Properties

Label 2-768-8.5-c5-0-52
Degree $2$
Conductor $768$
Sign $-0.707 + 0.707i$
Analytic cond. $123.174$
Root an. cond. $11.0984$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9i·3-s − 34i·5-s − 240·7-s − 81·9-s + 124i·11-s − 46i·13-s − 306·15-s + 1.95e3·17-s − 1.92e3i·19-s + 2.16e3i·21-s + 2.84e3·23-s + 1.96e3·25-s + 729i·27-s + 8.92e3i·29-s + 4.64e3·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.608i·5-s − 1.85·7-s − 0.333·9-s + 0.308i·11-s − 0.0754i·13-s − 0.351·15-s + 1.63·17-s − 1.22i·19-s + 1.06i·21-s + 1.11·23-s + 0.630·25-s + 0.192i·27-s + 1.97i·29-s + 0.868·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(123.174\)
Root analytic conductor: \(11.0984\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (385, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :5/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.346306287\)
\(L(\frac12)\) \(\approx\) \(1.346306287\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9iT \)
good5 \( 1 + 34iT - 3.12e3T^{2} \)
7 \( 1 + 240T + 1.68e4T^{2} \)
11 \( 1 - 124iT - 1.61e5T^{2} \)
13 \( 1 + 46iT - 3.71e5T^{2} \)
17 \( 1 - 1.95e3T + 1.41e6T^{2} \)
19 \( 1 + 1.92e3iT - 2.47e6T^{2} \)
23 \( 1 - 2.84e3T + 6.43e6T^{2} \)
29 \( 1 - 8.92e3iT - 2.05e7T^{2} \)
31 \( 1 - 4.64e3T + 2.86e7T^{2} \)
37 \( 1 + 4.36e3iT - 6.93e7T^{2} \)
41 \( 1 - 2.88e3T + 1.15e8T^{2} \)
43 \( 1 + 1.13e4iT - 1.47e8T^{2} \)
47 \( 1 + 7.00e3T + 2.29e8T^{2} \)
53 \( 1 + 2.25e4iT - 4.18e8T^{2} \)
59 \( 1 - 28iT - 7.14e8T^{2} \)
61 \( 1 - 6.38e3iT - 8.44e8T^{2} \)
67 \( 1 + 3.90e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.48e4T + 1.80e9T^{2} \)
73 \( 1 + 2.10e4T + 2.07e9T^{2} \)
79 \( 1 + 2.66e4T + 3.07e9T^{2} \)
83 \( 1 - 5.61e4iT - 3.93e9T^{2} \)
89 \( 1 + 6.44e4T + 5.58e9T^{2} \)
97 \( 1 + 1.16e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.205830966753313106370771187425, −8.559600390538474193924553314368, −7.20188586362404889791068556464, −6.84452838479205897290827933294, −5.74677118463012249747854327741, −4.89933720634267778062448848982, −3.40257352582441378151851138634, −2.81528468638764527205549443245, −1.19659117149412787721801474427, −0.36855840676720779825573101285, 0.921973170265991996295108540746, 2.88298712193102379786291314296, 3.21711488267846163890522236695, 4.27383333627080509106621341216, 5.75164611057757585859327778214, 6.21526693846058162364584260093, 7.21099131187461337715254566531, 8.206005299708723249788154091024, 9.324624780421270715640828068591, 10.01128903734225081201664120704

Graph of the $Z$-function along the critical line