Properties

Label 7742.2.a.bk.1.8
Level $7742$
Weight $2$
Character 7742.1
Self dual yes
Analytic conductor $61.820$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7742,2,Mod(1,7742)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7742.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7742 = 2 \cdot 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7742.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-12,-3,12,3,3,0,-12,17,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8201812449\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 22 x^{10} + 67 x^{9} + 148 x^{8} - 471 x^{7} - 306 x^{6} + 1117 x^{5} + 207 x^{4} + \cdots - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1106)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.540089\) of defining polynomial
Character \(\chi\) \(=\) 7742.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.540089 q^{3} +1.00000 q^{4} +2.34575 q^{5} -0.540089 q^{6} -1.00000 q^{8} -2.70830 q^{9} -2.34575 q^{10} +4.81099 q^{11} +0.540089 q^{12} +0.465358 q^{13} +1.26691 q^{15} +1.00000 q^{16} -7.48660 q^{17} +2.70830 q^{18} -3.95232 q^{19} +2.34575 q^{20} -4.81099 q^{22} -7.87103 q^{23} -0.540089 q^{24} +0.502533 q^{25} -0.465358 q^{26} -3.08299 q^{27} +9.07011 q^{29} -1.26691 q^{30} +4.00334 q^{31} -1.00000 q^{32} +2.59836 q^{33} +7.48660 q^{34} -2.70830 q^{36} -6.62563 q^{37} +3.95232 q^{38} +0.251335 q^{39} -2.34575 q^{40} +1.75310 q^{41} +11.6750 q^{43} +4.81099 q^{44} -6.35300 q^{45} +7.87103 q^{46} +0.109639 q^{47} +0.540089 q^{48} -0.502533 q^{50} -4.04343 q^{51} +0.465358 q^{52} +4.14410 q^{53} +3.08299 q^{54} +11.2854 q^{55} -2.13460 q^{57} -9.07011 q^{58} -4.87503 q^{59} +1.26691 q^{60} -3.90449 q^{61} -4.00334 q^{62} +1.00000 q^{64} +1.09161 q^{65} -2.59836 q^{66} -6.40231 q^{67} -7.48660 q^{68} -4.25105 q^{69} -12.3035 q^{71} +2.70830 q^{72} -10.2392 q^{73} +6.62563 q^{74} +0.271413 q^{75} -3.95232 q^{76} -0.251335 q^{78} -1.00000 q^{79} +2.34575 q^{80} +6.45982 q^{81} -1.75310 q^{82} -5.21405 q^{83} -17.5617 q^{85} -11.6750 q^{86} +4.89866 q^{87} -4.81099 q^{88} +3.25457 q^{89} +6.35300 q^{90} -7.87103 q^{92} +2.16216 q^{93} -0.109639 q^{94} -9.27115 q^{95} -0.540089 q^{96} +1.45337 q^{97} -13.0296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 3 q^{3} + 12 q^{4} + 3 q^{5} + 3 q^{6} - 12 q^{8} + 17 q^{9} - 3 q^{10} - 2 q^{11} - 3 q^{12} - 13 q^{13} - 2 q^{15} + 12 q^{16} - 5 q^{17} - 17 q^{18} - 14 q^{19} + 3 q^{20} + 2 q^{22}+ \cdots - 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.540089 0.311820 0.155910 0.987771i \(-0.450169\pi\)
0.155910 + 0.987771i \(0.450169\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.34575 1.04905 0.524525 0.851395i \(-0.324243\pi\)
0.524525 + 0.851395i \(0.324243\pi\)
\(6\) −0.540089 −0.220490
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −2.70830 −0.902768
\(10\) −2.34575 −0.741791
\(11\) 4.81099 1.45057 0.725284 0.688450i \(-0.241709\pi\)
0.725284 + 0.688450i \(0.241709\pi\)
\(12\) 0.540089 0.155910
\(13\) 0.465358 0.129067 0.0645335 0.997916i \(-0.479444\pi\)
0.0645335 + 0.997916i \(0.479444\pi\)
\(14\) 0 0
\(15\) 1.26691 0.327115
\(16\) 1.00000 0.250000
\(17\) −7.48660 −1.81577 −0.907884 0.419222i \(-0.862303\pi\)
−0.907884 + 0.419222i \(0.862303\pi\)
\(18\) 2.70830 0.638353
\(19\) −3.95232 −0.906724 −0.453362 0.891326i \(-0.649776\pi\)
−0.453362 + 0.891326i \(0.649776\pi\)
\(20\) 2.34575 0.524525
\(21\) 0 0
\(22\) −4.81099 −1.02571
\(23\) −7.87103 −1.64122 −0.820611 0.571487i \(-0.806367\pi\)
−0.820611 + 0.571487i \(0.806367\pi\)
\(24\) −0.540089 −0.110245
\(25\) 0.502533 0.100507
\(26\) −0.465358 −0.0912642
\(27\) −3.08299 −0.593322
\(28\) 0 0
\(29\) 9.07011 1.68428 0.842138 0.539261i \(-0.181297\pi\)
0.842138 + 0.539261i \(0.181297\pi\)
\(30\) −1.26691 −0.231305
\(31\) 4.00334 0.719021 0.359511 0.933141i \(-0.382944\pi\)
0.359511 + 0.933141i \(0.382944\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.59836 0.452317
\(34\) 7.48660 1.28394
\(35\) 0 0
\(36\) −2.70830 −0.451384
\(37\) −6.62563 −1.08925 −0.544624 0.838681i \(-0.683327\pi\)
−0.544624 + 0.838681i \(0.683327\pi\)
\(38\) 3.95232 0.641151
\(39\) 0.251335 0.0402458
\(40\) −2.34575 −0.370895
\(41\) 1.75310 0.273789 0.136894 0.990586i \(-0.456288\pi\)
0.136894 + 0.990586i \(0.456288\pi\)
\(42\) 0 0
\(43\) 11.6750 1.78042 0.890210 0.455550i \(-0.150557\pi\)
0.890210 + 0.455550i \(0.150557\pi\)
\(44\) 4.81099 0.725284
\(45\) −6.35300 −0.947049
\(46\) 7.87103 1.16052
\(47\) 0.109639 0.0159924 0.00799621 0.999968i \(-0.497455\pi\)
0.00799621 + 0.999968i \(0.497455\pi\)
\(48\) 0.540089 0.0779551
\(49\) 0 0
\(50\) −0.502533 −0.0710689
\(51\) −4.04343 −0.566193
\(52\) 0.465358 0.0645335
\(53\) 4.14410 0.569236 0.284618 0.958641i \(-0.408133\pi\)
0.284618 + 0.958641i \(0.408133\pi\)
\(54\) 3.08299 0.419542
\(55\) 11.2854 1.52172
\(56\) 0 0
\(57\) −2.13460 −0.282735
\(58\) −9.07011 −1.19096
\(59\) −4.87503 −0.634675 −0.317338 0.948313i \(-0.602789\pi\)
−0.317338 + 0.948313i \(0.602789\pi\)
\(60\) 1.26691 0.163558
\(61\) −3.90449 −0.499919 −0.249959 0.968256i \(-0.580417\pi\)
−0.249959 + 0.968256i \(0.580417\pi\)
\(62\) −4.00334 −0.508425
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.09161 0.135398
\(66\) −2.59836 −0.319836
\(67\) −6.40231 −0.782166 −0.391083 0.920355i \(-0.627899\pi\)
−0.391083 + 0.920355i \(0.627899\pi\)
\(68\) −7.48660 −0.907884
\(69\) −4.25105 −0.511767
\(70\) 0 0
\(71\) −12.3035 −1.46015 −0.730076 0.683366i \(-0.760516\pi\)
−0.730076 + 0.683366i \(0.760516\pi\)
\(72\) 2.70830 0.319177
\(73\) −10.2392 −1.19840 −0.599201 0.800599i \(-0.704515\pi\)
−0.599201 + 0.800599i \(0.704515\pi\)
\(74\) 6.62563 0.770214
\(75\) 0.271413 0.0313400
\(76\) −3.95232 −0.453362
\(77\) 0 0
\(78\) −0.251335 −0.0284580
\(79\) −1.00000 −0.112509
\(80\) 2.34575 0.262263
\(81\) 6.45982 0.717758
\(82\) −1.75310 −0.193598
\(83\) −5.21405 −0.572317 −0.286158 0.958182i \(-0.592378\pi\)
−0.286158 + 0.958182i \(0.592378\pi\)
\(84\) 0 0
\(85\) −17.5617 −1.90483
\(86\) −11.6750 −1.25895
\(87\) 4.89866 0.525192
\(88\) −4.81099 −0.512853
\(89\) 3.25457 0.344984 0.172492 0.985011i \(-0.444818\pi\)
0.172492 + 0.985011i \(0.444818\pi\)
\(90\) 6.35300 0.669665
\(91\) 0 0
\(92\) −7.87103 −0.820611
\(93\) 2.16216 0.224206
\(94\) −0.109639 −0.0113084
\(95\) −9.27115 −0.951200
\(96\) −0.540089 −0.0551226
\(97\) 1.45337 0.147567 0.0737836 0.997274i \(-0.476493\pi\)
0.0737836 + 0.997274i \(0.476493\pi\)
\(98\) 0 0
\(99\) −13.0296 −1.30953
\(100\) 0.502533 0.0502533
\(101\) 18.5887 1.84965 0.924823 0.380397i \(-0.124213\pi\)
0.924823 + 0.380397i \(0.124213\pi\)
\(102\) 4.04343 0.400359
\(103\) −10.7765 −1.06184 −0.530918 0.847423i \(-0.678153\pi\)
−0.530918 + 0.847423i \(0.678153\pi\)
\(104\) −0.465358 −0.0456321
\(105\) 0 0
\(106\) −4.14410 −0.402511
\(107\) 4.84763 0.468638 0.234319 0.972160i \(-0.424714\pi\)
0.234319 + 0.972160i \(0.424714\pi\)
\(108\) −3.08299 −0.296661
\(109\) −2.15624 −0.206530 −0.103265 0.994654i \(-0.532929\pi\)
−0.103265 + 0.994654i \(0.532929\pi\)
\(110\) −11.2854 −1.07602
\(111\) −3.57843 −0.339650
\(112\) 0 0
\(113\) −14.4701 −1.36123 −0.680615 0.732641i \(-0.738287\pi\)
−0.680615 + 0.732641i \(0.738287\pi\)
\(114\) 2.13460 0.199924
\(115\) −18.4634 −1.72172
\(116\) 9.07011 0.842138
\(117\) −1.26033 −0.116518
\(118\) 4.87503 0.448783
\(119\) 0 0
\(120\) −1.26691 −0.115653
\(121\) 12.1456 1.10415
\(122\) 3.90449 0.353496
\(123\) 0.946831 0.0853729
\(124\) 4.00334 0.359511
\(125\) −10.5499 −0.943614
\(126\) 0 0
\(127\) −9.87284 −0.876073 −0.438037 0.898957i \(-0.644326\pi\)
−0.438037 + 0.898957i \(0.644326\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 6.30554 0.555172
\(130\) −1.09161 −0.0957408
\(131\) −15.1901 −1.32717 −0.663583 0.748103i \(-0.730965\pi\)
−0.663583 + 0.748103i \(0.730965\pi\)
\(132\) 2.59836 0.226158
\(133\) 0 0
\(134\) 6.40231 0.553075
\(135\) −7.23192 −0.622425
\(136\) 7.48660 0.641971
\(137\) −21.9483 −1.87517 −0.937587 0.347752i \(-0.886945\pi\)
−0.937587 + 0.347752i \(0.886945\pi\)
\(138\) 4.25105 0.361874
\(139\) 22.3469 1.89544 0.947718 0.319109i \(-0.103384\pi\)
0.947718 + 0.319109i \(0.103384\pi\)
\(140\) 0 0
\(141\) 0.0592145 0.00498676
\(142\) 12.3035 1.03248
\(143\) 2.23883 0.187221
\(144\) −2.70830 −0.225692
\(145\) 21.2762 1.76689
\(146\) 10.2392 0.847398
\(147\) 0 0
\(148\) −6.62563 −0.544624
\(149\) −3.20887 −0.262881 −0.131441 0.991324i \(-0.541960\pi\)
−0.131441 + 0.991324i \(0.541960\pi\)
\(150\) −0.271413 −0.0221607
\(151\) −11.1004 −0.903339 −0.451670 0.892185i \(-0.649171\pi\)
−0.451670 + 0.892185i \(0.649171\pi\)
\(152\) 3.95232 0.320576
\(153\) 20.2760 1.63922
\(154\) 0 0
\(155\) 9.39083 0.754290
\(156\) 0.251335 0.0201229
\(157\) −23.7364 −1.89437 −0.947185 0.320687i \(-0.896086\pi\)
−0.947185 + 0.320687i \(0.896086\pi\)
\(158\) 1.00000 0.0795557
\(159\) 2.23818 0.177499
\(160\) −2.34575 −0.185448
\(161\) 0 0
\(162\) −6.45982 −0.507532
\(163\) 1.73722 0.136069 0.0680347 0.997683i \(-0.478327\pi\)
0.0680347 + 0.997683i \(0.478327\pi\)
\(164\) 1.75310 0.136894
\(165\) 6.09510 0.474503
\(166\) 5.21405 0.404689
\(167\) −7.07847 −0.547749 −0.273874 0.961765i \(-0.588305\pi\)
−0.273874 + 0.961765i \(0.588305\pi\)
\(168\) 0 0
\(169\) −12.7834 −0.983342
\(170\) 17.5617 1.34692
\(171\) 10.7041 0.818562
\(172\) 11.6750 0.890210
\(173\) 4.40152 0.334641 0.167321 0.985903i \(-0.446488\pi\)
0.167321 + 0.985903i \(0.446488\pi\)
\(174\) −4.89866 −0.371367
\(175\) 0 0
\(176\) 4.81099 0.362642
\(177\) −2.63295 −0.197905
\(178\) −3.25457 −0.243941
\(179\) −2.58332 −0.193087 −0.0965433 0.995329i \(-0.530779\pi\)
−0.0965433 + 0.995329i \(0.530779\pi\)
\(180\) −6.35300 −0.473525
\(181\) 8.66649 0.644175 0.322088 0.946710i \(-0.395615\pi\)
0.322088 + 0.946710i \(0.395615\pi\)
\(182\) 0 0
\(183\) −2.10877 −0.155885
\(184\) 7.87103 0.580260
\(185\) −15.5421 −1.14268
\(186\) −2.16216 −0.158537
\(187\) −36.0179 −2.63389
\(188\) 0.109639 0.00799621
\(189\) 0 0
\(190\) 9.27115 0.672600
\(191\) −10.4948 −0.759378 −0.379689 0.925114i \(-0.623969\pi\)
−0.379689 + 0.925114i \(0.623969\pi\)
\(192\) 0.540089 0.0389776
\(193\) 18.3614 1.32169 0.660843 0.750524i \(-0.270199\pi\)
0.660843 + 0.750524i \(0.270199\pi\)
\(194\) −1.45337 −0.104346
\(195\) 0.589568 0.0422198
\(196\) 0 0
\(197\) 20.0932 1.43158 0.715791 0.698314i \(-0.246066\pi\)
0.715791 + 0.698314i \(0.246066\pi\)
\(198\) 13.0296 0.925975
\(199\) 12.8398 0.910188 0.455094 0.890443i \(-0.349606\pi\)
0.455094 + 0.890443i \(0.349606\pi\)
\(200\) −0.502533 −0.0355345
\(201\) −3.45781 −0.243895
\(202\) −18.5887 −1.30790
\(203\) 0 0
\(204\) −4.04343 −0.283097
\(205\) 4.11234 0.287218
\(206\) 10.7765 0.750832
\(207\) 21.3171 1.48164
\(208\) 0.465358 0.0322668
\(209\) −19.0146 −1.31527
\(210\) 0 0
\(211\) 19.2697 1.32658 0.663290 0.748362i \(-0.269160\pi\)
0.663290 + 0.748362i \(0.269160\pi\)
\(212\) 4.14410 0.284618
\(213\) −6.64496 −0.455305
\(214\) −4.84763 −0.331377
\(215\) 27.3866 1.86775
\(216\) 3.08299 0.209771
\(217\) 0 0
\(218\) 2.15624 0.146039
\(219\) −5.53005 −0.373686
\(220\) 11.2854 0.760859
\(221\) −3.48395 −0.234356
\(222\) 3.57843 0.240169
\(223\) −16.8664 −1.12946 −0.564729 0.825276i \(-0.691019\pi\)
−0.564729 + 0.825276i \(0.691019\pi\)
\(224\) 0 0
\(225\) −1.36101 −0.0907342
\(226\) 14.4701 0.962535
\(227\) −17.6436 −1.17104 −0.585522 0.810656i \(-0.699110\pi\)
−0.585522 + 0.810656i \(0.699110\pi\)
\(228\) −2.13460 −0.141368
\(229\) −8.49583 −0.561420 −0.280710 0.959793i \(-0.590570\pi\)
−0.280710 + 0.959793i \(0.590570\pi\)
\(230\) 18.4634 1.21744
\(231\) 0 0
\(232\) −9.07011 −0.595482
\(233\) −11.0571 −0.724373 −0.362186 0.932106i \(-0.617970\pi\)
−0.362186 + 0.932106i \(0.617970\pi\)
\(234\) 1.26033 0.0823904
\(235\) 0.257184 0.0167769
\(236\) −4.87503 −0.317338
\(237\) −0.540089 −0.0350825
\(238\) 0 0
\(239\) 1.10050 0.0711855 0.0355927 0.999366i \(-0.488668\pi\)
0.0355927 + 0.999366i \(0.488668\pi\)
\(240\) 1.26691 0.0817788
\(241\) −25.6900 −1.65484 −0.827420 0.561584i \(-0.810192\pi\)
−0.827420 + 0.561584i \(0.810192\pi\)
\(242\) −12.1456 −0.780749
\(243\) 12.7379 0.817134
\(244\) −3.90449 −0.249959
\(245\) 0 0
\(246\) −0.946831 −0.0603677
\(247\) −1.83924 −0.117028
\(248\) −4.00334 −0.254212
\(249\) −2.81605 −0.178460
\(250\) 10.5499 0.667236
\(251\) −18.6294 −1.17588 −0.587938 0.808906i \(-0.700060\pi\)
−0.587938 + 0.808906i \(0.700060\pi\)
\(252\) 0 0
\(253\) −37.8674 −2.38070
\(254\) 9.87284 0.619477
\(255\) −9.48486 −0.593965
\(256\) 1.00000 0.0625000
\(257\) 1.60934 0.100388 0.0501938 0.998739i \(-0.484016\pi\)
0.0501938 + 0.998739i \(0.484016\pi\)
\(258\) −6.30554 −0.392566
\(259\) 0 0
\(260\) 1.09161 0.0676989
\(261\) −24.5646 −1.52051
\(262\) 15.1901 0.938448
\(263\) 16.6016 1.02370 0.511849 0.859076i \(-0.328961\pi\)
0.511849 + 0.859076i \(0.328961\pi\)
\(264\) −2.59836 −0.159918
\(265\) 9.72102 0.597157
\(266\) 0 0
\(267\) 1.75776 0.107573
\(268\) −6.40231 −0.391083
\(269\) 19.1920 1.17016 0.585079 0.810977i \(-0.301064\pi\)
0.585079 + 0.810977i \(0.301064\pi\)
\(270\) 7.23192 0.440121
\(271\) −6.14566 −0.373322 −0.186661 0.982424i \(-0.559767\pi\)
−0.186661 + 0.982424i \(0.559767\pi\)
\(272\) −7.48660 −0.453942
\(273\) 0 0
\(274\) 21.9483 1.32595
\(275\) 2.41768 0.145792
\(276\) −4.25105 −0.255883
\(277\) −9.25779 −0.556247 −0.278123 0.960545i \(-0.589712\pi\)
−0.278123 + 0.960545i \(0.589712\pi\)
\(278\) −22.3469 −1.34028
\(279\) −10.8423 −0.649109
\(280\) 0 0
\(281\) −13.5357 −0.807474 −0.403737 0.914875i \(-0.632289\pi\)
−0.403737 + 0.914875i \(0.632289\pi\)
\(282\) −0.0592145 −0.00352617
\(283\) −7.24504 −0.430673 −0.215336 0.976540i \(-0.569085\pi\)
−0.215336 + 0.976540i \(0.569085\pi\)
\(284\) −12.3035 −0.730076
\(285\) −5.00724 −0.296603
\(286\) −2.23883 −0.132385
\(287\) 0 0
\(288\) 2.70830 0.159588
\(289\) 39.0492 2.29701
\(290\) −21.2762 −1.24938
\(291\) 0.784948 0.0460144
\(292\) −10.2392 −0.599201
\(293\) 5.02208 0.293393 0.146697 0.989182i \(-0.453136\pi\)
0.146697 + 0.989182i \(0.453136\pi\)
\(294\) 0 0
\(295\) −11.4356 −0.665806
\(296\) 6.62563 0.385107
\(297\) −14.8322 −0.860654
\(298\) 3.20887 0.185885
\(299\) −3.66284 −0.211828
\(300\) 0.271413 0.0156700
\(301\) 0 0
\(302\) 11.1004 0.638757
\(303\) 10.0396 0.576758
\(304\) −3.95232 −0.226681
\(305\) −9.15895 −0.524440
\(306\) −20.2760 −1.15910
\(307\) −22.1425 −1.26374 −0.631869 0.775075i \(-0.717712\pi\)
−0.631869 + 0.775075i \(0.717712\pi\)
\(308\) 0 0
\(309\) −5.82025 −0.331102
\(310\) −9.39083 −0.533363
\(311\) 10.1458 0.575313 0.287657 0.957734i \(-0.407124\pi\)
0.287657 + 0.957734i \(0.407124\pi\)
\(312\) −0.251335 −0.0142290
\(313\) 6.02420 0.340508 0.170254 0.985400i \(-0.445541\pi\)
0.170254 + 0.985400i \(0.445541\pi\)
\(314\) 23.7364 1.33952
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −4.98228 −0.279833 −0.139916 0.990163i \(-0.544683\pi\)
−0.139916 + 0.990163i \(0.544683\pi\)
\(318\) −2.23818 −0.125511
\(319\) 43.6362 2.44316
\(320\) 2.34575 0.131131
\(321\) 2.61815 0.146131
\(322\) 0 0
\(323\) 29.5894 1.64640
\(324\) 6.45982 0.358879
\(325\) 0.233858 0.0129721
\(326\) −1.73722 −0.0962156
\(327\) −1.16456 −0.0644002
\(328\) −1.75310 −0.0967989
\(329\) 0 0
\(330\) −6.09510 −0.335524
\(331\) 16.9665 0.932565 0.466282 0.884636i \(-0.345593\pi\)
0.466282 + 0.884636i \(0.345593\pi\)
\(332\) −5.21405 −0.286158
\(333\) 17.9442 0.983338
\(334\) 7.07847 0.387317
\(335\) −15.0182 −0.820532
\(336\) 0 0
\(337\) 11.5669 0.630092 0.315046 0.949076i \(-0.397980\pi\)
0.315046 + 0.949076i \(0.397980\pi\)
\(338\) 12.7834 0.695328
\(339\) −7.81513 −0.424459
\(340\) −17.5617 −0.952416
\(341\) 19.2600 1.04299
\(342\) −10.7041 −0.578811
\(343\) 0 0
\(344\) −11.6750 −0.629474
\(345\) −9.97190 −0.536869
\(346\) −4.40152 −0.236627
\(347\) 5.44473 0.292288 0.146144 0.989263i \(-0.453314\pi\)
0.146144 + 0.989263i \(0.453314\pi\)
\(348\) 4.89866 0.262596
\(349\) −22.2511 −1.19107 −0.595537 0.803328i \(-0.703061\pi\)
−0.595537 + 0.803328i \(0.703061\pi\)
\(350\) 0 0
\(351\) −1.43469 −0.0765783
\(352\) −4.81099 −0.256427
\(353\) 3.32286 0.176858 0.0884290 0.996082i \(-0.471815\pi\)
0.0884290 + 0.996082i \(0.471815\pi\)
\(354\) 2.63295 0.139940
\(355\) −28.8608 −1.53177
\(356\) 3.25457 0.172492
\(357\) 0 0
\(358\) 2.58332 0.136533
\(359\) −13.8574 −0.731364 −0.365682 0.930740i \(-0.619164\pi\)
−0.365682 + 0.930740i \(0.619164\pi\)
\(360\) 6.35300 0.334832
\(361\) −3.37916 −0.177851
\(362\) −8.66649 −0.455501
\(363\) 6.55971 0.344295
\(364\) 0 0
\(365\) −24.0185 −1.25718
\(366\) 2.10877 0.110227
\(367\) 0.00898137 0.000468824 0 0.000234412 1.00000i \(-0.499925\pi\)
0.000234412 1.00000i \(0.499925\pi\)
\(368\) −7.87103 −0.410306
\(369\) −4.74793 −0.247168
\(370\) 15.5421 0.807993
\(371\) 0 0
\(372\) 2.16216 0.112103
\(373\) 25.4249 1.31645 0.658225 0.752822i \(-0.271308\pi\)
0.658225 + 0.752822i \(0.271308\pi\)
\(374\) 36.0179 1.86244
\(375\) −5.69790 −0.294238
\(376\) −0.109639 −0.00565418
\(377\) 4.22085 0.217385
\(378\) 0 0
\(379\) 3.59033 0.184423 0.0922115 0.995739i \(-0.470606\pi\)
0.0922115 + 0.995739i \(0.470606\pi\)
\(380\) −9.27115 −0.475600
\(381\) −5.33221 −0.273178
\(382\) 10.4948 0.536961
\(383\) −26.7701 −1.36789 −0.683944 0.729535i \(-0.739737\pi\)
−0.683944 + 0.729535i \(0.739737\pi\)
\(384\) −0.540089 −0.0275613
\(385\) 0 0
\(386\) −18.3614 −0.934573
\(387\) −31.6194 −1.60731
\(388\) 1.45337 0.0737836
\(389\) 3.85558 0.195485 0.0977427 0.995212i \(-0.468838\pi\)
0.0977427 + 0.995212i \(0.468838\pi\)
\(390\) −0.589568 −0.0298539
\(391\) 58.9272 2.98008
\(392\) 0 0
\(393\) −8.20401 −0.413838
\(394\) −20.0932 −1.01228
\(395\) −2.34575 −0.118027
\(396\) −13.0296 −0.654763
\(397\) −15.2820 −0.766979 −0.383490 0.923545i \(-0.625278\pi\)
−0.383490 + 0.923545i \(0.625278\pi\)
\(398\) −12.8398 −0.643600
\(399\) 0 0
\(400\) 0.502533 0.0251267
\(401\) 34.1864 1.70719 0.853594 0.520939i \(-0.174418\pi\)
0.853594 + 0.520939i \(0.174418\pi\)
\(402\) 3.45781 0.172460
\(403\) 1.86299 0.0928020
\(404\) 18.5887 0.924823
\(405\) 15.1531 0.752964
\(406\) 0 0
\(407\) −31.8758 −1.58003
\(408\) 4.04343 0.200180
\(409\) −14.1407 −0.699215 −0.349607 0.936896i \(-0.613685\pi\)
−0.349607 + 0.936896i \(0.613685\pi\)
\(410\) −4.11234 −0.203094
\(411\) −11.8541 −0.584717
\(412\) −10.7765 −0.530918
\(413\) 0 0
\(414\) −21.3171 −1.04768
\(415\) −12.2309 −0.600389
\(416\) −0.465358 −0.0228161
\(417\) 12.0693 0.591036
\(418\) 19.0146 0.930033
\(419\) 9.44643 0.461488 0.230744 0.973014i \(-0.425884\pi\)
0.230744 + 0.973014i \(0.425884\pi\)
\(420\) 0 0
\(421\) −1.28366 −0.0625618 −0.0312809 0.999511i \(-0.509959\pi\)
−0.0312809 + 0.999511i \(0.509959\pi\)
\(422\) −19.2697 −0.938034
\(423\) −0.296934 −0.0144374
\(424\) −4.14410 −0.201255
\(425\) −3.76226 −0.182497
\(426\) 6.64496 0.321950
\(427\) 0 0
\(428\) 4.84763 0.234319
\(429\) 1.20917 0.0583792
\(430\) −27.3866 −1.32070
\(431\) −14.4976 −0.698325 −0.349162 0.937062i \(-0.613534\pi\)
−0.349162 + 0.937062i \(0.613534\pi\)
\(432\) −3.08299 −0.148330
\(433\) 13.4127 0.644575 0.322288 0.946642i \(-0.395548\pi\)
0.322288 + 0.946642i \(0.395548\pi\)
\(434\) 0 0
\(435\) 11.4910 0.550953
\(436\) −2.15624 −0.103265
\(437\) 31.1088 1.48814
\(438\) 5.53005 0.264236
\(439\) 6.95936 0.332152 0.166076 0.986113i \(-0.446890\pi\)
0.166076 + 0.986113i \(0.446890\pi\)
\(440\) −11.2854 −0.538009
\(441\) 0 0
\(442\) 3.48395 0.165715
\(443\) 10.3140 0.490033 0.245016 0.969519i \(-0.421207\pi\)
0.245016 + 0.969519i \(0.421207\pi\)
\(444\) −3.57843 −0.169825
\(445\) 7.63441 0.361906
\(446\) 16.8664 0.798648
\(447\) −1.73308 −0.0819717
\(448\) 0 0
\(449\) −6.83454 −0.322542 −0.161271 0.986910i \(-0.551559\pi\)
−0.161271 + 0.986910i \(0.551559\pi\)
\(450\) 1.36101 0.0641587
\(451\) 8.43415 0.397149
\(452\) −14.4701 −0.680615
\(453\) −5.99521 −0.281680
\(454\) 17.6436 0.828053
\(455\) 0 0
\(456\) 2.13460 0.0999620
\(457\) −12.2818 −0.574519 −0.287260 0.957853i \(-0.592744\pi\)
−0.287260 + 0.957853i \(0.592744\pi\)
\(458\) 8.49583 0.396984
\(459\) 23.0811 1.07733
\(460\) −18.4634 −0.860862
\(461\) −39.6568 −1.84700 −0.923501 0.383597i \(-0.874685\pi\)
−0.923501 + 0.383597i \(0.874685\pi\)
\(462\) 0 0
\(463\) 25.2682 1.17431 0.587156 0.809474i \(-0.300248\pi\)
0.587156 + 0.809474i \(0.300248\pi\)
\(464\) 9.07011 0.421069
\(465\) 5.07188 0.235203
\(466\) 11.0571 0.512209
\(467\) 13.9880 0.647289 0.323645 0.946179i \(-0.395092\pi\)
0.323645 + 0.946179i \(0.395092\pi\)
\(468\) −1.26033 −0.0582588
\(469\) 0 0
\(470\) −0.257184 −0.0118630
\(471\) −12.8198 −0.590703
\(472\) 4.87503 0.224392
\(473\) 56.1683 2.58262
\(474\) 0.540089 0.0248071
\(475\) −1.98617 −0.0911318
\(476\) 0 0
\(477\) −11.2235 −0.513888
\(478\) −1.10050 −0.0503357
\(479\) 11.8658 0.542164 0.271082 0.962556i \(-0.412619\pi\)
0.271082 + 0.962556i \(0.412619\pi\)
\(480\) −1.26691 −0.0578264
\(481\) −3.08329 −0.140586
\(482\) 25.6900 1.17015
\(483\) 0 0
\(484\) 12.1456 0.552073
\(485\) 3.40923 0.154805
\(486\) −12.7379 −0.577801
\(487\) −0.971111 −0.0440052 −0.0220026 0.999758i \(-0.507004\pi\)
−0.0220026 + 0.999758i \(0.507004\pi\)
\(488\) 3.90449 0.176748
\(489\) 0.938252 0.0424292
\(490\) 0 0
\(491\) −15.1423 −0.683363 −0.341682 0.939816i \(-0.610996\pi\)
−0.341682 + 0.939816i \(0.610996\pi\)
\(492\) 0.946831 0.0426864
\(493\) −67.9043 −3.05825
\(494\) 1.83924 0.0827515
\(495\) −30.5642 −1.37376
\(496\) 4.00334 0.179755
\(497\) 0 0
\(498\) 2.81605 0.126190
\(499\) 30.3024 1.35652 0.678261 0.734821i \(-0.262734\pi\)
0.678261 + 0.734821i \(0.262734\pi\)
\(500\) −10.5499 −0.471807
\(501\) −3.82300 −0.170799
\(502\) 18.6294 0.831470
\(503\) −27.1651 −1.21123 −0.605617 0.795756i \(-0.707074\pi\)
−0.605617 + 0.795756i \(0.707074\pi\)
\(504\) 0 0
\(505\) 43.6044 1.94037
\(506\) 37.8674 1.68341
\(507\) −6.90419 −0.306626
\(508\) −9.87284 −0.438037
\(509\) 20.5197 0.909520 0.454760 0.890614i \(-0.349725\pi\)
0.454760 + 0.890614i \(0.349725\pi\)
\(510\) 9.48486 0.419997
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 12.1850 0.537980
\(514\) −1.60934 −0.0709848
\(515\) −25.2789 −1.11392
\(516\) 6.30554 0.277586
\(517\) 0.527470 0.0231981
\(518\) 0 0
\(519\) 2.37721 0.104348
\(520\) −1.09161 −0.0478704
\(521\) 0.120435 0.00527635 0.00263817 0.999997i \(-0.499160\pi\)
0.00263817 + 0.999997i \(0.499160\pi\)
\(522\) 24.5646 1.07516
\(523\) −14.6946 −0.642548 −0.321274 0.946986i \(-0.604111\pi\)
−0.321274 + 0.946986i \(0.604111\pi\)
\(524\) −15.1901 −0.663583
\(525\) 0 0
\(526\) −16.6016 −0.723863
\(527\) −29.9714 −1.30558
\(528\) 2.59836 0.113079
\(529\) 38.9530 1.69361
\(530\) −9.72102 −0.422254
\(531\) 13.2031 0.572964
\(532\) 0 0
\(533\) 0.815820 0.0353371
\(534\) −1.75776 −0.0760656
\(535\) 11.3713 0.491625
\(536\) 6.40231 0.276537
\(537\) −1.39522 −0.0602083
\(538\) −19.1920 −0.827426
\(539\) 0 0
\(540\) −7.23192 −0.311212
\(541\) −36.5364 −1.57082 −0.785411 0.618975i \(-0.787548\pi\)
−0.785411 + 0.618975i \(0.787548\pi\)
\(542\) 6.14566 0.263979
\(543\) 4.68068 0.200867
\(544\) 7.48660 0.320985
\(545\) −5.05798 −0.216660
\(546\) 0 0
\(547\) 42.4371 1.81448 0.907239 0.420615i \(-0.138186\pi\)
0.907239 + 0.420615i \(0.138186\pi\)
\(548\) −21.9483 −0.937587
\(549\) 10.5745 0.451311
\(550\) −2.41768 −0.103090
\(551\) −35.8480 −1.52718
\(552\) 4.25105 0.180937
\(553\) 0 0
\(554\) 9.25779 0.393326
\(555\) −8.39410 −0.356310
\(556\) 22.3469 0.947718
\(557\) 2.09096 0.0885967 0.0442983 0.999018i \(-0.485895\pi\)
0.0442983 + 0.999018i \(0.485895\pi\)
\(558\) 10.8423 0.458990
\(559\) 5.43305 0.229794
\(560\) 0 0
\(561\) −19.4529 −0.821302
\(562\) 13.5357 0.570971
\(563\) 30.1818 1.27201 0.636005 0.771685i \(-0.280586\pi\)
0.636005 + 0.771685i \(0.280586\pi\)
\(564\) 0.0592145 0.00249338
\(565\) −33.9432 −1.42800
\(566\) 7.24504 0.304532
\(567\) 0 0
\(568\) 12.3035 0.516242
\(569\) 41.1818 1.72643 0.863216 0.504835i \(-0.168447\pi\)
0.863216 + 0.504835i \(0.168447\pi\)
\(570\) 5.00724 0.209730
\(571\) 21.4934 0.899469 0.449734 0.893162i \(-0.351519\pi\)
0.449734 + 0.893162i \(0.351519\pi\)
\(572\) 2.23883 0.0936103
\(573\) −5.66813 −0.236789
\(574\) 0 0
\(575\) −3.95545 −0.164954
\(576\) −2.70830 −0.112846
\(577\) 38.4897 1.60235 0.801173 0.598433i \(-0.204210\pi\)
0.801173 + 0.598433i \(0.204210\pi\)
\(578\) −39.0492 −1.62423
\(579\) 9.91681 0.412129
\(580\) 21.2762 0.883446
\(581\) 0 0
\(582\) −0.784948 −0.0325371
\(583\) 19.9372 0.825715
\(584\) 10.2392 0.423699
\(585\) −2.95642 −0.122233
\(586\) −5.02208 −0.207460
\(587\) −33.5481 −1.38468 −0.692339 0.721573i \(-0.743420\pi\)
−0.692339 + 0.721573i \(0.743420\pi\)
\(588\) 0 0
\(589\) −15.8225 −0.651954
\(590\) 11.4356 0.470796
\(591\) 10.8521 0.446397
\(592\) −6.62563 −0.272312
\(593\) 20.1738 0.828440 0.414220 0.910177i \(-0.364054\pi\)
0.414220 + 0.910177i \(0.364054\pi\)
\(594\) 14.8322 0.608574
\(595\) 0 0
\(596\) −3.20887 −0.131441
\(597\) 6.93462 0.283815
\(598\) 3.66284 0.149785
\(599\) −6.44420 −0.263303 −0.131651 0.991296i \(-0.542028\pi\)
−0.131651 + 0.991296i \(0.542028\pi\)
\(600\) −0.271413 −0.0110804
\(601\) −21.8404 −0.890890 −0.445445 0.895309i \(-0.646954\pi\)
−0.445445 + 0.895309i \(0.646954\pi\)
\(602\) 0 0
\(603\) 17.3394 0.706115
\(604\) −11.1004 −0.451670
\(605\) 28.4905 1.15831
\(606\) −10.0396 −0.407829
\(607\) −1.37152 −0.0556683 −0.0278342 0.999613i \(-0.508861\pi\)
−0.0278342 + 0.999613i \(0.508861\pi\)
\(608\) 3.95232 0.160288
\(609\) 0 0
\(610\) 9.15895 0.370835
\(611\) 0.0510212 0.00206410
\(612\) 20.2760 0.819608
\(613\) −13.0154 −0.525685 −0.262843 0.964839i \(-0.584660\pi\)
−0.262843 + 0.964839i \(0.584660\pi\)
\(614\) 22.1425 0.893598
\(615\) 2.22103 0.0895604
\(616\) 0 0
\(617\) −5.26743 −0.212059 −0.106029 0.994363i \(-0.533814\pi\)
−0.106029 + 0.994363i \(0.533814\pi\)
\(618\) 5.82025 0.234125
\(619\) −21.2550 −0.854312 −0.427156 0.904178i \(-0.640484\pi\)
−0.427156 + 0.904178i \(0.640484\pi\)
\(620\) 9.39083 0.377145
\(621\) 24.2663 0.973773
\(622\) −10.1458 −0.406808
\(623\) 0 0
\(624\) 0.251335 0.0100614
\(625\) −27.2601 −1.09041
\(626\) −6.02420 −0.240775
\(627\) −10.2696 −0.410127
\(628\) −23.7364 −0.947185
\(629\) 49.6035 1.97782
\(630\) 0 0
\(631\) 26.3943 1.05074 0.525371 0.850873i \(-0.323927\pi\)
0.525371 + 0.850873i \(0.323927\pi\)
\(632\) 1.00000 0.0397779
\(633\) 10.4073 0.413655
\(634\) 4.98228 0.197872
\(635\) −23.1592 −0.919045
\(636\) 2.23818 0.0887497
\(637\) 0 0
\(638\) −43.6362 −1.72757
\(639\) 33.3215 1.31818
\(640\) −2.34575 −0.0927238
\(641\) 32.3430 1.27747 0.638736 0.769426i \(-0.279458\pi\)
0.638736 + 0.769426i \(0.279458\pi\)
\(642\) −2.61815 −0.103330
\(643\) −6.15699 −0.242808 −0.121404 0.992603i \(-0.538740\pi\)
−0.121404 + 0.992603i \(0.538740\pi\)
\(644\) 0 0
\(645\) 14.7912 0.582403
\(646\) −29.5894 −1.16418
\(647\) −5.73440 −0.225443 −0.112721 0.993627i \(-0.535957\pi\)
−0.112721 + 0.993627i \(0.535957\pi\)
\(648\) −6.45982 −0.253766
\(649\) −23.4537 −0.920639
\(650\) −0.233858 −0.00917266
\(651\) 0 0
\(652\) 1.73722 0.0680347
\(653\) −12.7937 −0.500657 −0.250328 0.968161i \(-0.580539\pi\)
−0.250328 + 0.968161i \(0.580539\pi\)
\(654\) 1.16456 0.0455378
\(655\) −35.6322 −1.39226
\(656\) 1.75310 0.0684471
\(657\) 27.7307 1.08188
\(658\) 0 0
\(659\) −37.5687 −1.46347 −0.731734 0.681590i \(-0.761289\pi\)
−0.731734 + 0.681590i \(0.761289\pi\)
\(660\) 6.09510 0.237251
\(661\) −47.1470 −1.83381 −0.916903 0.399110i \(-0.869319\pi\)
−0.916903 + 0.399110i \(0.869319\pi\)
\(662\) −16.9665 −0.659423
\(663\) −1.88164 −0.0730769
\(664\) 5.21405 0.202345
\(665\) 0 0
\(666\) −17.9442 −0.695325
\(667\) −71.3910 −2.76427
\(668\) −7.07847 −0.273874
\(669\) −9.10936 −0.352188
\(670\) 15.0182 0.580203
\(671\) −18.7845 −0.725166
\(672\) 0 0
\(673\) −16.9161 −0.652069 −0.326034 0.945358i \(-0.605713\pi\)
−0.326034 + 0.945358i \(0.605713\pi\)
\(674\) −11.5669 −0.445542
\(675\) −1.54931 −0.0596328
\(676\) −12.7834 −0.491671
\(677\) −10.8739 −0.417920 −0.208960 0.977924i \(-0.567008\pi\)
−0.208960 + 0.977924i \(0.567008\pi\)
\(678\) 7.81513 0.300138
\(679\) 0 0
\(680\) 17.5617 0.673459
\(681\) −9.52909 −0.365155
\(682\) −19.2600 −0.737505
\(683\) 41.3046 1.58048 0.790239 0.612799i \(-0.209956\pi\)
0.790239 + 0.612799i \(0.209956\pi\)
\(684\) 10.7041 0.409281
\(685\) −51.4853 −1.96715
\(686\) 0 0
\(687\) −4.58850 −0.175062
\(688\) 11.6750 0.445105
\(689\) 1.92849 0.0734696
\(690\) 9.97190 0.379624
\(691\) 16.7040 0.635449 0.317724 0.948183i \(-0.397081\pi\)
0.317724 + 0.948183i \(0.397081\pi\)
\(692\) 4.40152 0.167321
\(693\) 0 0
\(694\) −5.44473 −0.206679
\(695\) 52.4201 1.98841
\(696\) −4.89866 −0.185683
\(697\) −13.1248 −0.497136
\(698\) 22.2511 0.842216
\(699\) −5.97180 −0.225874
\(700\) 0 0
\(701\) 16.2649 0.614317 0.307158 0.951658i \(-0.400622\pi\)
0.307158 + 0.951658i \(0.400622\pi\)
\(702\) 1.43469 0.0541491
\(703\) 26.1866 0.987647
\(704\) 4.81099 0.181321
\(705\) 0.138902 0.00523137
\(706\) −3.32286 −0.125057
\(707\) 0 0
\(708\) −2.63295 −0.0989523
\(709\) 26.1371 0.981599 0.490800 0.871272i \(-0.336705\pi\)
0.490800 + 0.871272i \(0.336705\pi\)
\(710\) 28.8608 1.08313
\(711\) 2.70830 0.101569
\(712\) −3.25457 −0.121970
\(713\) −31.5104 −1.18007
\(714\) 0 0
\(715\) 5.25174 0.196404
\(716\) −2.58332 −0.0965433
\(717\) 0.594368 0.0221971
\(718\) 13.8574 0.517152
\(719\) 30.4268 1.13473 0.567364 0.823467i \(-0.307963\pi\)
0.567364 + 0.823467i \(0.307963\pi\)
\(720\) −6.35300 −0.236762
\(721\) 0 0
\(722\) 3.37916 0.125759
\(723\) −13.8749 −0.516013
\(724\) 8.66649 0.322088
\(725\) 4.55803 0.169281
\(726\) −6.55971 −0.243454
\(727\) −16.6912 −0.619041 −0.309520 0.950893i \(-0.600168\pi\)
−0.309520 + 0.950893i \(0.600168\pi\)
\(728\) 0 0
\(729\) −12.4999 −0.462959
\(730\) 24.0185 0.888963
\(731\) −87.4060 −3.23283
\(732\) −2.10877 −0.0779425
\(733\) −24.0479 −0.888228 −0.444114 0.895970i \(-0.646481\pi\)
−0.444114 + 0.895970i \(0.646481\pi\)
\(734\) −0.00898137 −0.000331508 0
\(735\) 0 0
\(736\) 7.87103 0.290130
\(737\) −30.8014 −1.13458
\(738\) 4.74793 0.174774
\(739\) −28.3188 −1.04172 −0.520862 0.853641i \(-0.674390\pi\)
−0.520862 + 0.853641i \(0.674390\pi\)
\(740\) −15.5421 −0.571338
\(741\) −0.993355 −0.0364918
\(742\) 0 0
\(743\) 12.8287 0.470640 0.235320 0.971918i \(-0.424386\pi\)
0.235320 + 0.971918i \(0.424386\pi\)
\(744\) −2.16216 −0.0792686
\(745\) −7.52721 −0.275775
\(746\) −25.4249 −0.930870
\(747\) 14.1212 0.516669
\(748\) −36.0179 −1.31695
\(749\) 0 0
\(750\) 5.69790 0.208058
\(751\) −26.3737 −0.962390 −0.481195 0.876613i \(-0.659797\pi\)
−0.481195 + 0.876613i \(0.659797\pi\)
\(752\) 0.109639 0.00399811
\(753\) −10.0615 −0.366662
\(754\) −4.22085 −0.153714
\(755\) −26.0388 −0.947648
\(756\) 0 0
\(757\) −25.1677 −0.914735 −0.457367 0.889278i \(-0.651208\pi\)
−0.457367 + 0.889278i \(0.651208\pi\)
\(758\) −3.59033 −0.130407
\(759\) −20.4518 −0.742352
\(760\) 9.27115 0.336300
\(761\) −36.8884 −1.33720 −0.668601 0.743621i \(-0.733107\pi\)
−0.668601 + 0.743621i \(0.733107\pi\)
\(762\) 5.33221 0.193166
\(763\) 0 0
\(764\) −10.4948 −0.379689
\(765\) 47.5624 1.71962
\(766\) 26.7701 0.967243
\(767\) −2.26863 −0.0819157
\(768\) 0.540089 0.0194888
\(769\) 31.7350 1.14439 0.572197 0.820116i \(-0.306091\pi\)
0.572197 + 0.820116i \(0.306091\pi\)
\(770\) 0 0
\(771\) 0.869184 0.0313029
\(772\) 18.3614 0.660843
\(773\) −15.2305 −0.547804 −0.273902 0.961758i \(-0.588314\pi\)
−0.273902 + 0.961758i \(0.588314\pi\)
\(774\) 31.6194 1.13654
\(775\) 2.01181 0.0722664
\(776\) −1.45337 −0.0521728
\(777\) 0 0
\(778\) −3.85558 −0.138229
\(779\) −6.92882 −0.248251
\(780\) 0.589568 0.0211099
\(781\) −59.1918 −2.11805
\(782\) −58.9272 −2.10723
\(783\) −27.9631 −0.999318
\(784\) 0 0
\(785\) −55.6796 −1.98729
\(786\) 8.20401 0.292627
\(787\) −46.9605 −1.67396 −0.836980 0.547234i \(-0.815681\pi\)
−0.836980 + 0.547234i \(0.815681\pi\)
\(788\) 20.0932 0.715791
\(789\) 8.96633 0.319210
\(790\) 2.34575 0.0834580
\(791\) 0 0
\(792\) 13.0296 0.462987
\(793\) −1.81699 −0.0645231
\(794\) 15.2820 0.542336
\(795\) 5.25021 0.186206
\(796\) 12.8398 0.455094
\(797\) 32.8320 1.16297 0.581485 0.813557i \(-0.302472\pi\)
0.581485 + 0.813557i \(0.302472\pi\)
\(798\) 0 0
\(799\) −0.820820 −0.0290385
\(800\) −0.502533 −0.0177672
\(801\) −8.81437 −0.311441
\(802\) −34.1864 −1.20716
\(803\) −49.2604 −1.73836
\(804\) −3.45781 −0.121948
\(805\) 0 0
\(806\) −1.86299 −0.0656209
\(807\) 10.3654 0.364879
\(808\) −18.5887 −0.653949
\(809\) −30.0404 −1.05616 −0.528081 0.849194i \(-0.677088\pi\)
−0.528081 + 0.849194i \(0.677088\pi\)
\(810\) −15.1531 −0.532426
\(811\) −31.7635 −1.11537 −0.557683 0.830054i \(-0.688310\pi\)
−0.557683 + 0.830054i \(0.688310\pi\)
\(812\) 0 0
\(813\) −3.31920 −0.116409
\(814\) 31.8758 1.11725
\(815\) 4.07507 0.142744
\(816\) −4.04343 −0.141548
\(817\) −46.1433 −1.61435
\(818\) 14.1407 0.494419
\(819\) 0 0
\(820\) 4.11234 0.143609
\(821\) −27.4468 −0.957900 −0.478950 0.877842i \(-0.658982\pi\)
−0.478950 + 0.877842i \(0.658982\pi\)
\(822\) 11.8541 0.413458
\(823\) −37.0791 −1.29250 −0.646249 0.763127i \(-0.723663\pi\)
−0.646249 + 0.763127i \(0.723663\pi\)
\(824\) 10.7765 0.375416
\(825\) 1.30576 0.0454608
\(826\) 0 0
\(827\) −1.30520 −0.0453861 −0.0226931 0.999742i \(-0.507224\pi\)
−0.0226931 + 0.999742i \(0.507224\pi\)
\(828\) 21.3171 0.740821
\(829\) −47.7435 −1.65820 −0.829100 0.559100i \(-0.811147\pi\)
−0.829100 + 0.559100i \(0.811147\pi\)
\(830\) 12.2309 0.424539
\(831\) −5.00003 −0.173449
\(832\) 0.465358 0.0161334
\(833\) 0 0
\(834\) −12.0693 −0.417925
\(835\) −16.6043 −0.574616
\(836\) −19.0146 −0.657633
\(837\) −12.3423 −0.426611
\(838\) −9.44643 −0.326321
\(839\) 45.3547 1.56582 0.782908 0.622137i \(-0.213735\pi\)
0.782908 + 0.622137i \(0.213735\pi\)
\(840\) 0 0
\(841\) 53.2669 1.83679
\(842\) 1.28366 0.0442379
\(843\) −7.31050 −0.251787
\(844\) 19.2697 0.663290
\(845\) −29.9867 −1.03157
\(846\) 0.296934 0.0102088
\(847\) 0 0
\(848\) 4.14410 0.142309
\(849\) −3.91297 −0.134293
\(850\) 3.76226 0.129045
\(851\) 52.1505 1.78770
\(852\) −6.64496 −0.227653
\(853\) −15.2535 −0.522269 −0.261134 0.965302i \(-0.584097\pi\)
−0.261134 + 0.965302i \(0.584097\pi\)
\(854\) 0 0
\(855\) 25.1091 0.858713
\(856\) −4.84763 −0.165689
\(857\) −33.4793 −1.14363 −0.571816 0.820382i \(-0.693761\pi\)
−0.571816 + 0.820382i \(0.693761\pi\)
\(858\) −1.20917 −0.0412803
\(859\) −8.40664 −0.286831 −0.143415 0.989663i \(-0.545808\pi\)
−0.143415 + 0.989663i \(0.545808\pi\)
\(860\) 27.3866 0.933875
\(861\) 0 0
\(862\) 14.4976 0.493790
\(863\) 36.2355 1.23347 0.616735 0.787171i \(-0.288455\pi\)
0.616735 + 0.787171i \(0.288455\pi\)
\(864\) 3.08299 0.104885
\(865\) 10.3249 0.351056
\(866\) −13.4127 −0.455784
\(867\) 21.0900 0.716255
\(868\) 0 0
\(869\) −4.81099 −0.163202
\(870\) −11.4910 −0.389582
\(871\) −2.97936 −0.100952
\(872\) 2.15624 0.0730193
\(873\) −3.93616 −0.133219
\(874\) −31.1088 −1.05227
\(875\) 0 0
\(876\) −5.53005 −0.186843
\(877\) −2.33397 −0.0788126 −0.0394063 0.999223i \(-0.512547\pi\)
−0.0394063 + 0.999223i \(0.512547\pi\)
\(878\) −6.95936 −0.234867
\(879\) 2.71237 0.0914860
\(880\) 11.2854 0.380430
\(881\) 15.9704 0.538057 0.269029 0.963132i \(-0.413297\pi\)
0.269029 + 0.963132i \(0.413297\pi\)
\(882\) 0 0
\(883\) −36.0256 −1.21236 −0.606178 0.795329i \(-0.707298\pi\)
−0.606178 + 0.795329i \(0.707298\pi\)
\(884\) −3.48395 −0.117178
\(885\) −6.17624 −0.207612
\(886\) −10.3140 −0.346505
\(887\) 45.2477 1.51927 0.759634 0.650351i \(-0.225378\pi\)
0.759634 + 0.650351i \(0.225378\pi\)
\(888\) 3.57843 0.120084
\(889\) 0 0
\(890\) −7.63441 −0.255906
\(891\) 31.0781 1.04116
\(892\) −16.8664 −0.564729
\(893\) −0.433327 −0.0145007
\(894\) 1.73308 0.0579627
\(895\) −6.05982 −0.202558
\(896\) 0 0
\(897\) −1.97826 −0.0660522
\(898\) 6.83454 0.228071
\(899\) 36.3107 1.21103
\(900\) −1.36101 −0.0453671
\(901\) −31.0252 −1.03360
\(902\) −8.43415 −0.280827
\(903\) 0 0
\(904\) 14.4701 0.481268
\(905\) 20.3294 0.675773
\(906\) 5.99521 0.199178
\(907\) 30.4079 1.00968 0.504839 0.863213i \(-0.331552\pi\)
0.504839 + 0.863213i \(0.331552\pi\)
\(908\) −17.6436 −0.585522
\(909\) −50.3439 −1.66980
\(910\) 0 0
\(911\) 45.1611 1.49625 0.748127 0.663555i \(-0.230953\pi\)
0.748127 + 0.663555i \(0.230953\pi\)
\(912\) −2.13460 −0.0706838
\(913\) −25.0848 −0.830184
\(914\) 12.2818 0.406246
\(915\) −4.94665 −0.163531
\(916\) −8.49583 −0.280710
\(917\) 0 0
\(918\) −23.0811 −0.761791
\(919\) 7.43182 0.245153 0.122576 0.992459i \(-0.460884\pi\)
0.122576 + 0.992459i \(0.460884\pi\)
\(920\) 18.4634 0.608722
\(921\) −11.9589 −0.394059
\(922\) 39.6568 1.30603
\(923\) −5.72552 −0.188458
\(924\) 0 0
\(925\) −3.32960 −0.109477
\(926\) −25.2682 −0.830364
\(927\) 29.1859 0.958592
\(928\) −9.07011 −0.297741
\(929\) 49.1427 1.61232 0.806160 0.591698i \(-0.201542\pi\)
0.806160 + 0.591698i \(0.201542\pi\)
\(930\) −5.07188 −0.166314
\(931\) 0 0
\(932\) −11.0571 −0.362186
\(933\) 5.47961 0.179394
\(934\) −13.9880 −0.457703
\(935\) −84.4890 −2.76309
\(936\) 1.26033 0.0411952
\(937\) −6.72824 −0.219802 −0.109901 0.993943i \(-0.535053\pi\)
−0.109901 + 0.993943i \(0.535053\pi\)
\(938\) 0 0
\(939\) 3.25360 0.106177
\(940\) 0.257184 0.00838843
\(941\) −56.9762 −1.85737 −0.928685 0.370869i \(-0.879060\pi\)
−0.928685 + 0.370869i \(0.879060\pi\)
\(942\) 12.8198 0.417690
\(943\) −13.7987 −0.449348
\(944\) −4.87503 −0.158669
\(945\) 0 0
\(946\) −56.1683 −1.82619
\(947\) −41.2259 −1.33966 −0.669831 0.742514i \(-0.733633\pi\)
−0.669831 + 0.742514i \(0.733633\pi\)
\(948\) −0.540089 −0.0175413
\(949\) −4.76487 −0.154674
\(950\) 1.98617 0.0644399
\(951\) −2.69088 −0.0872576
\(952\) 0 0
\(953\) 14.4413 0.467799 0.233899 0.972261i \(-0.424851\pi\)
0.233899 + 0.972261i \(0.424851\pi\)
\(954\) 11.2235 0.363374
\(955\) −24.6182 −0.796625
\(956\) 1.10050 0.0355927
\(957\) 23.5674 0.761826
\(958\) −11.8658 −0.383368
\(959\) 0 0
\(960\) 1.26691 0.0408894
\(961\) −14.9733 −0.483008
\(962\) 3.08329 0.0994093
\(963\) −13.1289 −0.423072
\(964\) −25.6900 −0.827420
\(965\) 43.0713 1.38651
\(966\) 0 0
\(967\) −0.104395 −0.00335712 −0.00167856 0.999999i \(-0.500534\pi\)
−0.00167856 + 0.999999i \(0.500534\pi\)
\(968\) −12.1456 −0.390375
\(969\) 15.9809 0.513381
\(970\) −3.40923 −0.109464
\(971\) 56.2910 1.80646 0.903231 0.429154i \(-0.141188\pi\)
0.903231 + 0.429154i \(0.141188\pi\)
\(972\) 12.7379 0.408567
\(973\) 0 0
\(974\) 0.971111 0.0311164
\(975\) 0.126304 0.00404496
\(976\) −3.90449 −0.124980
\(977\) 44.4705 1.42274 0.711369 0.702818i \(-0.248075\pi\)
0.711369 + 0.702818i \(0.248075\pi\)
\(978\) −0.938252 −0.0300020
\(979\) 15.6577 0.500423
\(980\) 0 0
\(981\) 5.83974 0.186449
\(982\) 15.1423 0.483211
\(983\) 24.1578 0.770515 0.385257 0.922809i \(-0.374113\pi\)
0.385257 + 0.922809i \(0.374113\pi\)
\(984\) −0.946831 −0.0301839
\(985\) 47.1336 1.50180
\(986\) 67.9043 2.16251
\(987\) 0 0
\(988\) −1.83924 −0.0585141
\(989\) −91.8942 −2.92207
\(990\) 30.5642 0.971394
\(991\) 2.23959 0.0711431 0.0355715 0.999367i \(-0.488675\pi\)
0.0355715 + 0.999367i \(0.488675\pi\)
\(992\) −4.00334 −0.127106
\(993\) 9.16343 0.290793
\(994\) 0 0
\(995\) 30.1189 0.954833
\(996\) −2.81605 −0.0892300
\(997\) −26.9161 −0.852443 −0.426221 0.904619i \(-0.640156\pi\)
−0.426221 + 0.904619i \(0.640156\pi\)
\(998\) −30.3024 −0.959206
\(999\) 20.4268 0.646274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7742.2.a.bk.1.8 12
7.2 even 3 1106.2.f.f.949.5 yes 24
7.4 even 3 1106.2.f.f.317.5 24
7.6 odd 2 7742.2.a.bn.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1106.2.f.f.317.5 24 7.4 even 3
1106.2.f.f.949.5 yes 24 7.2 even 3
7742.2.a.bk.1.8 12 1.1 even 1 trivial
7742.2.a.bn.1.5 12 7.6 odd 2