Properties

Label 768.6.d.a.385.1
Level $768$
Weight $6$
Character 768.385
Analytic conductor $123.175$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(385,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.385"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-480,0,-162,0,0,0,0,0,-612] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.174773616\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 385.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 768.385
Dual form 768.6.d.a.385.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000i q^{3} -34.0000i q^{5} -240.000 q^{7} -81.0000 q^{9} +124.000i q^{11} -46.0000i q^{13} -306.000 q^{15} +1954.00 q^{17} -1924.00i q^{19} +2160.00i q^{21} +2840.00 q^{23} +1969.00 q^{25} +729.000i q^{27} +8922.00i q^{29} +4648.00 q^{31} +1116.00 q^{33} +8160.00i q^{35} -4362.00i q^{37} -414.000 q^{39} +2886.00 q^{41} -11332.0i q^{43} +2754.00i q^{45} -7008.00 q^{47} +40793.0 q^{49} -17586.0i q^{51} -22594.0i q^{53} +4216.00 q^{55} -17316.0 q^{57} +28.0000i q^{59} +6386.00i q^{61} +19440.0 q^{63} -1564.00 q^{65} -39076.0i q^{67} -25560.0i q^{69} -54872.0 q^{71} -21034.0 q^{73} -17721.0i q^{75} -29760.0i q^{77} -26632.0 q^{79} +6561.00 q^{81} +56188.0i q^{83} -66436.0i q^{85} +80298.0 q^{87} -64410.0 q^{89} +11040.0i q^{91} -41832.0i q^{93} -65416.0 q^{95} -116158. q^{97} -10044.0i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 480 q^{7} - 162 q^{9} - 612 q^{15} + 3908 q^{17} + 5680 q^{23} + 3938 q^{25} + 9296 q^{31} + 2232 q^{33} - 828 q^{39} + 5772 q^{41} - 14016 q^{47} + 81586 q^{49} + 8432 q^{55} - 34632 q^{57} + 38880 q^{63}+ \cdots - 232316 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 9.00000i − 0.577350i
\(4\) 0 0
\(5\) − 34.0000i − 0.608210i −0.952638 0.304105i \(-0.901643\pi\)
0.952638 0.304105i \(-0.0983575\pi\)
\(6\) 0 0
\(7\) −240.000 −1.85125 −0.925627 0.378436i \(-0.876462\pi\)
−0.925627 + 0.378436i \(0.876462\pi\)
\(8\) 0 0
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 124.000i 0.308987i 0.987994 + 0.154493i \(0.0493745\pi\)
−0.987994 + 0.154493i \(0.950625\pi\)
\(12\) 0 0
\(13\) − 46.0000i − 0.0754917i −0.999287 0.0377459i \(-0.987982\pi\)
0.999287 0.0377459i \(-0.0120177\pi\)
\(14\) 0 0
\(15\) −306.000 −0.351150
\(16\) 0 0
\(17\) 1954.00 1.63984 0.819921 0.572476i \(-0.194017\pi\)
0.819921 + 0.572476i \(0.194017\pi\)
\(18\) 0 0
\(19\) − 1924.00i − 1.22270i −0.791359 0.611352i \(-0.790626\pi\)
0.791359 0.611352i \(-0.209374\pi\)
\(20\) 0 0
\(21\) 2160.00i 1.06882i
\(22\) 0 0
\(23\) 2840.00 1.11943 0.559717 0.828684i \(-0.310910\pi\)
0.559717 + 0.828684i \(0.310910\pi\)
\(24\) 0 0
\(25\) 1969.00 0.630080
\(26\) 0 0
\(27\) 729.000i 0.192450i
\(28\) 0 0
\(29\) 8922.00i 1.97000i 0.172541 + 0.985002i \(0.444802\pi\)
−0.172541 + 0.985002i \(0.555198\pi\)
\(30\) 0 0
\(31\) 4648.00 0.868684 0.434342 0.900748i \(-0.356981\pi\)
0.434342 + 0.900748i \(0.356981\pi\)
\(32\) 0 0
\(33\) 1116.00 0.178394
\(34\) 0 0
\(35\) 8160.00i 1.12595i
\(36\) 0 0
\(37\) − 4362.00i − 0.523819i −0.965092 0.261910i \(-0.915648\pi\)
0.965092 0.261910i \(-0.0843522\pi\)
\(38\) 0 0
\(39\) −414.000 −0.0435852
\(40\) 0 0
\(41\) 2886.00 0.268125 0.134062 0.990973i \(-0.457198\pi\)
0.134062 + 0.990973i \(0.457198\pi\)
\(42\) 0 0
\(43\) − 11332.0i − 0.934621i −0.884093 0.467310i \(-0.845223\pi\)
0.884093 0.467310i \(-0.154777\pi\)
\(44\) 0 0
\(45\) 2754.00i 0.202737i
\(46\) 0 0
\(47\) −7008.00 −0.462753 −0.231377 0.972864i \(-0.574323\pi\)
−0.231377 + 0.972864i \(0.574323\pi\)
\(48\) 0 0
\(49\) 40793.0 2.42714
\(50\) 0 0
\(51\) − 17586.0i − 0.946764i
\(52\) 0 0
\(53\) − 22594.0i − 1.10485i −0.833562 0.552425i \(-0.813703\pi\)
0.833562 0.552425i \(-0.186297\pi\)
\(54\) 0 0
\(55\) 4216.00 0.187929
\(56\) 0 0
\(57\) −17316.0 −0.705928
\(58\) 0 0
\(59\) 28.0000i 0.00104720i 1.00000 0.000523598i \(0.000166666\pi\)
−1.00000 0.000523598i \(0.999833\pi\)
\(60\) 0 0
\(61\) 6386.00i 0.219738i 0.993946 + 0.109869i \(0.0350431\pi\)
−0.993946 + 0.109869i \(0.964957\pi\)
\(62\) 0 0
\(63\) 19440.0 0.617085
\(64\) 0 0
\(65\) −1564.00 −0.0459149
\(66\) 0 0
\(67\) − 39076.0i − 1.06346i −0.846912 0.531732i \(-0.821541\pi\)
0.846912 0.531732i \(-0.178459\pi\)
\(68\) 0 0
\(69\) − 25560.0i − 0.646306i
\(70\) 0 0
\(71\) −54872.0 −1.29183 −0.645914 0.763410i \(-0.723524\pi\)
−0.645914 + 0.763410i \(0.723524\pi\)
\(72\) 0 0
\(73\) −21034.0 −0.461971 −0.230986 0.972957i \(-0.574195\pi\)
−0.230986 + 0.972957i \(0.574195\pi\)
\(74\) 0 0
\(75\) − 17721.0i − 0.363777i
\(76\) 0 0
\(77\) − 29760.0i − 0.572013i
\(78\) 0 0
\(79\) −26632.0 −0.480105 −0.240052 0.970760i \(-0.577165\pi\)
−0.240052 + 0.970760i \(0.577165\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 56188.0i 0.895258i 0.894219 + 0.447629i \(0.147732\pi\)
−0.894219 + 0.447629i \(0.852268\pi\)
\(84\) 0 0
\(85\) − 66436.0i − 0.997370i
\(86\) 0 0
\(87\) 80298.0 1.13738
\(88\) 0 0
\(89\) −64410.0 −0.861942 −0.430971 0.902366i \(-0.641829\pi\)
−0.430971 + 0.902366i \(0.641829\pi\)
\(90\) 0 0
\(91\) 11040.0i 0.139754i
\(92\) 0 0
\(93\) − 41832.0i − 0.501535i
\(94\) 0 0
\(95\) −65416.0 −0.743661
\(96\) 0 0
\(97\) −116158. −1.25349 −0.626743 0.779226i \(-0.715613\pi\)
−0.626743 + 0.779226i \(0.715613\pi\)
\(98\) 0 0
\(99\) − 10044.0i − 0.102996i
\(100\) 0 0
\(101\) − 66834.0i − 0.651920i −0.945384 0.325960i \(-0.894313\pi\)
0.945384 0.325960i \(-0.105687\pi\)
\(102\) 0 0
\(103\) 64000.0 0.594411 0.297206 0.954814i \(-0.403945\pi\)
0.297206 + 0.954814i \(0.403945\pi\)
\(104\) 0 0
\(105\) 73440.0 0.650069
\(106\) 0 0
\(107\) 15084.0i 0.127367i 0.997970 + 0.0636835i \(0.0202848\pi\)
−0.997970 + 0.0636835i \(0.979715\pi\)
\(108\) 0 0
\(109\) 39698.0i 0.320039i 0.987114 + 0.160019i \(0.0511556\pi\)
−0.987114 + 0.160019i \(0.948844\pi\)
\(110\) 0 0
\(111\) −39258.0 −0.302427
\(112\) 0 0
\(113\) 155154. 1.14305 0.571527 0.820583i \(-0.306351\pi\)
0.571527 + 0.820583i \(0.306351\pi\)
\(114\) 0 0
\(115\) − 96560.0i − 0.680852i
\(116\) 0 0
\(117\) 3726.00i 0.0251639i
\(118\) 0 0
\(119\) −468960. −3.03577
\(120\) 0 0
\(121\) 145675. 0.904527
\(122\) 0 0
\(123\) − 25974.0i − 0.154802i
\(124\) 0 0
\(125\) − 173196.i − 0.991432i
\(126\) 0 0
\(127\) −52072.0 −0.286480 −0.143240 0.989688i \(-0.545752\pi\)
−0.143240 + 0.989688i \(0.545752\pi\)
\(128\) 0 0
\(129\) −101988. −0.539604
\(130\) 0 0
\(131\) 159964.i 0.814412i 0.913336 + 0.407206i \(0.133497\pi\)
−0.913336 + 0.407206i \(0.866503\pi\)
\(132\) 0 0
\(133\) 461760.i 2.26353i
\(134\) 0 0
\(135\) 24786.0 0.117050
\(136\) 0 0
\(137\) 262278. 1.19388 0.596940 0.802286i \(-0.296383\pi\)
0.596940 + 0.802286i \(0.296383\pi\)
\(138\) 0 0
\(139\) − 253524.i − 1.11297i −0.830859 0.556483i \(-0.812150\pi\)
0.830859 0.556483i \(-0.187850\pi\)
\(140\) 0 0
\(141\) 63072.0i 0.267171i
\(142\) 0 0
\(143\) 5704.00 0.0233260
\(144\) 0 0
\(145\) 303348. 1.19818
\(146\) 0 0
\(147\) − 367137.i − 1.40131i
\(148\) 0 0
\(149\) 355630.i 1.31230i 0.754631 + 0.656149i \(0.227816\pi\)
−0.754631 + 0.656149i \(0.772184\pi\)
\(150\) 0 0
\(151\) −1024.00 −0.00365475 −0.00182737 0.999998i \(-0.500582\pi\)
−0.00182737 + 0.999998i \(0.500582\pi\)
\(152\) 0 0
\(153\) −158274. −0.546614
\(154\) 0 0
\(155\) − 158032.i − 0.528343i
\(156\) 0 0
\(157\) 59954.0i 0.194119i 0.995279 + 0.0970597i \(0.0309438\pi\)
−0.995279 + 0.0970597i \(0.969056\pi\)
\(158\) 0 0
\(159\) −203346. −0.637886
\(160\) 0 0
\(161\) −681600. −2.07236
\(162\) 0 0
\(163\) − 341556.i − 1.00692i −0.864020 0.503458i \(-0.832061\pi\)
0.864020 0.503458i \(-0.167939\pi\)
\(164\) 0 0
\(165\) − 37944.0i − 0.108501i
\(166\) 0 0
\(167\) 5016.00 0.0139177 0.00695883 0.999976i \(-0.497785\pi\)
0.00695883 + 0.999976i \(0.497785\pi\)
\(168\) 0 0
\(169\) 369177. 0.994301
\(170\) 0 0
\(171\) 155844.i 0.407568i
\(172\) 0 0
\(173\) 228666.i 0.580880i 0.956893 + 0.290440i \(0.0938016\pi\)
−0.956893 + 0.290440i \(0.906198\pi\)
\(174\) 0 0
\(175\) −472560. −1.16644
\(176\) 0 0
\(177\) 252.000 0.000604599 0
\(178\) 0 0
\(179\) 161388.i 0.376477i 0.982123 + 0.188239i \(0.0602778\pi\)
−0.982123 + 0.188239i \(0.939722\pi\)
\(180\) 0 0
\(181\) − 291690.i − 0.661797i −0.943666 0.330899i \(-0.892648\pi\)
0.943666 0.330899i \(-0.107352\pi\)
\(182\) 0 0
\(183\) 57474.0 0.126866
\(184\) 0 0
\(185\) −148308. −0.318592
\(186\) 0 0
\(187\) 242296.i 0.506690i
\(188\) 0 0
\(189\) − 174960.i − 0.356274i
\(190\) 0 0
\(191\) 55680.0 0.110437 0.0552187 0.998474i \(-0.482414\pi\)
0.0552187 + 0.998474i \(0.482414\pi\)
\(192\) 0 0
\(193\) −176254. −0.340601 −0.170300 0.985392i \(-0.554474\pi\)
−0.170300 + 0.985392i \(0.554474\pi\)
\(194\) 0 0
\(195\) 14076.0i 0.0265090i
\(196\) 0 0
\(197\) − 374610.i − 0.687723i −0.939020 0.343862i \(-0.888265\pi\)
0.939020 0.343862i \(-0.111735\pi\)
\(198\) 0 0
\(199\) −637760. −1.14163 −0.570814 0.821079i \(-0.693372\pi\)
−0.570814 + 0.821079i \(0.693372\pi\)
\(200\) 0 0
\(201\) −351684. −0.613992
\(202\) 0 0
\(203\) − 2.14128e6i − 3.64698i
\(204\) 0 0
\(205\) − 98124.0i − 0.163076i
\(206\) 0 0
\(207\) −230040. −0.373145
\(208\) 0 0
\(209\) 238576. 0.377799
\(210\) 0 0
\(211\) − 904628.i − 1.39883i −0.714717 0.699413i \(-0.753445\pi\)
0.714717 0.699413i \(-0.246555\pi\)
\(212\) 0 0
\(213\) 493848.i 0.745838i
\(214\) 0 0
\(215\) −385288. −0.568446
\(216\) 0 0
\(217\) −1.11552e6 −1.60816
\(218\) 0 0
\(219\) 189306.i 0.266719i
\(220\) 0 0
\(221\) − 89884.0i − 0.123795i
\(222\) 0 0
\(223\) −619048. −0.833609 −0.416804 0.908996i \(-0.636850\pi\)
−0.416804 + 0.908996i \(0.636850\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) 0 0
\(227\) − 1.46975e6i − 1.89312i −0.322527 0.946560i \(-0.604532\pi\)
0.322527 0.946560i \(-0.395468\pi\)
\(228\) 0 0
\(229\) − 3290.00i − 0.00414579i −0.999998 0.00207289i \(-0.999340\pi\)
0.999998 0.00207289i \(-0.000659823\pi\)
\(230\) 0 0
\(231\) −267840. −0.330252
\(232\) 0 0
\(233\) −935402. −1.12878 −0.564389 0.825509i \(-0.690888\pi\)
−0.564389 + 0.825509i \(0.690888\pi\)
\(234\) 0 0
\(235\) 238272.i 0.281451i
\(236\) 0 0
\(237\) 239688.i 0.277189i
\(238\) 0 0
\(239\) 875600. 0.991542 0.495771 0.868453i \(-0.334886\pi\)
0.495771 + 0.868453i \(0.334886\pi\)
\(240\) 0 0
\(241\) −959214. −1.06383 −0.531916 0.846797i \(-0.678528\pi\)
−0.531916 + 0.846797i \(0.678528\pi\)
\(242\) 0 0
\(243\) − 59049.0i − 0.0641500i
\(244\) 0 0
\(245\) − 1.38696e6i − 1.47621i
\(246\) 0 0
\(247\) −88504.0 −0.0923040
\(248\) 0 0
\(249\) 505692. 0.516878
\(250\) 0 0
\(251\) − 318868.i − 0.319467i −0.987160 0.159734i \(-0.948936\pi\)
0.987160 0.159734i \(-0.0510636\pi\)
\(252\) 0 0
\(253\) 352160.i 0.345891i
\(254\) 0 0
\(255\) −597924. −0.575832
\(256\) 0 0
\(257\) 1.71469e6 1.61940 0.809698 0.586847i \(-0.199631\pi\)
0.809698 + 0.586847i \(0.199631\pi\)
\(258\) 0 0
\(259\) 1.04688e6i 0.969723i
\(260\) 0 0
\(261\) − 722682.i − 0.656668i
\(262\) 0 0
\(263\) −1.11028e6 −0.989790 −0.494895 0.868953i \(-0.664794\pi\)
−0.494895 + 0.868953i \(0.664794\pi\)
\(264\) 0 0
\(265\) −768196. −0.671982
\(266\) 0 0
\(267\) 579690.i 0.497643i
\(268\) 0 0
\(269\) 398378.i 0.335672i 0.985815 + 0.167836i \(0.0536778\pi\)
−0.985815 + 0.167836i \(0.946322\pi\)
\(270\) 0 0
\(271\) −1.44198e6 −1.19271 −0.596355 0.802721i \(-0.703385\pi\)
−0.596355 + 0.802721i \(0.703385\pi\)
\(272\) 0 0
\(273\) 99360.0 0.0806873
\(274\) 0 0
\(275\) 244156.i 0.194686i
\(276\) 0 0
\(277\) 117238.i 0.0918056i 0.998946 + 0.0459028i \(0.0146164\pi\)
−0.998946 + 0.0459028i \(0.985384\pi\)
\(278\) 0 0
\(279\) −376488. −0.289561
\(280\) 0 0
\(281\) 1.67514e6 1.26557 0.632784 0.774328i \(-0.281912\pi\)
0.632784 + 0.774328i \(0.281912\pi\)
\(282\) 0 0
\(283\) − 1.92468e6i − 1.42854i −0.699872 0.714269i \(-0.746760\pi\)
0.699872 0.714269i \(-0.253240\pi\)
\(284\) 0 0
\(285\) 588744.i 0.429353i
\(286\) 0 0
\(287\) −692640. −0.496367
\(288\) 0 0
\(289\) 2.39826e6 1.68908
\(290\) 0 0
\(291\) 1.04542e6i 0.723701i
\(292\) 0 0
\(293\) 1.28062e6i 0.871469i 0.900075 + 0.435734i \(0.143511\pi\)
−0.900075 + 0.435734i \(0.856489\pi\)
\(294\) 0 0
\(295\) 952.000 0.000636916 0
\(296\) 0 0
\(297\) −90396.0 −0.0594645
\(298\) 0 0
\(299\) − 130640.i − 0.0845081i
\(300\) 0 0
\(301\) 2.71968e6i 1.73022i
\(302\) 0 0
\(303\) −601506. −0.376386
\(304\) 0 0
\(305\) 217124. 0.133647
\(306\) 0 0
\(307\) − 2.26319e6i − 1.37049i −0.728314 0.685243i \(-0.759696\pi\)
0.728314 0.685243i \(-0.240304\pi\)
\(308\) 0 0
\(309\) − 576000.i − 0.343183i
\(310\) 0 0
\(311\) 247848. 0.145306 0.0726532 0.997357i \(-0.476853\pi\)
0.0726532 + 0.997357i \(0.476853\pi\)
\(312\) 0 0
\(313\) 1.82391e6 1.05231 0.526154 0.850390i \(-0.323634\pi\)
0.526154 + 0.850390i \(0.323634\pi\)
\(314\) 0 0
\(315\) − 660960.i − 0.375317i
\(316\) 0 0
\(317\) − 2.85629e6i − 1.59645i −0.602361 0.798224i \(-0.705773\pi\)
0.602361 0.798224i \(-0.294227\pi\)
\(318\) 0 0
\(319\) −1.10633e6 −0.608705
\(320\) 0 0
\(321\) 135756. 0.0735354
\(322\) 0 0
\(323\) − 3.75950e6i − 2.00504i
\(324\) 0 0
\(325\) − 90574.0i − 0.0475658i
\(326\) 0 0
\(327\) 357282. 0.184774
\(328\) 0 0
\(329\) 1.68192e6 0.856674
\(330\) 0 0
\(331\) 147148.i 0.0738218i 0.999319 + 0.0369109i \(0.0117518\pi\)
−0.999319 + 0.0369109i \(0.988248\pi\)
\(332\) 0 0
\(333\) 353322.i 0.174606i
\(334\) 0 0
\(335\) −1.32858e6 −0.646810
\(336\) 0 0
\(337\) −3.24728e6 −1.55756 −0.778780 0.627297i \(-0.784161\pi\)
−0.778780 + 0.627297i \(0.784161\pi\)
\(338\) 0 0
\(339\) − 1.39639e6i − 0.659943i
\(340\) 0 0
\(341\) 576352.i 0.268412i
\(342\) 0 0
\(343\) −5.75664e6 −2.64201
\(344\) 0 0
\(345\) −869040. −0.393090
\(346\) 0 0
\(347\) 1.55675e6i 0.694056i 0.937855 + 0.347028i \(0.112809\pi\)
−0.937855 + 0.347028i \(0.887191\pi\)
\(348\) 0 0
\(349\) − 4.03217e6i − 1.77205i −0.463639 0.886024i \(-0.653456\pi\)
0.463639 0.886024i \(-0.346544\pi\)
\(350\) 0 0
\(351\) 33534.0 0.0145284
\(352\) 0 0
\(353\) 1.79399e6 0.766271 0.383135 0.923692i \(-0.374844\pi\)
0.383135 + 0.923692i \(0.374844\pi\)
\(354\) 0 0
\(355\) 1.86565e6i 0.785704i
\(356\) 0 0
\(357\) 4.22064e6i 1.75270i
\(358\) 0 0
\(359\) 1.55278e6 0.635876 0.317938 0.948111i \(-0.397010\pi\)
0.317938 + 0.948111i \(0.397010\pi\)
\(360\) 0 0
\(361\) −1.22568e6 −0.495003
\(362\) 0 0
\(363\) − 1.31108e6i − 0.522229i
\(364\) 0 0
\(365\) 715156.i 0.280976i
\(366\) 0 0
\(367\) 3.11545e6 1.20741 0.603706 0.797207i \(-0.293690\pi\)
0.603706 + 0.797207i \(0.293690\pi\)
\(368\) 0 0
\(369\) −233766. −0.0893749
\(370\) 0 0
\(371\) 5.42256e6i 2.04536i
\(372\) 0 0
\(373\) − 630682.i − 0.234714i −0.993090 0.117357i \(-0.962558\pi\)
0.993090 0.117357i \(-0.0374421\pi\)
\(374\) 0 0
\(375\) −1.55876e6 −0.572403
\(376\) 0 0
\(377\) 410412. 0.148719
\(378\) 0 0
\(379\) − 48404.0i − 0.0173094i −0.999963 0.00865472i \(-0.997245\pi\)
0.999963 0.00865472i \(-0.00275492\pi\)
\(380\) 0 0
\(381\) 468648.i 0.165400i
\(382\) 0 0
\(383\) −1.74182e6 −0.606747 −0.303373 0.952872i \(-0.598113\pi\)
−0.303373 + 0.952872i \(0.598113\pi\)
\(384\) 0 0
\(385\) −1.01184e6 −0.347904
\(386\) 0 0
\(387\) 917892.i 0.311540i
\(388\) 0 0
\(389\) − 3.06819e6i − 1.02804i −0.857779 0.514019i \(-0.828156\pi\)
0.857779 0.514019i \(-0.171844\pi\)
\(390\) 0 0
\(391\) 5.54936e6 1.83570
\(392\) 0 0
\(393\) 1.43968e6 0.470201
\(394\) 0 0
\(395\) 905488.i 0.292005i
\(396\) 0 0
\(397\) − 5.35984e6i − 1.70677i −0.521280 0.853386i \(-0.674545\pi\)
0.521280 0.853386i \(-0.325455\pi\)
\(398\) 0 0
\(399\) 4.15584e6 1.30685
\(400\) 0 0
\(401\) −2.76473e6 −0.858603 −0.429302 0.903161i \(-0.641240\pi\)
−0.429302 + 0.903161i \(0.641240\pi\)
\(402\) 0 0
\(403\) − 213808.i − 0.0655785i
\(404\) 0 0
\(405\) − 223074.i − 0.0675789i
\(406\) 0 0
\(407\) 540888. 0.161853
\(408\) 0 0
\(409\) 1.20893e6 0.357350 0.178675 0.983908i \(-0.442819\pi\)
0.178675 + 0.983908i \(0.442819\pi\)
\(410\) 0 0
\(411\) − 2.36050e6i − 0.689287i
\(412\) 0 0
\(413\) − 6720.00i − 0.00193863i
\(414\) 0 0
\(415\) 1.91039e6 0.544505
\(416\) 0 0
\(417\) −2.28172e6 −0.642571
\(418\) 0 0
\(419\) − 4.38008e6i − 1.21884i −0.792847 0.609421i \(-0.791402\pi\)
0.792847 0.609421i \(-0.208598\pi\)
\(420\) 0 0
\(421\) − 922810.i − 0.253751i −0.991919 0.126875i \(-0.959505\pi\)
0.991919 0.126875i \(-0.0404948\pi\)
\(422\) 0 0
\(423\) 567648. 0.154251
\(424\) 0 0
\(425\) 3.84743e6 1.03323
\(426\) 0 0
\(427\) − 1.53264e6i − 0.406790i
\(428\) 0 0
\(429\) − 51336.0i − 0.0134672i
\(430\) 0 0
\(431\) −6.12678e6 −1.58869 −0.794345 0.607466i \(-0.792186\pi\)
−0.794345 + 0.607466i \(0.792186\pi\)
\(432\) 0 0
\(433\) −1.76315e6 −0.451928 −0.225964 0.974136i \(-0.572553\pi\)
−0.225964 + 0.974136i \(0.572553\pi\)
\(434\) 0 0
\(435\) − 2.73013e6i − 0.691768i
\(436\) 0 0
\(437\) − 5.46416e6i − 1.36874i
\(438\) 0 0
\(439\) 3.85906e6 0.955696 0.477848 0.878443i \(-0.341417\pi\)
0.477848 + 0.878443i \(0.341417\pi\)
\(440\) 0 0
\(441\) −3.30423e6 −0.809048
\(442\) 0 0
\(443\) 4.39396e6i 1.06377i 0.846817 + 0.531884i \(0.178516\pi\)
−0.846817 + 0.531884i \(0.821484\pi\)
\(444\) 0 0
\(445\) 2.18994e6i 0.524242i
\(446\) 0 0
\(447\) 3.20067e6 0.757656
\(448\) 0 0
\(449\) −793390. −0.185725 −0.0928626 0.995679i \(-0.529602\pi\)
−0.0928626 + 0.995679i \(0.529602\pi\)
\(450\) 0 0
\(451\) 357864.i 0.0828470i
\(452\) 0 0
\(453\) 9216.00i 0.00211007i
\(454\) 0 0
\(455\) 375360. 0.0850001
\(456\) 0 0
\(457\) −7.04302e6 −1.57750 −0.788748 0.614717i \(-0.789270\pi\)
−0.788748 + 0.614717i \(0.789270\pi\)
\(458\) 0 0
\(459\) 1.42447e6i 0.315588i
\(460\) 0 0
\(461\) − 7.43005e6i − 1.62832i −0.580641 0.814160i \(-0.697198\pi\)
0.580641 0.814160i \(-0.302802\pi\)
\(462\) 0 0
\(463\) 4.10567e6 0.890086 0.445043 0.895509i \(-0.353188\pi\)
0.445043 + 0.895509i \(0.353188\pi\)
\(464\) 0 0
\(465\) −1.42229e6 −0.305039
\(466\) 0 0
\(467\) 3.39817e6i 0.721030i 0.932753 + 0.360515i \(0.117399\pi\)
−0.932753 + 0.360515i \(0.882601\pi\)
\(468\) 0 0
\(469\) 9.37824e6i 1.96874i
\(470\) 0 0
\(471\) 539586. 0.112075
\(472\) 0 0
\(473\) 1.40517e6 0.288786
\(474\) 0 0
\(475\) − 3.78836e6i − 0.770401i
\(476\) 0 0
\(477\) 1.83011e6i 0.368283i
\(478\) 0 0
\(479\) −2.78133e6 −0.553877 −0.276939 0.960888i \(-0.589320\pi\)
−0.276939 + 0.960888i \(0.589320\pi\)
\(480\) 0 0
\(481\) −200652. −0.0395440
\(482\) 0 0
\(483\) 6.13440e6i 1.19648i
\(484\) 0 0
\(485\) 3.94937e6i 0.762384i
\(486\) 0 0
\(487\) −2.06734e6 −0.394994 −0.197497 0.980304i \(-0.563281\pi\)
−0.197497 + 0.980304i \(0.563281\pi\)
\(488\) 0 0
\(489\) −3.07400e6 −0.581343
\(490\) 0 0
\(491\) 7.65976e6i 1.43387i 0.697138 + 0.716937i \(0.254457\pi\)
−0.697138 + 0.716937i \(0.745543\pi\)
\(492\) 0 0
\(493\) 1.74336e7i 3.23050i
\(494\) 0 0
\(495\) −341496. −0.0626430
\(496\) 0 0
\(497\) 1.31693e7 2.39150
\(498\) 0 0
\(499\) − 386580.i − 0.0695005i −0.999396 0.0347503i \(-0.988936\pi\)
0.999396 0.0347503i \(-0.0110636\pi\)
\(500\) 0 0
\(501\) − 45144.0i − 0.00803537i
\(502\) 0 0
\(503\) −2.57326e6 −0.453485 −0.226743 0.973955i \(-0.572808\pi\)
−0.226743 + 0.973955i \(0.572808\pi\)
\(504\) 0 0
\(505\) −2.27236e6 −0.396504
\(506\) 0 0
\(507\) − 3.32259e6i − 0.574060i
\(508\) 0 0
\(509\) − 360678.i − 0.0617057i −0.999524 0.0308528i \(-0.990178\pi\)
0.999524 0.0308528i \(-0.00982232\pi\)
\(510\) 0 0
\(511\) 5.04816e6 0.855226
\(512\) 0 0
\(513\) 1.40260e6 0.235309
\(514\) 0 0
\(515\) − 2.17600e6i − 0.361527i
\(516\) 0 0
\(517\) − 868992.i − 0.142985i
\(518\) 0 0
\(519\) 2.05799e6 0.335371
\(520\) 0 0
\(521\) 1.55908e6 0.251636 0.125818 0.992053i \(-0.459844\pi\)
0.125818 + 0.992053i \(0.459844\pi\)
\(522\) 0 0
\(523\) 9.18220e6i 1.46789i 0.679210 + 0.733944i \(0.262322\pi\)
−0.679210 + 0.733944i \(0.737678\pi\)
\(524\) 0 0
\(525\) 4.25304e6i 0.673444i
\(526\) 0 0
\(527\) 9.08219e6 1.42451
\(528\) 0 0
\(529\) 1.62926e6 0.253134
\(530\) 0 0
\(531\) − 2268.00i 0 0.000349065i
\(532\) 0 0
\(533\) − 132756.i − 0.0202412i
\(534\) 0 0
\(535\) 512856. 0.0774660
\(536\) 0 0
\(537\) 1.45249e6 0.217359
\(538\) 0 0
\(539\) 5.05833e6i 0.749955i
\(540\) 0 0
\(541\) 6.67773e6i 0.980925i 0.871462 + 0.490462i \(0.163172\pi\)
−0.871462 + 0.490462i \(0.836828\pi\)
\(542\) 0 0
\(543\) −2.62521e6 −0.382089
\(544\) 0 0
\(545\) 1.34973e6 0.194651
\(546\) 0 0
\(547\) 8.89656e6i 1.27132i 0.771971 + 0.635658i \(0.219271\pi\)
−0.771971 + 0.635658i \(0.780729\pi\)
\(548\) 0 0
\(549\) − 517266.i − 0.0732459i
\(550\) 0 0
\(551\) 1.71659e7 2.40873
\(552\) 0 0
\(553\) 6.39168e6 0.888796
\(554\) 0 0
\(555\) 1.33477e6i 0.183939i
\(556\) 0 0
\(557\) 4.46070e6i 0.609207i 0.952479 + 0.304603i \(0.0985239\pi\)
−0.952479 + 0.304603i \(0.901476\pi\)
\(558\) 0 0
\(559\) −521272. −0.0705562
\(560\) 0 0
\(561\) 2.18066e6 0.292538
\(562\) 0 0
\(563\) 6.37660e6i 0.847849i 0.905698 + 0.423924i \(0.139348\pi\)
−0.905698 + 0.423924i \(0.860652\pi\)
\(564\) 0 0
\(565\) − 5.27524e6i − 0.695218i
\(566\) 0 0
\(567\) −1.57464e6 −0.205695
\(568\) 0 0
\(569\) −5.51143e6 −0.713648 −0.356824 0.934172i \(-0.616140\pi\)
−0.356824 + 0.934172i \(0.616140\pi\)
\(570\) 0 0
\(571\) − 1.35431e6i − 0.173831i −0.996216 0.0869155i \(-0.972299\pi\)
0.996216 0.0869155i \(-0.0277010\pi\)
\(572\) 0 0
\(573\) − 501120.i − 0.0637610i
\(574\) 0 0
\(575\) 5.59196e6 0.705333
\(576\) 0 0
\(577\) −5.00736e6 −0.626137 −0.313068 0.949731i \(-0.601357\pi\)
−0.313068 + 0.949731i \(0.601357\pi\)
\(578\) 0 0
\(579\) 1.58629e6i 0.196646i
\(580\) 0 0
\(581\) − 1.34851e7i − 1.65735i
\(582\) 0 0
\(583\) 2.80166e6 0.341384
\(584\) 0 0
\(585\) 126684. 0.0153050
\(586\) 0 0
\(587\) − 2.69964e6i − 0.323378i −0.986842 0.161689i \(-0.948306\pi\)
0.986842 0.161689i \(-0.0516941\pi\)
\(588\) 0 0
\(589\) − 8.94275e6i − 1.06214i
\(590\) 0 0
\(591\) −3.37149e6 −0.397057
\(592\) 0 0
\(593\) 1.31035e7 1.53021 0.765103 0.643908i \(-0.222688\pi\)
0.765103 + 0.643908i \(0.222688\pi\)
\(594\) 0 0
\(595\) 1.59446e7i 1.84639i
\(596\) 0 0
\(597\) 5.73984e6i 0.659119i
\(598\) 0 0
\(599\) −5.22804e6 −0.595349 −0.297675 0.954667i \(-0.596211\pi\)
−0.297675 + 0.954667i \(0.596211\pi\)
\(600\) 0 0
\(601\) −1.02248e7 −1.15470 −0.577351 0.816496i \(-0.695913\pi\)
−0.577351 + 0.816496i \(0.695913\pi\)
\(602\) 0 0
\(603\) 3.16516e6i 0.354488i
\(604\) 0 0
\(605\) − 4.95295e6i − 0.550143i
\(606\) 0 0
\(607\) −8.81684e6 −0.971273 −0.485636 0.874161i \(-0.661412\pi\)
−0.485636 + 0.874161i \(0.661412\pi\)
\(608\) 0 0
\(609\) −1.92715e7 −2.10558
\(610\) 0 0
\(611\) 322368.i 0.0349340i
\(612\) 0 0
\(613\) 1.13600e7i 1.22103i 0.792006 + 0.610514i \(0.209037\pi\)
−0.792006 + 0.610514i \(0.790963\pi\)
\(614\) 0 0
\(615\) −883116. −0.0941521
\(616\) 0 0
\(617\) 4.77356e6 0.504812 0.252406 0.967621i \(-0.418778\pi\)
0.252406 + 0.967621i \(0.418778\pi\)
\(618\) 0 0
\(619\) 2.55931e6i 0.268470i 0.990950 + 0.134235i \(0.0428577\pi\)
−0.990950 + 0.134235i \(0.957142\pi\)
\(620\) 0 0
\(621\) 2.07036e6i 0.215435i
\(622\) 0 0
\(623\) 1.54584e7 1.59567
\(624\) 0 0
\(625\) 264461. 0.0270808
\(626\) 0 0
\(627\) − 2.14718e6i − 0.218122i
\(628\) 0 0
\(629\) − 8.52335e6i − 0.858981i
\(630\) 0 0
\(631\) −8.41981e6 −0.841839 −0.420919 0.907098i \(-0.638292\pi\)
−0.420919 + 0.907098i \(0.638292\pi\)
\(632\) 0 0
\(633\) −8.14165e6 −0.807613
\(634\) 0 0
\(635\) 1.77045e6i 0.174240i
\(636\) 0 0
\(637\) − 1.87648e6i − 0.183229i
\(638\) 0 0
\(639\) 4.44463e6 0.430610
\(640\) 0 0
\(641\) −1.21494e7 −1.16791 −0.583957 0.811785i \(-0.698496\pi\)
−0.583957 + 0.811785i \(0.698496\pi\)
\(642\) 0 0
\(643\) − 1.08968e7i − 1.03937i −0.854358 0.519685i \(-0.826049\pi\)
0.854358 0.519685i \(-0.173951\pi\)
\(644\) 0 0
\(645\) 3.46759e6i 0.328193i
\(646\) 0 0
\(647\) 1.32166e7 1.24124 0.620622 0.784110i \(-0.286880\pi\)
0.620622 + 0.784110i \(0.286880\pi\)
\(648\) 0 0
\(649\) −3472.00 −0.000323570 0
\(650\) 0 0
\(651\) 1.00397e7i 0.928469i
\(652\) 0 0
\(653\) − 1.65915e7i − 1.52266i −0.648365 0.761329i \(-0.724547\pi\)
0.648365 0.761329i \(-0.275453\pi\)
\(654\) 0 0
\(655\) 5.43878e6 0.495334
\(656\) 0 0
\(657\) 1.70375e6 0.153990
\(658\) 0 0
\(659\) − 2.29372e6i − 0.205743i −0.994695 0.102872i \(-0.967197\pi\)
0.994695 0.102872i \(-0.0328031\pi\)
\(660\) 0 0
\(661\) − 719194.i − 0.0640239i −0.999487 0.0320120i \(-0.989809\pi\)
0.999487 0.0320120i \(-0.0101915\pi\)
\(662\) 0 0
\(663\) −808956. −0.0714728
\(664\) 0 0
\(665\) 1.56998e7 1.37671
\(666\) 0 0
\(667\) 2.53385e7i 2.20529i
\(668\) 0 0
\(669\) 5.57143e6i 0.481284i
\(670\) 0 0
\(671\) −791864. −0.0678960
\(672\) 0 0
\(673\) 8.64695e6 0.735911 0.367955 0.929843i \(-0.380058\pi\)
0.367955 + 0.929843i \(0.380058\pi\)
\(674\) 0 0
\(675\) 1.43540e6i 0.121259i
\(676\) 0 0
\(677\) − 1.69592e7i − 1.42211i −0.703135 0.711056i \(-0.748217\pi\)
0.703135 0.711056i \(-0.251783\pi\)
\(678\) 0 0
\(679\) 2.78779e7 2.32052
\(680\) 0 0
\(681\) −1.32277e7 −1.09299
\(682\) 0 0
\(683\) − 1.87105e7i − 1.53473i −0.641209 0.767367i \(-0.721567\pi\)
0.641209 0.767367i \(-0.278433\pi\)
\(684\) 0 0
\(685\) − 8.91745e6i − 0.726130i
\(686\) 0 0
\(687\) −29610.0 −0.00239357
\(688\) 0 0
\(689\) −1.03932e6 −0.0834071
\(690\) 0 0
\(691\) − 1.16204e7i − 0.925820i −0.886405 0.462910i \(-0.846805\pi\)
0.886405 0.462910i \(-0.153195\pi\)
\(692\) 0 0
\(693\) 2.41056e6i 0.190671i
\(694\) 0 0
\(695\) −8.61982e6 −0.676918
\(696\) 0 0
\(697\) 5.63924e6 0.439682
\(698\) 0 0
\(699\) 8.41862e6i 0.651700i
\(700\) 0 0
\(701\) − 2.23497e7i − 1.71781i −0.512132 0.858907i \(-0.671144\pi\)
0.512132 0.858907i \(-0.328856\pi\)
\(702\) 0 0
\(703\) −8.39249e6 −0.640475
\(704\) 0 0
\(705\) 2.14445e6 0.162496
\(706\) 0 0
\(707\) 1.60402e7i 1.20687i
\(708\) 0 0
\(709\) 1.02353e7i 0.764687i 0.924020 + 0.382344i \(0.124883\pi\)
−0.924020 + 0.382344i \(0.875117\pi\)
\(710\) 0 0
\(711\) 2.15719e6 0.160035
\(712\) 0 0
\(713\) 1.32003e7 0.972435
\(714\) 0 0
\(715\) − 193936.i − 0.0141871i
\(716\) 0 0
\(717\) − 7.88040e6i − 0.572467i
\(718\) 0 0
\(719\) 1.70339e7 1.22883 0.614416 0.788982i \(-0.289392\pi\)
0.614416 + 0.788982i \(0.289392\pi\)
\(720\) 0 0
\(721\) −1.53600e7 −1.10041
\(722\) 0 0
\(723\) 8.63293e6i 0.614203i
\(724\) 0 0
\(725\) 1.75674e7i 1.24126i
\(726\) 0 0
\(727\) −1.62280e7 −1.13875 −0.569377 0.822077i \(-0.692815\pi\)
−0.569377 + 0.822077i \(0.692815\pi\)
\(728\) 0 0
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) − 2.21427e7i − 1.53263i
\(732\) 0 0
\(733\) 2.17495e7i 1.49517i 0.664168 + 0.747583i \(0.268786\pi\)
−0.664168 + 0.747583i \(0.731214\pi\)
\(734\) 0 0
\(735\) −1.24827e7 −0.852293
\(736\) 0 0
\(737\) 4.84542e6 0.328597
\(738\) 0 0
\(739\) 1.96200e7i 1.32156i 0.750578 + 0.660781i \(0.229775\pi\)
−0.750578 + 0.660781i \(0.770225\pi\)
\(740\) 0 0
\(741\) 796536.i 0.0532917i
\(742\) 0 0
\(743\) 1.74018e7 1.15644 0.578218 0.815882i \(-0.303748\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(744\) 0 0
\(745\) 1.20914e7 0.798154
\(746\) 0 0
\(747\) − 4.55123e6i − 0.298419i
\(748\) 0 0
\(749\) − 3.62016e6i − 0.235789i
\(750\) 0 0
\(751\) 2.62693e7 1.69961 0.849803 0.527101i \(-0.176721\pi\)
0.849803 + 0.527101i \(0.176721\pi\)
\(752\) 0 0
\(753\) −2.86981e6 −0.184445
\(754\) 0 0
\(755\) 34816.0i 0.00222286i
\(756\) 0 0
\(757\) − 5.70356e6i − 0.361748i −0.983506 0.180874i \(-0.942107\pi\)
0.983506 0.180874i \(-0.0578927\pi\)
\(758\) 0 0
\(759\) 3.16944e6 0.199700
\(760\) 0 0
\(761\) 2.13762e7 1.33804 0.669020 0.743244i \(-0.266714\pi\)
0.669020 + 0.743244i \(0.266714\pi\)
\(762\) 0 0
\(763\) − 9.52752e6i − 0.592473i
\(764\) 0 0
\(765\) 5.38132e6i 0.332457i
\(766\) 0 0
\(767\) 1288.00 7.90547e−5 0
\(768\) 0 0
\(769\) −2.01523e6 −0.122888 −0.0614439 0.998111i \(-0.519571\pi\)
−0.0614439 + 0.998111i \(0.519571\pi\)
\(770\) 0 0
\(771\) − 1.54322e7i − 0.934958i
\(772\) 0 0
\(773\) − 1.27674e7i − 0.768520i −0.923225 0.384260i \(-0.874457\pi\)
0.923225 0.384260i \(-0.125543\pi\)
\(774\) 0 0
\(775\) 9.15191e6 0.547340
\(776\) 0 0
\(777\) 9.42192e6 0.559870
\(778\) 0 0
\(779\) − 5.55266e6i − 0.327837i
\(780\) 0 0
\(781\) − 6.80413e6i − 0.399158i
\(782\) 0 0
\(783\) −6.50414e6 −0.379128
\(784\) 0 0
\(785\) 2.03844e6 0.118065
\(786\) 0 0
\(787\) − 2.72384e7i − 1.56764i −0.620990 0.783818i \(-0.713269\pi\)
0.620990 0.783818i \(-0.286731\pi\)
\(788\) 0 0
\(789\) 9.99252e6i 0.571456i
\(790\) 0 0
\(791\) −3.72370e7 −2.11608
\(792\) 0 0
\(793\) 293756. 0.0165884
\(794\) 0 0
\(795\) 6.91376e6i 0.387969i
\(796\) 0 0
\(797\) 7.66724e6i 0.427556i 0.976882 + 0.213778i \(0.0685770\pi\)
−0.976882 + 0.213778i \(0.931423\pi\)
\(798\) 0 0
\(799\) −1.36936e7 −0.758843
\(800\) 0 0
\(801\) 5.21721e6 0.287314
\(802\) 0 0
\(803\) − 2.60822e6i − 0.142743i
\(804\) 0 0
\(805\) 2.31744e7i 1.26043i
\(806\) 0 0
\(807\) 3.58540e6 0.193800
\(808\) 0 0
\(809\) 1.05541e7 0.566956 0.283478 0.958979i \(-0.408512\pi\)
0.283478 + 0.958979i \(0.408512\pi\)
\(810\) 0 0
\(811\) 1.32883e6i 0.0709442i 0.999371 + 0.0354721i \(0.0112935\pi\)
−0.999371 + 0.0354721i \(0.988707\pi\)
\(812\) 0 0
\(813\) 1.29778e7i 0.688611i
\(814\) 0 0
\(815\) −1.16129e7 −0.612416
\(816\) 0 0
\(817\) −2.18028e7 −1.14276
\(818\) 0 0
\(819\) − 894240.i − 0.0465848i
\(820\) 0 0
\(821\) − 6.15933e6i − 0.318915i −0.987205 0.159458i \(-0.949025\pi\)
0.987205 0.159458i \(-0.0509746\pi\)
\(822\) 0 0
\(823\) 1.00734e7 0.518414 0.259207 0.965822i \(-0.416539\pi\)
0.259207 + 0.965822i \(0.416539\pi\)
\(824\) 0 0
\(825\) 2.19740e6 0.112402
\(826\) 0 0
\(827\) 6.49152e6i 0.330052i 0.986289 + 0.165026i \(0.0527708\pi\)
−0.986289 + 0.165026i \(0.947229\pi\)
\(828\) 0 0
\(829\) 1.93536e7i 0.978082i 0.872261 + 0.489041i \(0.162653\pi\)
−0.872261 + 0.489041i \(0.837347\pi\)
\(830\) 0 0
\(831\) 1.05514e6 0.0530040
\(832\) 0 0
\(833\) 7.97095e7 3.98013
\(834\) 0 0
\(835\) − 170544.i − 0.00846487i
\(836\) 0 0
\(837\) 3.38839e6i 0.167178i
\(838\) 0 0
\(839\) −2.78622e7 −1.36650 −0.683251 0.730183i \(-0.739435\pi\)
−0.683251 + 0.730183i \(0.739435\pi\)
\(840\) 0 0
\(841\) −5.90909e7 −2.88092
\(842\) 0 0
\(843\) − 1.50763e7i − 0.730677i
\(844\) 0 0
\(845\) − 1.25520e7i − 0.604744i
\(846\) 0 0
\(847\) −3.49620e7 −1.67451
\(848\) 0 0
\(849\) −1.73221e7 −0.824766
\(850\) 0 0
\(851\) − 1.23881e7i − 0.586381i
\(852\) 0 0
\(853\) 1.07651e7i 0.506577i 0.967391 + 0.253288i \(0.0815121\pi\)
−0.967391 + 0.253288i \(0.918488\pi\)
\(854\) 0 0
\(855\) 5.29870e6 0.247887
\(856\) 0 0
\(857\) −1.22439e7 −0.569465 −0.284733 0.958607i \(-0.591905\pi\)
−0.284733 + 0.958607i \(0.591905\pi\)
\(858\) 0 0
\(859\) 1.38664e6i 0.0641179i 0.999486 + 0.0320590i \(0.0102064\pi\)
−0.999486 + 0.0320590i \(0.989794\pi\)
\(860\) 0 0
\(861\) 6.23376e6i 0.286578i
\(862\) 0 0
\(863\) 1.09856e7 0.502109 0.251055 0.967973i \(-0.419223\pi\)
0.251055 + 0.967973i \(0.419223\pi\)
\(864\) 0 0
\(865\) 7.77464e6 0.353297
\(866\) 0 0
\(867\) − 2.15843e7i − 0.975194i
\(868\) 0 0
\(869\) − 3.30237e6i − 0.148346i
\(870\) 0 0
\(871\) −1.79750e6 −0.0802828
\(872\) 0 0
\(873\) 9.40880e6 0.417829
\(874\) 0 0
\(875\) 4.15670e7i 1.83539i
\(876\) 0 0
\(877\) − 8.17798e6i − 0.359044i −0.983754 0.179522i \(-0.942545\pi\)
0.983754 0.179522i \(-0.0574550\pi\)
\(878\) 0 0
\(879\) 1.15256e7 0.503143
\(880\) 0 0
\(881\) 4.66520e6 0.202503 0.101251 0.994861i \(-0.467715\pi\)
0.101251 + 0.994861i \(0.467715\pi\)
\(882\) 0 0
\(883\) 3.82201e7i 1.64964i 0.565393 + 0.824822i \(0.308724\pi\)
−0.565393 + 0.824822i \(0.691276\pi\)
\(884\) 0 0
\(885\) − 8568.00i 0 0.000367723i
\(886\) 0 0
\(887\) −7.72172e6 −0.329538 −0.164769 0.986332i \(-0.552688\pi\)
−0.164769 + 0.986332i \(0.552688\pi\)
\(888\) 0 0
\(889\) 1.24973e7 0.530348
\(890\) 0 0
\(891\) 813564.i 0.0343319i
\(892\) 0 0
\(893\) 1.34834e7i 0.565810i
\(894\) 0 0
\(895\) 5.48719e6 0.228977
\(896\) 0 0
\(897\) −1.17576e6 −0.0487908
\(898\) 0 0
\(899\) 4.14695e7i 1.71131i
\(900\) 0 0
\(901\) − 4.41487e7i − 1.81178i
\(902\) 0 0
\(903\) 2.44771e7 0.998944
\(904\) 0 0
\(905\) −9.91746e6 −0.402512
\(906\) 0 0
\(907\) − 4.33137e7i − 1.74826i −0.485689 0.874131i \(-0.661431\pi\)
0.485689 0.874131i \(-0.338569\pi\)
\(908\) 0 0
\(909\) 5.41355e6i 0.217307i
\(910\) 0 0
\(911\) −3.44456e6 −0.137511 −0.0687556 0.997634i \(-0.521903\pi\)
−0.0687556 + 0.997634i \(0.521903\pi\)
\(912\) 0 0
\(913\) −6.96731e6 −0.276623
\(914\) 0 0
\(915\) − 1.95412e6i − 0.0771610i
\(916\) 0 0
\(917\) − 3.83914e7i − 1.50768i
\(918\) 0 0
\(919\) −4.37073e7 −1.70712 −0.853562 0.520991i \(-0.825563\pi\)
−0.853562 + 0.520991i \(0.825563\pi\)
\(920\) 0 0
\(921\) −2.03687e7 −0.791251
\(922\) 0 0
\(923\) 2.52411e6i 0.0975224i
\(924\) 0 0
\(925\) − 8.58878e6i − 0.330048i
\(926\) 0 0
\(927\) −5.18400e6 −0.198137
\(928\) 0 0
\(929\) −4.13022e7 −1.57012 −0.785062 0.619418i \(-0.787369\pi\)
−0.785062 + 0.619418i \(0.787369\pi\)
\(930\) 0 0
\(931\) − 7.84857e7i − 2.96768i
\(932\) 0 0
\(933\) − 2.23063e6i − 0.0838926i
\(934\) 0 0
\(935\) 8.23806e6 0.308174
\(936\) 0 0
\(937\) −9.57460e6 −0.356264 −0.178132 0.984007i \(-0.557005\pi\)
−0.178132 + 0.984007i \(0.557005\pi\)
\(938\) 0 0
\(939\) − 1.64152e7i − 0.607550i
\(940\) 0 0
\(941\) − 8.71623e6i − 0.320889i −0.987045 0.160444i \(-0.948707\pi\)
0.987045 0.160444i \(-0.0512927\pi\)
\(942\) 0 0
\(943\) 8.19624e6 0.300148
\(944\) 0 0
\(945\) −5.94864e6 −0.216690
\(946\) 0 0
\(947\) − 1.30605e7i − 0.473244i −0.971602 0.236622i \(-0.923960\pi\)
0.971602 0.236622i \(-0.0760403\pi\)
\(948\) 0 0
\(949\) 967564.i 0.0348750i
\(950\) 0 0
\(951\) −2.57066e7 −0.921710
\(952\) 0 0
\(953\) −1.13875e7 −0.406158 −0.203079 0.979162i \(-0.565095\pi\)
−0.203079 + 0.979162i \(0.565095\pi\)
\(954\) 0 0
\(955\) − 1.89312e6i − 0.0671691i
\(956\) 0 0
\(957\) 9.95695e6i 0.351436i
\(958\) 0 0
\(959\) −6.29467e7 −2.21017
\(960\) 0 0
\(961\) −7.02525e6 −0.245388
\(962\) 0 0
\(963\) − 1.22180e6i − 0.0424557i
\(964\) 0 0
\(965\) 5.99264e6i 0.207157i
\(966\) 0 0
\(967\) 4.62711e7 1.59127 0.795634 0.605778i \(-0.207138\pi\)
0.795634 + 0.605778i \(0.207138\pi\)
\(968\) 0 0
\(969\) −3.38355e7 −1.15761
\(970\) 0 0
\(971\) − 1.63206e7i − 0.555506i −0.960653 0.277753i \(-0.910410\pi\)
0.960653 0.277753i \(-0.0895896\pi\)
\(972\) 0 0
\(973\) 6.08458e7i 2.06038i
\(974\) 0 0
\(975\) −815166. −0.0274621
\(976\) 0 0
\(977\) −1.95213e7 −0.654294 −0.327147 0.944973i \(-0.606087\pi\)
−0.327147 + 0.944973i \(0.606087\pi\)
\(978\) 0 0
\(979\) − 7.98684e6i − 0.266329i
\(980\) 0 0
\(981\) − 3.21554e6i − 0.106680i
\(982\) 0 0
\(983\) −4.33962e7 −1.43241 −0.716207 0.697888i \(-0.754123\pi\)
−0.716207 + 0.697888i \(0.754123\pi\)
\(984\) 0 0
\(985\) −1.27367e7 −0.418281
\(986\) 0 0
\(987\) − 1.51373e7i − 0.494601i
\(988\) 0 0
\(989\) − 3.21829e7i − 1.04625i
\(990\) 0 0
\(991\) −3.83518e7 −1.24051 −0.620257 0.784399i \(-0.712972\pi\)
−0.620257 + 0.784399i \(0.712972\pi\)
\(992\) 0 0
\(993\) 1.32433e6 0.0426210
\(994\) 0 0
\(995\) 2.16838e7i 0.694350i
\(996\) 0 0
\(997\) − 7.82206e6i − 0.249220i −0.992206 0.124610i \(-0.960232\pi\)
0.992206 0.124610i \(-0.0397680\pi\)
\(998\) 0 0
\(999\) 3.17990e6 0.100809
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.6.d.a.385.1 2
4.3 odd 2 768.6.d.r.385.2 2
8.3 odd 2 768.6.d.r.385.1 2
8.5 even 2 inner 768.6.d.a.385.2 2
16.3 odd 4 24.6.a.a.1.1 1
16.5 even 4 192.6.a.f.1.1 1
16.11 odd 4 192.6.a.n.1.1 1
16.13 even 4 48.6.a.d.1.1 1
48.5 odd 4 576.6.a.l.1.1 1
48.11 even 4 576.6.a.k.1.1 1
48.29 odd 4 144.6.a.i.1.1 1
48.35 even 4 72.6.a.e.1.1 1
80.3 even 4 600.6.f.f.49.1 2
80.19 odd 4 600.6.a.i.1.1 1
80.67 even 4 600.6.f.f.49.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.6.a.a.1.1 1 16.3 odd 4
48.6.a.d.1.1 1 16.13 even 4
72.6.a.e.1.1 1 48.35 even 4
144.6.a.i.1.1 1 48.29 odd 4
192.6.a.f.1.1 1 16.5 even 4
192.6.a.n.1.1 1 16.11 odd 4
576.6.a.k.1.1 1 48.11 even 4
576.6.a.l.1.1 1 48.5 odd 4
600.6.a.i.1.1 1 80.19 odd 4
600.6.f.f.49.1 2 80.3 even 4
600.6.f.f.49.2 2 80.67 even 4
768.6.d.a.385.1 2 1.1 even 1 trivial
768.6.d.a.385.2 2 8.5 even 2 inner
768.6.d.r.385.1 2 8.3 odd 2
768.6.d.r.385.2 2 4.3 odd 2