711537\pi\)
−0.616714 + 0.787187i \(0.711537\pi\)
\(822\) 19.0702 0.665149
\(823\) −3.92969 −0.136981 −0.0684903 0.997652i \(-0.521818\pi\)
−0.0684903 + 0.997652i \(0.521818\pi\)
\(824\) 16.9795 0.591509
\(825\) 6.91260 0.240666
\(826\) 0 0
\(827\) −4.83566 −0.168152 −0.0840762 0.996459i \(-0.526794\pi\)
−0.0840762 + 0.996459i \(0.526794\pi\)
\(828\) −16.9034 −0.587433
\(829\) −1.44732 −0.0502675 −0.0251337 0.999684i \(-0.508001\pi\)
−0.0251337 + 0.999684i \(0.508001\pi\)
\(830\) −14.3914 −0.499531
\(831\) −12.6447 −0.438640
\(832\) −0.453480 −0.0157216
\(833\) 0 0
\(834\) 8.05855 0.279045
\(835\) 13.7712 0.476572
\(836\) −15.1663 −0.524539
\(837\) −8.96462 −0.309863
\(838\) 32.1832 1.11175
\(839\) −8.16265 −0.281806 −0.140903 0.990023i \(-0.545001\pi\)
−0.140903 + 0.990023i \(0.545001\pi\)
\(840\) 0 0
\(841\) −20.9038 −0.720820
\(842\) 0.858901 0.0295997
\(843\) 7.89279 0.271842
\(844\) −25.9414 −0.892939
\(845\) 21.5408 0.741028
\(846\) −4.89957 −0.168451
\(847\) 0 0
\(848\) 9.66060 0.331747
\(849\) 16.3043 0.559563
\(850\) −2.35131 −0.0806491
\(851\) −16.5740 −0.568151
\(852\) 1.99868 0.0684735
\(853\) −47.6689 −1.63215 −0.816075 0.577946i \(-0.803855\pi\)
−0.816075 + 0.577946i \(0.803855\pi\)
\(854\) 0 0
\(855\) 15.2985 0.523198
\(856\) 16.6598 0.569419
\(857\) −40.5448 −1.38498 −0.692491 0.721426i \(-0.743487\pi\)
−0.692491 + 0.721426i \(0.743487\pi\)
\(858\) −1.44763 −0.0494213
\(859\) −44.1672 −1.50696 −0.753482 0.657468i \(-0.771627\pi\)
−0.753482 + 0.657468i \(0.771627\pi\)
\(860\) −18.2328 −0.621734
\(861\) 0 0
\(862\) 22.0754 0.751891
\(863\) −48.6021 −1.65443 −0.827217 0.561883i \(-0.810077\pi\)
−0.827217 + 0.561883i \(0.810077\pi\)
\(864\) 4.38483 0.149175
\(865\) 6.23790 0.212095
\(866\) 8.15515 0.277123
\(867\) −13.0377 −0.442782
\(868\) 0 0
\(869\) 3.87375 0.131408
\(870\) 3.94778 0.133842
\(871\) 1.06922 0.0362293
\(872\) 10.3447 0.350316
\(873\) −29.9067 −1.01219
\(874\) −28.5145 −0.964518
\(875\) 0 0
\(876\) −7.09663 −0.239773
\(877\) −57.5125 −1.94206 −0.971029 0.238963i \(-0.923193\pi\)
−0.971029 + 0.238963i \(0.923193\pi\)
\(878\) −26.3289 −0.888556
\(879\) 0.361545 0.0121946
\(880\) 6.52193 0.219854
\(881\) −26.1540 −0.881151 −0.440576 0.897716i \(-0.645226\pi\)
−0.440576 + 0.897716i \(0.645226\pi\)
\(882\) 0 0
\(883\) −4.89433 −0.164707 −0.0823536 0.996603i \(-0.526244\pi\)
−0.0823536 + 0.996603i \(0.526244\pi\)
\(884\) 0.492408 0.0165615
\(885\) −4.27188 −0.143598
\(886\) −15.9048 −0.534333
\(887\) −5.75592 −0.193265 −0.0966324 0.995320i \(-0.530807\pi\)
−0.0966324 + 0.995320i \(0.530807\pi\)
\(888\) 1.87534 0.0629321
\(889\) 0 0
\(890\) 3.94456 0.132222
\(891\) −12.9742 −0.434652
\(892\) 4.06874 0.136232
\(893\) −8.26516 −0.276583
\(894\) 17.7148 0.592472
\(895\) 42.6711 1.42634
\(896\) 0 0
\(897\) −2.72172 −0.0908755
\(898\) 37.4697 1.25038
\(899\) 5.81729 0.194017
\(900\) 5.02572 0.167524
\(901\) −10.4899 −0.349469
\(902\) 35.2499 1.17369
\(903\) 0 0
\(904\) −14.8905 −0.495251
\(905\) −16.1697 −0.537498
\(906\) 8.82428 0.293167
\(907\) 43.4100 1.44141 0.720703 0.693244i \(-0.243819\pi\)
0.720703 + 0.693244i \(0.243819\pi\)
\(908\) −5.39652 −0.179090
\(909\) −42.0832 −1.39581
\(910\) 0 0
\(911\) −14.9509 −0.495345 −0.247672 0.968844i \(-0.579666\pi\)
−0.247672 + 0.968844i \(0.579666\pi\)
\(912\) 3.22639 0.106836
\(913\) 33.1123 1.09586
\(914\) 8.81695 0.291639
\(915\) 19.6786 0.650555
\(916\) −26.2002 −0.865680
\(917\) 0 0
\(918\) −4.76123 −0.157144
\(919\) −1.31010 −0.0432163 −0.0216082 0.999767i \(-0.506879\pi\)
−0.0216082 + 0.999767i \(0.506879\pi\)
\(920\) 12.2620 0.404266
\(921\) −1.81016 −0.0596469
\(922\) −25.7035 −0.846499
\(923\) −1.09985 −0.0362020
\(924\) 0 0
\(925\) 4.92781 0.162025
\(926\) 2.56657 0.0843426
\(927\) 39.4077 1.29432
\(928\) −2.84539 −0.0934044
\(929\) −7.51439 −0.246539 −0.123270 0.992373i \(-0.539338\pi\)
−0.123270 + 0.992373i \(0.539338\pi\)
\(930\) 2.83655 0.0930143
\(931\) 0 0
\(932\) 17.0742 0.559284
\(933\) −14.4596 −0.473388
\(934\) 29.8036 0.975204
\(935\) −7.08179 −0.231599
\(936\) −1.05248 −0.0344014
\(937\) 5.34963 0.174765 0.0873824 0.996175i \(-0.472150\pi\)
0.0873824 + 0.996175i \(0.472150\pi\)
\(938\) 0 0
\(939\) 21.7566 0.709998
\(940\) 3.55424 0.115927
\(941\) 49.4200 1.61105 0.805524 0.592564i \(-0.201884\pi\)
0.805524 + 0.592564i \(0.201884\pi\)
\(942\) 1.49537 0.0487217
\(943\) 66.2740 2.15818
\(944\) 3.07898 0.100212
\(945\) 0 0
\(946\) 41.9509 1.36394
\(947\) −46.6275 −1.51519 −0.757595 0.652725i \(-0.773626\pi\)
−0.757595 + 0.652725i \(0.773626\pi\)
\(948\) −0.824076 −0.0267648
\(949\) 3.90520 0.126768
\(950\) 8.47795 0.275061
\(951\) 4.52727 0.146807
\(952\) 0 0
\(953\) −33.8697 −1.09715 −0.548574 0.836102i \(-0.684829\pi\)
−0.548574 + 0.836102i \(0.684829\pi\)
\(954\) 22.4213 0.725916
\(955\) −8.10228 −0.262183
\(956\) 13.4401 0.434685
\(957\) −9.08323 −0.293619
\(958\) −10.2725 −0.331890
\(959\) 0 0
\(960\) −1.38743 −0.0447792
\(961\) −26.8202 −0.865167
\(962\) −1.03198 −0.0332723
\(963\) 38.6656 1.24598
\(964\) 11.4319 0.368198
\(965\) 33.7484 1.08640
\(966\) 0 0
\(967\) −19.5621 −0.629076 −0.314538 0.949245i \(-0.601850\pi\)
−0.314538 + 0.949245i \(0.601850\pi\)
\(968\) −4.00594 −0.128756
\(969\) −3.50335 −0.112544
\(970\) 21.6948 0.696579
\(971\) 44.4282 1.42577 0.712885 0.701281i \(-0.247388\pi\)
0.712885 + 0.701281i \(0.247388\pi\)
\(972\) 15.9145 0.510459
\(973\) 0 0
\(974\) 13.3276 0.427045
\(975\) 0.809223 0.0259159
\(976\) −14.1835 −0.454002
\(977\) −12.0738 −0.386276 −0.193138 0.981172i \(-0.561867\pi\)
−0.193138 + 0.981172i \(0.561867\pi\)
\(978\) −6.10219 −0.195127
\(979\) −9.07581 −0.290064
\(980\) 0 0
\(981\) 24.0090 0.766549
\(982\) −16.1567 −0.515580
\(983\) −35.1363 −1.12067 −0.560337 0.828264i \(-0.689329\pi\)
−0.560337 + 0.828264i \(0.689329\pi\)
\(984\) −7.49883 −0.239054
\(985\) −17.0908 −0.544558
\(986\) 3.08964 0.0983942
\(987\) 0 0
\(988\) −1.77545 −0.0564845
\(989\) 78.8727 2.50801
\(990\) 15.1367 0.481077
\(991\) 1.60609 0.0510190 0.0255095 0.999675i \(-0.491879\pi\)
0.0255095 + 0.999675i \(0.491879\pi\)
\(992\) −2.04446 −0.0649118
\(993\) −0.370440 −0.0117556
\(994\) 0 0
\(995\) 3.05212 0.0967586
\(996\) −7.04409 −0.223201
\(997\) −58.9518 −1.86702 −0.933512 0.358546i \(-0.883272\pi\)
−0.933512 + 0.358546i \(0.883272\pi\)
\(998\) 3.57847 0.113274
\(999\) 9.97847 0.315705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7742.2.a.bl.1.8 yes 12
7.6 odd 2 inner 7742.2.a.bl.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7742.2.a.bl.1.5 12 7.6 odd 2 inner
7742.2.a.bl.1.8 yes 12 1.1 even 1 trivial