Properties

Label 768.4.c.d.767.1
Level $768$
Weight $4$
Character 768.767
Analytic conductor $45.313$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,4,Mod(767,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.767"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 768.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,0,0,0,0,-50,0,92,0,-88,0,104,0,0,0,0,0,-104,0,-176, 0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.3134668844\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-26}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 767.1
Root \(5.09902i\) of defining polynomial
Character \(\chi\) \(=\) 768.767
Dual form 768.4.c.d.767.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 5.09902i) q^{3} +10.1980i q^{5} -10.1980i q^{7} +(-25.0000 + 10.1980i) q^{9} +46.0000 q^{11} -44.0000 q^{13} +(52.0000 - 10.1980i) q^{15} -20.3961i q^{17} +10.1980i q^{19} +(-52.0000 + 10.1980i) q^{21} -88.0000 q^{23} +21.0000 q^{25} +(77.0000 + 117.277i) q^{27} -254.951i q^{29} +214.159i q^{31} +(-46.0000 - 234.555i) q^{33} +104.000 q^{35} -332.000 q^{37} +(44.0000 + 224.357i) q^{39} +489.506i q^{41} -234.555i q^{43} +(-104.000 - 254.951i) q^{45} -384.000 q^{47} +239.000 q^{49} +(-104.000 + 20.3961i) q^{51} +458.912i q^{53} +469.110i q^{55} +(52.0000 - 10.1980i) q^{57} -630.000 q^{59} -236.000 q^{61} +(104.000 + 254.951i) q^{63} -448.714i q^{65} -50.9902i q^{67} +(88.0000 + 448.714i) q^{69} +680.000 q^{71} -422.000 q^{73} +(-21.0000 - 107.079i) q^{75} -469.110i q^{77} +744.457i q^{79} +(521.000 - 509.902i) q^{81} +186.000 q^{83} +208.000 q^{85} +(-1300.00 + 254.951i) q^{87} +958.616i q^{89} +448.714i q^{91} +(1092.00 - 214.159i) q^{93} -104.000 q^{95} -1062.00 q^{97} +(-1150.00 + 469.110i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 50 q^{9} + 92 q^{11} - 88 q^{13} + 104 q^{15} - 104 q^{21} - 176 q^{23} + 42 q^{25} + 154 q^{27} - 92 q^{33} + 208 q^{35} - 664 q^{37} + 88 q^{39} - 208 q^{45} - 768 q^{47} + 478 q^{49}+ \cdots - 2300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 5.09902i −0.192450 0.981307i
\(4\) 0 0
\(5\) 10.1980i 0.912140i 0.889944 + 0.456070i \(0.150743\pi\)
−0.889944 + 0.456070i \(0.849257\pi\)
\(6\) 0 0
\(7\) 10.1980i 0.550642i −0.961352 0.275321i \(-0.911216\pi\)
0.961352 0.275321i \(-0.0887842\pi\)
\(8\) 0 0
\(9\) −25.0000 + 10.1980i −0.925926 + 0.377705i
\(10\) 0 0
\(11\) 46.0000 1.26087 0.630433 0.776244i \(-0.282877\pi\)
0.630433 + 0.776244i \(0.282877\pi\)
\(12\) 0 0
\(13\) −44.0000 −0.938723 −0.469362 0.883006i \(-0.655516\pi\)
−0.469362 + 0.883006i \(0.655516\pi\)
\(14\) 0 0
\(15\) 52.0000 10.1980i 0.895089 0.175541i
\(16\) 0 0
\(17\) 20.3961i 0.290987i −0.989359 0.145493i \(-0.953523\pi\)
0.989359 0.145493i \(-0.0464770\pi\)
\(18\) 0 0
\(19\) 10.1980i 0.123136i 0.998103 + 0.0615682i \(0.0196102\pi\)
−0.998103 + 0.0615682i \(0.980390\pi\)
\(20\) 0 0
\(21\) −52.0000 + 10.1980i −0.540349 + 0.105971i
\(22\) 0 0
\(23\) −88.0000 −0.797794 −0.398897 0.916996i \(-0.630607\pi\)
−0.398897 + 0.916996i \(0.630607\pi\)
\(24\) 0 0
\(25\) 21.0000 0.168000
\(26\) 0 0
\(27\) 77.0000 + 117.277i 0.548839 + 0.835928i
\(28\) 0 0
\(29\) 254.951i 1.63252i −0.577682 0.816262i \(-0.696042\pi\)
0.577682 0.816262i \(-0.303958\pi\)
\(30\) 0 0
\(31\) 214.159i 1.24078i 0.784295 + 0.620388i \(0.213025\pi\)
−0.784295 + 0.620388i \(0.786975\pi\)
\(32\) 0 0
\(33\) −46.0000 234.555i −0.242654 1.23730i
\(34\) 0 0
\(35\) 104.000 0.502263
\(36\) 0 0
\(37\) −332.000 −1.47515 −0.737574 0.675266i \(-0.764029\pi\)
−0.737574 + 0.675266i \(0.764029\pi\)
\(38\) 0 0
\(39\) 44.0000 + 224.357i 0.180657 + 0.921176i
\(40\) 0 0
\(41\) 489.506i 1.86458i 0.361706 + 0.932292i \(0.382195\pi\)
−0.361706 + 0.932292i \(0.617805\pi\)
\(42\) 0 0
\(43\) 234.555i 0.831844i −0.909400 0.415922i \(-0.863459\pi\)
0.909400 0.415922i \(-0.136541\pi\)
\(44\) 0 0
\(45\) −104.000 254.951i −0.344520 0.844574i
\(46\) 0 0
\(47\) −384.000 −1.19175 −0.595874 0.803078i \(-0.703194\pi\)
−0.595874 + 0.803078i \(0.703194\pi\)
\(48\) 0 0
\(49\) 239.000 0.696793
\(50\) 0 0
\(51\) −104.000 + 20.3961i −0.285547 + 0.0560004i
\(52\) 0 0
\(53\) 458.912i 1.18937i 0.803960 + 0.594683i \(0.202722\pi\)
−0.803960 + 0.594683i \(0.797278\pi\)
\(54\) 0 0
\(55\) 469.110i 1.15009i
\(56\) 0 0
\(57\) 52.0000 10.1980i 0.120835 0.0236976i
\(58\) 0 0
\(59\) −630.000 −1.39015 −0.695076 0.718936i \(-0.744629\pi\)
−0.695076 + 0.718936i \(0.744629\pi\)
\(60\) 0 0
\(61\) −236.000 −0.495356 −0.247678 0.968842i \(-0.579667\pi\)
−0.247678 + 0.968842i \(0.579667\pi\)
\(62\) 0 0
\(63\) 104.000 + 254.951i 0.207980 + 0.509854i
\(64\) 0 0
\(65\) 448.714i 0.856247i
\(66\) 0 0
\(67\) 50.9902i 0.0929768i −0.998919 0.0464884i \(-0.985197\pi\)
0.998919 0.0464884i \(-0.0148030\pi\)
\(68\) 0 0
\(69\) 88.0000 + 448.714i 0.153536 + 0.782881i
\(70\) 0 0
\(71\) 680.000 1.13664 0.568318 0.822809i \(-0.307594\pi\)
0.568318 + 0.822809i \(0.307594\pi\)
\(72\) 0 0
\(73\) −422.000 −0.676594 −0.338297 0.941039i \(-0.609851\pi\)
−0.338297 + 0.941039i \(0.609851\pi\)
\(74\) 0 0
\(75\) −21.0000 107.079i −0.0323316 0.164860i
\(76\) 0 0
\(77\) 469.110i 0.694286i
\(78\) 0 0
\(79\) 744.457i 1.06023i 0.847927 + 0.530114i \(0.177851\pi\)
−0.847927 + 0.530114i \(0.822149\pi\)
\(80\) 0 0
\(81\) 521.000 509.902i 0.714678 0.699454i
\(82\) 0 0
\(83\) 186.000 0.245978 0.122989 0.992408i \(-0.460752\pi\)
0.122989 + 0.992408i \(0.460752\pi\)
\(84\) 0 0
\(85\) 208.000 0.265421
\(86\) 0 0
\(87\) −1300.00 + 254.951i −1.60201 + 0.314179i
\(88\) 0 0
\(89\) 958.616i 1.14172i 0.821048 + 0.570860i \(0.193390\pi\)
−0.821048 + 0.570860i \(0.806610\pi\)
\(90\) 0 0
\(91\) 448.714i 0.516901i
\(92\) 0 0
\(93\) 1092.00 214.159i 1.21758 0.238787i
\(94\) 0 0
\(95\) −104.000 −0.112318
\(96\) 0 0
\(97\) −1062.00 −1.11165 −0.555824 0.831300i \(-0.687597\pi\)
−0.555824 + 0.831300i \(0.687597\pi\)
\(98\) 0 0
\(99\) −1150.00 + 469.110i −1.16747 + 0.476235i
\(100\) 0 0
\(101\) 10.1980i 0.0100470i 0.999987 + 0.00502348i \(0.00159903\pi\)
−0.999987 + 0.00502348i \(0.998401\pi\)
\(102\) 0 0
\(103\) 1988.62i 1.90237i 0.308618 + 0.951186i \(0.400133\pi\)
−0.308618 + 0.951186i \(0.599867\pi\)
\(104\) 0 0
\(105\) −104.000 530.298i −0.0966606 0.492874i
\(106\) 0 0
\(107\) 234.000 0.211417 0.105709 0.994397i \(-0.466289\pi\)
0.105709 + 0.994397i \(0.466289\pi\)
\(108\) 0 0
\(109\) 724.000 0.636208 0.318104 0.948056i \(-0.396954\pi\)
0.318104 + 0.948056i \(0.396954\pi\)
\(110\) 0 0
\(111\) 332.000 + 1692.87i 0.283892 + 1.44757i
\(112\) 0 0
\(113\) 1019.80i 0.848983i 0.905432 + 0.424492i \(0.139547\pi\)
−0.905432 + 0.424492i \(0.860453\pi\)
\(114\) 0 0
\(115\) 897.427i 0.727700i
\(116\) 0 0
\(117\) 1100.00 448.714i 0.869188 0.354561i
\(118\) 0 0
\(119\) −208.000 −0.160230
\(120\) 0 0
\(121\) 785.000 0.589782
\(122\) 0 0
\(123\) 2496.00 489.506i 1.82973 0.358839i
\(124\) 0 0
\(125\) 1488.91i 1.06538i
\(126\) 0 0
\(127\) 2253.77i 1.57472i 0.616493 + 0.787360i \(0.288553\pi\)
−0.616493 + 0.787360i \(0.711447\pi\)
\(128\) 0 0
\(129\) −1196.00 + 234.555i −0.816294 + 0.160088i
\(130\) 0 0
\(131\) 1742.00 1.16183 0.580913 0.813966i \(-0.302696\pi\)
0.580913 + 0.813966i \(0.302696\pi\)
\(132\) 0 0
\(133\) 104.000 0.0678041
\(134\) 0 0
\(135\) −1196.00 + 785.249i −0.762484 + 0.500618i
\(136\) 0 0
\(137\) 2406.74i 1.50089i −0.660935 0.750443i \(-0.729840\pi\)
0.660935 0.750443i \(-0.270160\pi\)
\(138\) 0 0
\(139\) 764.853i 0.466719i 0.972390 + 0.233360i \(0.0749719\pi\)
−0.972390 + 0.233360i \(0.925028\pi\)
\(140\) 0 0
\(141\) 384.000 + 1958.02i 0.229352 + 1.16947i
\(142\) 0 0
\(143\) −2024.00 −1.18360
\(144\) 0 0
\(145\) 2600.00 1.48909
\(146\) 0 0
\(147\) −239.000 1218.67i −0.134098 0.683768i
\(148\) 0 0
\(149\) 479.308i 0.263533i −0.991281 0.131767i \(-0.957935\pi\)
0.991281 0.131767i \(-0.0420649\pi\)
\(150\) 0 0
\(151\) 1499.11i 0.807920i 0.914777 + 0.403960i \(0.132367\pi\)
−0.914777 + 0.403960i \(0.867633\pi\)
\(152\) 0 0
\(153\) 208.000 + 509.902i 0.109907 + 0.269432i
\(154\) 0 0
\(155\) −2184.00 −1.13176
\(156\) 0 0
\(157\) −1948.00 −0.990238 −0.495119 0.868825i \(-0.664875\pi\)
−0.495119 + 0.868825i \(0.664875\pi\)
\(158\) 0 0
\(159\) 2340.00 458.912i 1.16713 0.228894i
\(160\) 0 0
\(161\) 897.427i 0.439299i
\(162\) 0 0
\(163\) 3395.95i 1.63185i 0.578160 + 0.815924i \(0.303771\pi\)
−0.578160 + 0.815924i \(0.696229\pi\)
\(164\) 0 0
\(165\) 2392.00 469.110i 1.12859 0.221334i
\(166\) 0 0
\(167\) 2008.00 0.930441 0.465221 0.885195i \(-0.345975\pi\)
0.465221 + 0.885195i \(0.345975\pi\)
\(168\) 0 0
\(169\) −261.000 −0.118798
\(170\) 0 0
\(171\) −104.000 254.951i −0.0465092 0.114015i
\(172\) 0 0
\(173\) 1213.57i 0.533328i 0.963790 + 0.266664i \(0.0859214\pi\)
−0.963790 + 0.266664i \(0.914079\pi\)
\(174\) 0 0
\(175\) 214.159i 0.0925079i
\(176\) 0 0
\(177\) 630.000 + 3212.38i 0.267535 + 1.36417i
\(178\) 0 0
\(179\) 2382.00 0.994632 0.497316 0.867570i \(-0.334319\pi\)
0.497316 + 0.867570i \(0.334319\pi\)
\(180\) 0 0
\(181\) −2652.00 −1.08907 −0.544535 0.838738i \(-0.683294\pi\)
−0.544535 + 0.838738i \(0.683294\pi\)
\(182\) 0 0
\(183\) 236.000 + 1203.37i 0.0953313 + 0.486096i
\(184\) 0 0
\(185\) 3385.75i 1.34554i
\(186\) 0 0
\(187\) 938.220i 0.366895i
\(188\) 0 0
\(189\) 1196.00 785.249i 0.460297 0.302214i
\(190\) 0 0
\(191\) −4784.00 −1.81235 −0.906173 0.422907i \(-0.861010\pi\)
−0.906173 + 0.422907i \(0.861010\pi\)
\(192\) 0 0
\(193\) −3074.00 −1.14648 −0.573242 0.819386i \(-0.694314\pi\)
−0.573242 + 0.819386i \(0.694314\pi\)
\(194\) 0 0
\(195\) −2288.00 + 448.714i −0.840241 + 0.164785i
\(196\) 0 0
\(197\) 4844.07i 1.75191i −0.482396 0.875953i \(-0.660233\pi\)
0.482396 0.875953i \(-0.339767\pi\)
\(198\) 0 0
\(199\) 1927.43i 0.686592i −0.939227 0.343296i \(-0.888457\pi\)
0.939227 0.343296i \(-0.111543\pi\)
\(200\) 0 0
\(201\) −260.000 + 50.9902i −0.0912387 + 0.0178934i
\(202\) 0 0
\(203\) −2600.00 −0.898937
\(204\) 0 0
\(205\) −4992.00 −1.70076
\(206\) 0 0
\(207\) 2200.00 897.427i 0.738698 0.301331i
\(208\) 0 0
\(209\) 469.110i 0.155258i
\(210\) 0 0
\(211\) 3436.74i 1.12130i −0.828052 0.560651i \(-0.810551\pi\)
0.828052 0.560651i \(-0.189449\pi\)
\(212\) 0 0
\(213\) −680.000 3467.33i −0.218746 1.11539i
\(214\) 0 0
\(215\) 2392.00 0.758758
\(216\) 0 0
\(217\) 2184.00 0.683224
\(218\) 0 0
\(219\) 422.000 + 2151.79i 0.130211 + 0.663946i
\(220\) 0 0
\(221\) 897.427i 0.273156i
\(222\) 0 0
\(223\) 1233.96i 0.370548i 0.982687 + 0.185274i \(0.0593173\pi\)
−0.982687 + 0.185274i \(0.940683\pi\)
\(224\) 0 0
\(225\) −525.000 + 214.159i −0.155556 + 0.0634545i
\(226\) 0 0
\(227\) −1270.00 −0.371334 −0.185667 0.982613i \(-0.559445\pi\)
−0.185667 + 0.982613i \(0.559445\pi\)
\(228\) 0 0
\(229\) −4556.00 −1.31471 −0.657356 0.753580i \(-0.728325\pi\)
−0.657356 + 0.753580i \(0.728325\pi\)
\(230\) 0 0
\(231\) −2392.00 + 469.110i −0.681308 + 0.133615i
\(232\) 0 0
\(233\) 877.031i 0.246593i 0.992370 + 0.123297i \(0.0393467\pi\)
−0.992370 + 0.123297i \(0.960653\pi\)
\(234\) 0 0
\(235\) 3916.05i 1.08704i
\(236\) 0 0
\(237\) 3796.00 744.457i 1.04041 0.204041i
\(238\) 0 0
\(239\) 1920.00 0.519642 0.259821 0.965657i \(-0.416336\pi\)
0.259821 + 0.965657i \(0.416336\pi\)
\(240\) 0 0
\(241\) −1618.00 −0.432467 −0.216233 0.976342i \(-0.569377\pi\)
−0.216233 + 0.976342i \(0.569377\pi\)
\(242\) 0 0
\(243\) −3121.00 2146.69i −0.823919 0.566708i
\(244\) 0 0
\(245\) 2437.33i 0.635573i
\(246\) 0 0
\(247\) 448.714i 0.115591i
\(248\) 0 0
\(249\) −186.000 948.418i −0.0473384 0.241380i
\(250\) 0 0
\(251\) −1586.00 −0.398834 −0.199417 0.979915i \(-0.563905\pi\)
−0.199417 + 0.979915i \(0.563905\pi\)
\(252\) 0 0
\(253\) −4048.00 −1.00591
\(254\) 0 0
\(255\) −208.000 1060.60i −0.0510803 0.260459i
\(256\) 0 0
\(257\) 3956.84i 0.960392i −0.877161 0.480196i \(-0.840565\pi\)
0.877161 0.480196i \(-0.159435\pi\)
\(258\) 0 0
\(259\) 3385.75i 0.812279i
\(260\) 0 0
\(261\) 2600.00 + 6373.77i 0.616613 + 1.51160i
\(262\) 0 0
\(263\) −4344.00 −1.01849 −0.509244 0.860622i \(-0.670075\pi\)
−0.509244 + 0.860622i \(0.670075\pi\)
\(264\) 0 0
\(265\) −4680.00 −1.08487
\(266\) 0 0
\(267\) 4888.00 958.616i 1.12038 0.219724i
\(268\) 0 0
\(269\) 2743.27i 0.621785i −0.950445 0.310893i \(-0.899372\pi\)
0.950445 0.310893i \(-0.100628\pi\)
\(270\) 0 0
\(271\) 3253.17i 0.729211i −0.931162 0.364606i \(-0.881204\pi\)
0.931162 0.364606i \(-0.118796\pi\)
\(272\) 0 0
\(273\) 2288.00 448.714i 0.507238 0.0994776i
\(274\) 0 0
\(275\) 966.000 0.211825
\(276\) 0 0
\(277\) −4956.00 −1.07501 −0.537504 0.843261i \(-0.680633\pi\)
−0.537504 + 0.843261i \(0.680633\pi\)
\(278\) 0 0
\(279\) −2184.00 5353.97i −0.468648 1.14887i
\(280\) 0 0
\(281\) 1978.42i 0.420009i 0.977700 + 0.210005i \(0.0673479\pi\)
−0.977700 + 0.210005i \(0.932652\pi\)
\(282\) 0 0
\(283\) 7985.06i 1.67725i 0.544706 + 0.838627i \(0.316641\pi\)
−0.544706 + 0.838627i \(0.683359\pi\)
\(284\) 0 0
\(285\) 104.000 + 530.298i 0.0216155 + 0.110218i
\(286\) 0 0
\(287\) 4992.00 1.02672
\(288\) 0 0
\(289\) 4497.00 0.915327
\(290\) 0 0
\(291\) 1062.00 + 5415.16i 0.213937 + 1.09087i
\(292\) 0 0
\(293\) 1845.85i 0.368039i 0.982923 + 0.184019i \(0.0589110\pi\)
−0.982923 + 0.184019i \(0.941089\pi\)
\(294\) 0 0
\(295\) 6424.76i 1.26801i
\(296\) 0 0
\(297\) 3542.00 + 5394.76i 0.692012 + 1.05399i
\(298\) 0 0
\(299\) 3872.00 0.748908
\(300\) 0 0
\(301\) −2392.00 −0.458048
\(302\) 0 0
\(303\) 52.0000 10.1980i 0.00985915 0.00193354i
\(304\) 0 0
\(305\) 2406.74i 0.451834i
\(306\) 0 0
\(307\) 8291.01i 1.54134i −0.637232 0.770672i \(-0.719921\pi\)
0.637232 0.770672i \(-0.280079\pi\)
\(308\) 0 0
\(309\) 10140.0 1988.62i 1.86681 0.366112i
\(310\) 0 0
\(311\) 10104.0 1.84227 0.921134 0.389246i \(-0.127264\pi\)
0.921134 + 0.389246i \(0.127264\pi\)
\(312\) 0 0
\(313\) −1198.00 −0.216342 −0.108171 0.994132i \(-0.534499\pi\)
−0.108171 + 0.994132i \(0.534499\pi\)
\(314\) 0 0
\(315\) −2600.00 + 1060.60i −0.465058 + 0.189707i
\(316\) 0 0
\(317\) 5027.63i 0.890789i −0.895335 0.445394i \(-0.853063\pi\)
0.895335 0.445394i \(-0.146937\pi\)
\(318\) 0 0
\(319\) 11727.7i 2.05839i
\(320\) 0 0
\(321\) −234.000 1193.17i −0.0406872 0.207465i
\(322\) 0 0
\(323\) 208.000 0.0358311
\(324\) 0 0
\(325\) −924.000 −0.157706
\(326\) 0 0
\(327\) −724.000 3691.69i −0.122438 0.624315i
\(328\) 0 0
\(329\) 3916.05i 0.656227i
\(330\) 0 0
\(331\) 6129.02i 1.01777i −0.860835 0.508884i \(-0.830058\pi\)
0.860835 0.508884i \(-0.169942\pi\)
\(332\) 0 0
\(333\) 8300.00 3385.75i 1.36588 0.557171i
\(334\) 0 0
\(335\) 520.000 0.0848079
\(336\) 0 0
\(337\) 390.000 0.0630405 0.0315203 0.999503i \(-0.489965\pi\)
0.0315203 + 0.999503i \(0.489965\pi\)
\(338\) 0 0
\(339\) 5200.00 1019.80i 0.833113 0.163387i
\(340\) 0 0
\(341\) 9851.31i 1.56445i
\(342\) 0 0
\(343\) 5935.26i 0.934326i
\(344\) 0 0
\(345\) −4576.00 + 897.427i −0.714097 + 0.140046i
\(346\) 0 0
\(347\) 4366.00 0.675444 0.337722 0.941246i \(-0.390344\pi\)
0.337722 + 0.941246i \(0.390344\pi\)
\(348\) 0 0
\(349\) 5492.00 0.842350 0.421175 0.906979i \(-0.361618\pi\)
0.421175 + 0.906979i \(0.361618\pi\)
\(350\) 0 0
\(351\) −3388.00 5160.21i −0.515208 0.784705i
\(352\) 0 0
\(353\) 81.5843i 0.0123011i 0.999981 + 0.00615056i \(0.00195780\pi\)
−0.999981 + 0.00615056i \(0.998042\pi\)
\(354\) 0 0
\(355\) 6934.67i 1.03677i
\(356\) 0 0
\(357\) 208.000 + 1060.60i 0.0308362 + 0.157234i
\(358\) 0 0
\(359\) 2216.00 0.325783 0.162891 0.986644i \(-0.447918\pi\)
0.162891 + 0.986644i \(0.447918\pi\)
\(360\) 0 0
\(361\) 6755.00 0.984837
\(362\) 0 0
\(363\) −785.000 4002.73i −0.113504 0.578757i
\(364\) 0 0
\(365\) 4303.57i 0.617149i
\(366\) 0 0
\(367\) 7128.43i 1.01390i −0.861976 0.506950i \(-0.830773\pi\)
0.861976 0.506950i \(-0.169227\pi\)
\(368\) 0 0
\(369\) −4992.00 12237.6i −0.704263 1.72647i
\(370\) 0 0
\(371\) 4680.00 0.654915
\(372\) 0 0
\(373\) −2028.00 −0.281517 −0.140759 0.990044i \(-0.544954\pi\)
−0.140759 + 0.990044i \(0.544954\pi\)
\(374\) 0 0
\(375\) 7592.00 1488.91i 1.04546 0.205032i
\(376\) 0 0
\(377\) 11217.8i 1.53249i
\(378\) 0 0
\(379\) 1315.55i 0.178298i 0.996018 + 0.0891492i \(0.0284148\pi\)
−0.996018 + 0.0891492i \(0.971585\pi\)
\(380\) 0 0
\(381\) 11492.0 2253.77i 1.54528 0.303055i
\(382\) 0 0
\(383\) −2128.00 −0.283905 −0.141953 0.989873i \(-0.545338\pi\)
−0.141953 + 0.989873i \(0.545338\pi\)
\(384\) 0 0
\(385\) 4784.00 0.633286
\(386\) 0 0
\(387\) 2392.00 + 5863.87i 0.314192 + 0.770226i
\(388\) 0 0
\(389\) 1927.43i 0.251220i 0.992080 + 0.125610i \(0.0400888\pi\)
−0.992080 + 0.125610i \(0.959911\pi\)
\(390\) 0 0
\(391\) 1794.85i 0.232148i
\(392\) 0 0
\(393\) −1742.00 8882.49i −0.223594 1.14011i
\(394\) 0 0
\(395\) −7592.00 −0.967076
\(396\) 0 0
\(397\) −6220.00 −0.786330 −0.393165 0.919468i \(-0.628620\pi\)
−0.393165 + 0.919468i \(0.628620\pi\)
\(398\) 0 0
\(399\) −104.000 530.298i −0.0130489 0.0665366i
\(400\) 0 0
\(401\) 1937.63i 0.241298i −0.992695 0.120649i \(-0.961502\pi\)
0.992695 0.120649i \(-0.0384976\pi\)
\(402\) 0 0
\(403\) 9422.99i 1.16475i
\(404\) 0 0
\(405\) 5200.00 + 5313.18i 0.638000 + 0.651886i
\(406\) 0 0
\(407\) −15272.0 −1.85996
\(408\) 0 0
\(409\) 1270.00 0.153539 0.0767695 0.997049i \(-0.475539\pi\)
0.0767695 + 0.997049i \(0.475539\pi\)
\(410\) 0 0
\(411\) −12272.0 + 2406.74i −1.47283 + 0.288846i
\(412\) 0 0
\(413\) 6424.76i 0.765477i
\(414\) 0 0
\(415\) 1896.84i 0.224366i
\(416\) 0 0
\(417\) 3900.00 764.853i 0.457995 0.0898202i
\(418\) 0 0
\(419\) −9126.00 −1.06404 −0.532022 0.846731i \(-0.678568\pi\)
−0.532022 + 0.846731i \(0.678568\pi\)
\(420\) 0 0
\(421\) −3436.00 −0.397768 −0.198884 0.980023i \(-0.563732\pi\)
−0.198884 + 0.980023i \(0.563732\pi\)
\(422\) 0 0
\(423\) 9600.00 3916.05i 1.10347 0.450129i
\(424\) 0 0
\(425\) 428.318i 0.0488858i
\(426\) 0 0
\(427\) 2406.74i 0.272764i
\(428\) 0 0
\(429\) 2024.00 + 10320.4i 0.227785 + 1.16148i
\(430\) 0 0
\(431\) 1920.00 0.214578 0.107289 0.994228i \(-0.465783\pi\)
0.107289 + 0.994228i \(0.465783\pi\)
\(432\) 0 0
\(433\) −15766.0 −1.74981 −0.874903 0.484299i \(-0.839075\pi\)
−0.874903 + 0.484299i \(0.839075\pi\)
\(434\) 0 0
\(435\) −2600.00 13257.5i −0.286576 1.46126i
\(436\) 0 0
\(437\) 897.427i 0.0982375i
\(438\) 0 0
\(439\) 7311.99i 0.794949i −0.917613 0.397474i \(-0.869887\pi\)
0.917613 0.397474i \(-0.130113\pi\)
\(440\) 0 0
\(441\) −5975.00 + 2437.33i −0.645179 + 0.263182i
\(442\) 0 0
\(443\) 8190.00 0.878372 0.439186 0.898396i \(-0.355267\pi\)
0.439186 + 0.898396i \(0.355267\pi\)
\(444\) 0 0
\(445\) −9776.00 −1.04141
\(446\) 0 0
\(447\) −2444.00 + 479.308i −0.258607 + 0.0507170i
\(448\) 0 0
\(449\) 13767.4i 1.44704i 0.690303 + 0.723521i \(0.257477\pi\)
−0.690303 + 0.723521i \(0.742523\pi\)
\(450\) 0 0
\(451\) 22517.3i 2.35099i
\(452\) 0 0
\(453\) 7644.00 1499.11i 0.792818 0.155484i
\(454\) 0 0
\(455\) −4576.00 −0.471486
\(456\) 0 0
\(457\) −10682.0 −1.09340 −0.546699 0.837329i \(-0.684116\pi\)
−0.546699 + 0.837329i \(0.684116\pi\)
\(458\) 0 0
\(459\) 2392.00 1570.50i 0.243244 0.159705i
\(460\) 0 0
\(461\) 3090.01i 0.312182i 0.987743 + 0.156091i \(0.0498893\pi\)
−0.987743 + 0.156091i \(0.950111\pi\)
\(462\) 0 0
\(463\) 2661.69i 0.267169i 0.991037 + 0.133584i \(0.0426487\pi\)
−0.991037 + 0.133584i \(0.957351\pi\)
\(464\) 0 0
\(465\) 2184.00 + 11136.3i 0.217808 + 1.11061i
\(466\) 0 0
\(467\) −12246.0 −1.21344 −0.606721 0.794915i \(-0.707515\pi\)
−0.606721 + 0.794915i \(0.707515\pi\)
\(468\) 0 0
\(469\) −520.000 −0.0511969
\(470\) 0 0
\(471\) 1948.00 + 9932.89i 0.190571 + 0.971727i
\(472\) 0 0
\(473\) 10789.5i 1.04884i
\(474\) 0 0
\(475\) 214.159i 0.0206869i
\(476\) 0 0
\(477\) −4680.00 11472.8i −0.449230 1.10126i
\(478\) 0 0
\(479\) 15008.0 1.43159 0.715796 0.698309i \(-0.246064\pi\)
0.715796 + 0.698309i \(0.246064\pi\)
\(480\) 0 0
\(481\) 14608.0 1.38476
\(482\) 0 0
\(483\) 4576.00 897.427i 0.431087 0.0845432i
\(484\) 0 0
\(485\) 10830.3i 1.01398i
\(486\) 0 0
\(487\) 5721.10i 0.532336i −0.963927 0.266168i \(-0.914242\pi\)
0.963927 0.266168i \(-0.0857576\pi\)
\(488\) 0 0
\(489\) 17316.0 3395.95i 1.60134 0.314049i
\(490\) 0 0
\(491\) 5018.00 0.461220 0.230610 0.973046i \(-0.425928\pi\)
0.230610 + 0.973046i \(0.425928\pi\)
\(492\) 0 0
\(493\) −5200.00 −0.475043
\(494\) 0 0
\(495\) −4784.00 11727.7i −0.434394 1.06489i
\(496\) 0 0
\(497\) 6934.67i 0.625880i
\(498\) 0 0
\(499\) 16082.3i 1.44277i −0.692533 0.721386i \(-0.743506\pi\)
0.692533 0.721386i \(-0.256494\pi\)
\(500\) 0 0
\(501\) −2008.00 10238.8i −0.179064 0.913048i
\(502\) 0 0
\(503\) −10632.0 −0.942460 −0.471230 0.882010i \(-0.656190\pi\)
−0.471230 + 0.882010i \(0.656190\pi\)
\(504\) 0 0
\(505\) −104.000 −0.00916424
\(506\) 0 0
\(507\) 261.000 + 1330.84i 0.0228628 + 0.116578i
\(508\) 0 0
\(509\) 3579.51i 0.311707i 0.987780 + 0.155854i \(0.0498128\pi\)
−0.987780 + 0.155854i \(0.950187\pi\)
\(510\) 0 0
\(511\) 4303.57i 0.372561i
\(512\) 0 0
\(513\) −1196.00 + 785.249i −0.102933 + 0.0675820i
\(514\) 0 0
\(515\) −20280.0 −1.73523
\(516\) 0 0
\(517\) −17664.0 −1.50263
\(518\) 0 0
\(519\) 6188.00 1213.57i 0.523358 0.102639i
\(520\) 0 0
\(521\) 1590.89i 0.133778i 0.997760 + 0.0668890i \(0.0213073\pi\)
−0.997760 + 0.0668890i \(0.978693\pi\)
\(522\) 0 0
\(523\) 4109.81i 0.343613i −0.985131 0.171806i \(-0.945040\pi\)
0.985131 0.171806i \(-0.0549603\pi\)
\(524\) 0 0
\(525\) −1092.00 + 214.159i −0.0907786 + 0.0178032i
\(526\) 0 0
\(527\) 4368.00 0.361049
\(528\) 0 0
\(529\) −4423.00 −0.363524
\(530\) 0 0
\(531\) 15750.0 6424.76i 1.28718 0.525068i
\(532\) 0 0
\(533\) 21538.3i 1.75033i
\(534\) 0 0
\(535\) 2386.34i 0.192842i
\(536\) 0 0
\(537\) −2382.00 12145.9i −0.191417 0.976039i
\(538\) 0 0
\(539\) 10994.0 0.878562
\(540\) 0 0
\(541\) −9484.00 −0.753695 −0.376848 0.926275i \(-0.622992\pi\)
−0.376848 + 0.926275i \(0.622992\pi\)
\(542\) 0 0
\(543\) 2652.00 + 13522.6i 0.209592 + 1.06871i
\(544\) 0 0
\(545\) 7383.38i 0.580311i
\(546\) 0 0
\(547\) 5476.35i 0.428065i 0.976827 + 0.214033i \(0.0686599\pi\)
−0.976827 + 0.214033i \(0.931340\pi\)
\(548\) 0 0
\(549\) 5900.00 2406.74i 0.458663 0.187098i
\(550\) 0 0
\(551\) 2600.00 0.201023
\(552\) 0 0
\(553\) 7592.00 0.583806
\(554\) 0 0
\(555\) −17264.0 + 3385.75i −1.32039 + 0.258950i
\(556\) 0 0
\(557\) 1091.19i 0.0830076i 0.999138 + 0.0415038i \(0.0132149\pi\)
−0.999138 + 0.0415038i \(0.986785\pi\)
\(558\) 0 0
\(559\) 10320.4i 0.780871i
\(560\) 0 0
\(561\) −4784.00 + 938.220i −0.360037 + 0.0706090i
\(562\) 0 0
\(563\) 17898.0 1.33981 0.669903 0.742449i \(-0.266336\pi\)
0.669903 + 0.742449i \(0.266336\pi\)
\(564\) 0 0
\(565\) −10400.0 −0.774392
\(566\) 0 0
\(567\) −5200.00 5313.18i −0.385149 0.393532i
\(568\) 0 0
\(569\) 21089.5i 1.55381i −0.629616 0.776907i \(-0.716788\pi\)
0.629616 0.776907i \(-0.283212\pi\)
\(570\) 0 0
\(571\) 3334.76i 0.244405i 0.992505 + 0.122203i \(0.0389958\pi\)
−0.992505 + 0.122203i \(0.961004\pi\)
\(572\) 0 0
\(573\) 4784.00 + 24393.7i 0.348786 + 1.77847i
\(574\) 0 0
\(575\) −1848.00 −0.134029
\(576\) 0 0
\(577\) −5066.00 −0.365512 −0.182756 0.983158i \(-0.558502\pi\)
−0.182756 + 0.983158i \(0.558502\pi\)
\(578\) 0 0
\(579\) 3074.00 + 15674.4i 0.220641 + 1.12505i
\(580\) 0 0
\(581\) 1896.84i 0.135446i
\(582\) 0 0
\(583\) 21109.9i 1.49963i
\(584\) 0 0
\(585\) 4576.00 + 11217.8i 0.323409 + 0.792822i
\(586\) 0 0
\(587\) 20042.0 1.40924 0.704618 0.709587i \(-0.251118\pi\)
0.704618 + 0.709587i \(0.251118\pi\)
\(588\) 0 0
\(589\) −2184.00 −0.152785
\(590\) 0 0
\(591\) −24700.0 + 4844.07i −1.71916 + 0.337155i
\(592\) 0 0
\(593\) 26351.7i 1.82485i 0.409244 + 0.912425i \(0.365792\pi\)
−0.409244 + 0.912425i \(0.634208\pi\)
\(594\) 0 0
\(595\) 2121.19i 0.146152i
\(596\) 0 0
\(597\) −9828.00 + 1927.43i −0.673758 + 0.132135i
\(598\) 0 0
\(599\) −4344.00 −0.296312 −0.148156 0.988964i \(-0.547334\pi\)
−0.148156 + 0.988964i \(0.547334\pi\)
\(600\) 0 0
\(601\) 18250.0 1.23866 0.619329 0.785132i \(-0.287405\pi\)
0.619329 + 0.785132i \(0.287405\pi\)
\(602\) 0 0
\(603\) 520.000 + 1274.75i 0.0351178 + 0.0860896i
\(604\) 0 0
\(605\) 8005.46i 0.537964i
\(606\) 0 0
\(607\) 5272.39i 0.352553i 0.984341 + 0.176276i \(0.0564053\pi\)
−0.984341 + 0.176276i \(0.943595\pi\)
\(608\) 0 0
\(609\) 2600.00 + 13257.5i 0.173001 + 0.882133i
\(610\) 0 0
\(611\) 16896.0 1.11872
\(612\) 0 0
\(613\) 11748.0 0.774058 0.387029 0.922068i \(-0.373501\pi\)
0.387029 + 0.922068i \(0.373501\pi\)
\(614\) 0 0
\(615\) 4992.00 + 25454.3i 0.327312 + 1.66897i
\(616\) 0 0
\(617\) 3895.65i 0.254186i −0.991891 0.127093i \(-0.959435\pi\)
0.991891 0.127093i \(-0.0405647\pi\)
\(618\) 0 0
\(619\) 7189.62i 0.466842i −0.972376 0.233421i \(-0.925008\pi\)
0.972376 0.233421i \(-0.0749920\pi\)
\(620\) 0 0
\(621\) −6776.00 10320.4i −0.437861 0.666899i
\(622\) 0 0
\(623\) 9776.00 0.628679
\(624\) 0 0
\(625\) −12559.0 −0.803776
\(626\) 0 0
\(627\) 2392.00 469.110i 0.152356 0.0298795i
\(628\) 0 0
\(629\) 6771.50i 0.429248i
\(630\) 0 0
\(631\) 26831.0i 1.69275i 0.532585 + 0.846376i \(0.321221\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(632\) 0 0
\(633\) −17524.0 + 3436.74i −1.10034 + 0.215795i
\(634\) 0 0
\(635\) −22984.0 −1.43637
\(636\) 0 0
\(637\) −10516.0 −0.654096
\(638\) 0 0
\(639\) −17000.0 + 6934.67i −1.05244 + 0.429313i
\(640\) 0 0
\(641\) 23639.1i 1.45661i −0.685254 0.728305i \(-0.740309\pi\)
0.685254 0.728305i \(-0.259691\pi\)
\(642\) 0 0
\(643\) 16245.5i 0.996359i 0.867074 + 0.498180i \(0.165998\pi\)
−0.867074 + 0.498180i \(0.834002\pi\)
\(644\) 0 0
\(645\) −2392.00 12196.9i −0.146023 0.744575i
\(646\) 0 0
\(647\) 7384.00 0.448679 0.224339 0.974511i \(-0.427978\pi\)
0.224339 + 0.974511i \(0.427978\pi\)
\(648\) 0 0
\(649\) −28980.0 −1.75280
\(650\) 0 0
\(651\) −2184.00 11136.3i −0.131486 0.670452i
\(652\) 0 0
\(653\) 15082.9i 0.903889i 0.892046 + 0.451944i \(0.149269\pi\)
−0.892046 + 0.451944i \(0.850731\pi\)
\(654\) 0 0
\(655\) 17765.0i 1.05975i
\(656\) 0 0
\(657\) 10550.0 4303.57i 0.626476 0.255553i
\(658\) 0 0
\(659\) −20434.0 −1.20788 −0.603942 0.797028i \(-0.706404\pi\)
−0.603942 + 0.797028i \(0.706404\pi\)
\(660\) 0 0
\(661\) 12148.0 0.714830 0.357415 0.933946i \(-0.383658\pi\)
0.357415 + 0.933946i \(0.383658\pi\)
\(662\) 0 0
\(663\) 4576.00 897.427i 0.268050 0.0525689i
\(664\) 0 0
\(665\) 1060.60i 0.0618468i
\(666\) 0 0
\(667\) 22435.7i 1.30242i
\(668\) 0 0
\(669\) 6292.00 1233.96i 0.363621 0.0713120i
\(670\) 0 0
\(671\) −10856.0 −0.624577
\(672\) 0 0
\(673\) 12730.0 0.729131 0.364566 0.931178i \(-0.381217\pi\)
0.364566 + 0.931178i \(0.381217\pi\)
\(674\) 0 0
\(675\) 1617.00 + 2462.83i 0.0922050 + 0.140436i
\(676\) 0 0
\(677\) 19672.0i 1.11678i 0.829580 + 0.558388i \(0.188580\pi\)
−0.829580 + 0.558388i \(0.811420\pi\)
\(678\) 0 0
\(679\) 10830.3i 0.612120i
\(680\) 0 0
\(681\) 1270.00 + 6475.75i 0.0714633 + 0.364393i
\(682\) 0 0
\(683\) 6558.00 0.367401 0.183701 0.982982i \(-0.441192\pi\)
0.183701 + 0.982982i \(0.441192\pi\)
\(684\) 0 0
\(685\) 24544.0 1.36902
\(686\) 0 0
\(687\) 4556.00 + 23231.1i 0.253016 + 1.29014i
\(688\) 0 0
\(689\) 20192.1i 1.11649i
\(690\) 0 0
\(691\) 30461.5i 1.67701i −0.544896 0.838503i \(-0.683431\pi\)
0.544896 0.838503i \(-0.316569\pi\)
\(692\) 0 0
\(693\) 4784.00 + 11727.7i 0.262235 + 0.642857i
\(694\) 0 0
\(695\) −7800.00 −0.425713
\(696\) 0 0
\(697\) 9984.00 0.542570
\(698\) 0 0
\(699\) 4472.00 877.031i 0.241984 0.0474569i
\(700\) 0 0
\(701\) 31461.0i 1.69510i −0.530717 0.847549i \(-0.678077\pi\)
0.530717 0.847549i \(-0.321923\pi\)
\(702\) 0 0
\(703\) 3385.75i 0.181644i
\(704\) 0 0
\(705\) −19968.0 + 3916.05i −1.06672 + 0.209201i
\(706\) 0 0
\(707\) 104.000 0.00553228
\(708\) 0 0
\(709\) 25396.0 1.34523 0.672614 0.739993i \(-0.265171\pi\)
0.672614 + 0.739993i \(0.265171\pi\)
\(710\) 0 0
\(711\) −7592.00 18611.4i −0.400453 0.981692i
\(712\) 0 0
\(713\) 18846.0i 0.989884i
\(714\) 0 0
\(715\) 20640.8i 1.07961i
\(716\) 0 0
\(717\) −1920.00 9790.12i −0.100005 0.509928i
\(718\) 0 0
\(719\) −7888.00 −0.409142 −0.204571 0.978852i \(-0.565580\pi\)
−0.204571 + 0.978852i \(0.565580\pi\)
\(720\) 0 0
\(721\) 20280.0 1.04753
\(722\) 0 0
\(723\) 1618.00 + 8250.21i 0.0832283 + 0.424383i
\(724\) 0 0
\(725\) 5353.97i 0.274264i
\(726\) 0 0
\(727\) 6475.75i 0.330361i 0.986263 + 0.165181i \(0.0528207\pi\)
−0.986263 + 0.165181i \(0.947179\pi\)
\(728\) 0 0
\(729\) −7825.00 + 18060.7i −0.397551 + 0.917580i
\(730\) 0 0
\(731\) −4784.00 −0.242056
\(732\) 0 0
\(733\) 14772.0 0.744361 0.372180 0.928160i \(-0.378610\pi\)
0.372180 + 0.928160i \(0.378610\pi\)
\(734\) 0 0
\(735\) 12428.0 2437.33i 0.623692 0.122316i
\(736\) 0 0
\(737\) 2345.55i 0.117231i
\(738\) 0 0
\(739\) 22364.3i 1.11324i −0.830767 0.556620i \(-0.812098\pi\)
0.830767 0.556620i \(-0.187902\pi\)
\(740\) 0 0
\(741\) −2288.00 + 448.714i −0.113430 + 0.0222455i
\(742\) 0 0
\(743\) −19080.0 −0.942096 −0.471048 0.882108i \(-0.656124\pi\)
−0.471048 + 0.882108i \(0.656124\pi\)
\(744\) 0 0
\(745\) 4888.00 0.240379
\(746\) 0 0
\(747\) −4650.00 + 1896.84i −0.227757 + 0.0929071i
\(748\) 0 0
\(749\) 2386.34i 0.116415i
\(750\) 0 0
\(751\) 20324.7i 0.987561i 0.869586 + 0.493781i \(0.164385\pi\)
−0.869586 + 0.493781i \(0.835615\pi\)
\(752\) 0 0
\(753\) 1586.00 + 8087.04i 0.0767557 + 0.391379i
\(754\) 0 0
\(755\) −15288.0 −0.736937
\(756\) 0 0
\(757\) −4188.00 −0.201077 −0.100539 0.994933i \(-0.532057\pi\)
−0.100539 + 0.994933i \(0.532057\pi\)
\(758\) 0 0
\(759\) 4048.00 + 20640.8i 0.193588 + 0.987108i
\(760\) 0 0
\(761\) 30757.3i 1.46511i 0.680706 + 0.732556i \(0.261673\pi\)
−0.680706 + 0.732556i \(0.738327\pi\)
\(762\) 0 0
\(763\) 7383.38i 0.350323i
\(764\) 0 0
\(765\) −5200.00 + 2121.19i −0.245760 + 0.100251i
\(766\) 0 0
\(767\) 27720.0 1.30497
\(768\) 0 0
\(769\) −10370.0 −0.486283 −0.243142 0.969991i \(-0.578178\pi\)
−0.243142 + 0.969991i \(0.578178\pi\)
\(770\) 0 0
\(771\) −20176.0 + 3956.84i −0.942440 + 0.184828i
\(772\) 0 0
\(773\) 10779.3i 0.501559i 0.968044 + 0.250780i \(0.0806870\pi\)
−0.968044 + 0.250780i \(0.919313\pi\)
\(774\) 0 0
\(775\) 4497.34i 0.208450i
\(776\) 0 0
\(777\) 17264.0 3385.75i 0.797095 0.156323i
\(778\) 0 0
\(779\) −4992.00 −0.229598
\(780\) 0 0
\(781\) 31280.0 1.43315
\(782\) 0 0
\(783\) 29900.0 19631.2i 1.36467 0.895993i
\(784\) 0 0
\(785\) 19865.8i 0.903236i
\(786\) 0 0
\(787\) 23384.1i 1.05915i 0.848262 + 0.529576i \(0.177649\pi\)
−0.848262 + 0.529576i \(0.822351\pi\)
\(788\) 0 0
\(789\) 4344.00 + 22150.1i 0.196008 + 0.999450i
\(790\) 0 0
\(791\) 10400.0 0.467486
\(792\) 0 0
\(793\) 10384.0 0.465002
\(794\) 0 0
\(795\) 4680.00 + 23863.4i 0.208783 + 1.06459i
\(796\) 0 0
\(797\) 3232.78i 0.143677i −0.997416 0.0718387i \(-0.977113\pi\)
0.997416 0.0718387i \(-0.0228867\pi\)
\(798\) 0 0
\(799\) 7832.09i 0.346783i
\(800\) 0 0
\(801\) −9776.00 23965.4i −0.431233 1.05715i
\(802\) 0 0
\(803\) −19412.0 −0.853094
\(804\) 0 0
\(805\) −9152.00 −0.400703
\(806\) 0 0
\(807\) −13988.0 + 2743.27i −0.610162 + 0.119663i
\(808\) 0 0
\(809\) 33857.5i 1.47140i 0.677305 + 0.735702i \(0.263148\pi\)
−0.677305 + 0.735702i \(0.736852\pi\)
\(810\) 0 0
\(811\) 10493.8i 0.454361i 0.973853 + 0.227180i \(0.0729507\pi\)
−0.973853 + 0.227180i \(0.927049\pi\)
\(812\) 0 0
\(813\) −16588.0 + 3253.17i −0.715580 + 0.140337i
\(814\) 0 0
\(815\) −34632.0 −1.48847
\(816\) 0 0
\(817\) 2392.00 0.102430
\(818\) 0 0
\(819\) −4576.00 11217.8i −0.195236 0.478612i
\(820\) 0 0
\(821\) 15103.3i 0.642032i 0.947074 + 0.321016i \(0.104024\pi\)
−0.947074 + 0.321016i \(0.895976\pi\)
\(822\) 0 0
\(823\) 17958.7i 0.760635i −0.924856 0.380317i \(-0.875815\pi\)
0.924856 0.380317i \(-0.124185\pi\)
\(824\) 0 0
\(825\) −966.000 4925.65i −0.0407658 0.207866i
\(826\) 0 0
\(827\) −6598.00 −0.277430 −0.138715 0.990332i \(-0.544297\pi\)
−0.138715 + 0.990332i \(0.544297\pi\)
\(828\) 0 0
\(829\) 41028.0 1.71889 0.859446 0.511227i \(-0.170809\pi\)
0.859446 + 0.511227i \(0.170809\pi\)
\(830\) 0 0
\(831\) 4956.00 + 25270.7i 0.206885 + 1.05491i
\(832\) 0 0
\(833\) 4874.66i 0.202758i
\(834\) 0 0
\(835\) 20477.7i 0.848693i
\(836\) 0 0
\(837\) −25116.0 + 16490.2i −1.03720 + 0.680987i
\(838\) 0 0
\(839\) −17816.0 −0.733107 −0.366553 0.930397i \(-0.619462\pi\)
−0.366553 + 0.930397i \(0.619462\pi\)
\(840\) 0 0
\(841\) −40611.0 −1.66514
\(842\) 0 0
\(843\) 10088.0 1978.42i 0.412158 0.0808308i
\(844\) 0 0
\(845\) 2661.69i 0.108361i
\(846\) 0 0
\(847\) 8005.46i 0.324759i
\(848\) 0 0
\(849\) 40716.0 7985.06i 1.64590 0.322788i
\(850\) 0 0
\(851\) 29216.0 1.17686
\(852\) 0 0
\(853\) 28308.0 1.13628 0.568140 0.822932i \(-0.307663\pi\)
0.568140 + 0.822932i \(0.307663\pi\)
\(854\) 0 0
\(855\) 2600.00 1060.60i 0.103998 0.0424229i
\(856\) 0 0
\(857\) 33735.1i 1.34466i 0.740254 + 0.672328i \(0.234705\pi\)
−0.740254 + 0.672328i \(0.765295\pi\)
\(858\) 0 0
\(859\) 336.535i 0.0133672i 0.999978 + 0.00668361i \(0.00212747\pi\)
−0.999978 + 0.00668361i \(0.997873\pi\)
\(860\) 0 0
\(861\) −4992.00 25454.3i −0.197592 1.00753i
\(862\) 0 0
\(863\) −48208.0 −1.90153 −0.950764 0.309915i \(-0.899700\pi\)
−0.950764 + 0.309915i \(0.899700\pi\)
\(864\) 0 0
\(865\) −12376.0 −0.486470
\(866\) 0 0
\(867\) −4497.00 22930.3i −0.176155 0.898216i
\(868\) 0 0
\(869\) 34245.0i 1.33680i
\(870\) 0 0
\(871\) 2243.57i 0.0872795i
\(872\) 0 0
\(873\) 26550.0 10830.3i 1.02930 0.419875i
\(874\) 0 0
\(875\) 15184.0 0.586643
\(876\) 0 0
\(877\) −42844.0 −1.64965 −0.824823 0.565391i \(-0.808725\pi\)
−0.824823 + 0.565391i \(0.808725\pi\)
\(878\) 0 0
\(879\) 9412.00 1845.85i 0.361159 0.0708291i
\(880\) 0 0
\(881\) 6975.46i 0.266753i 0.991065 + 0.133376i \(0.0425819\pi\)
−0.991065 + 0.133376i \(0.957418\pi\)
\(882\) 0 0
\(883\) 4803.28i 0.183061i −0.995802 0.0915306i \(-0.970824\pi\)
0.995802 0.0915306i \(-0.0291759\pi\)
\(884\) 0 0
\(885\) −32760.0 + 6424.76i −1.24431 + 0.244029i
\(886\) 0 0
\(887\) 37336.0 1.41333 0.706663 0.707550i \(-0.250200\pi\)
0.706663 + 0.707550i \(0.250200\pi\)
\(888\) 0 0
\(889\) 22984.0 0.867108
\(890\) 0 0
\(891\) 23966.0 23455.5i 0.901112 0.881917i
\(892\) 0 0
\(893\) 3916.05i 0.146747i
\(894\) 0 0
\(895\) 24291.7i 0.907244i
\(896\) 0 0
\(897\) −3872.00 19743.4i −0.144127 0.734909i
\(898\) 0 0
\(899\) 54600.0 2.02560
\(900\) 0 0
\(901\) 9360.00 0.346090
\(902\) 0 0
\(903\) 2392.00 + 12196.9i 0.0881515 + 0.449486i
\(904\) 0 0
\(905\) 27045.2i 0.993384i
\(906\) 0 0
\(907\) 16490.2i 0.603692i 0.953357 + 0.301846i \(0.0976029\pi\)
−0.953357 + 0.301846i \(0.902397\pi\)
\(908\) 0 0
\(909\) −104.000 254.951i −0.00379479 0.00930274i
\(910\) 0 0
\(911\) 35360.0 1.28598 0.642991 0.765874i \(-0.277693\pi\)
0.642991 + 0.765874i \(0.277693\pi\)
\(912\) 0 0
\(913\) 8556.00 0.310145
\(914\) 0 0
\(915\) −12272.0 + 2406.74i −0.443388 + 0.0869555i
\(916\) 0 0
\(917\) 17765.0i 0.639751i
\(918\) 0 0
\(919\) 4395.35i 0.157769i 0.996884 + 0.0788843i \(0.0251358\pi\)
−0.996884 + 0.0788843i \(0.974864\pi\)
\(920\) 0 0
\(921\) −42276.0 + 8291.01i −1.51253 + 0.296632i
\(922\) 0 0
\(923\) −29920.0 −1.06699
\(924\) 0 0
\(925\) −6972.00 −0.247825
\(926\) 0 0
\(927\) −20280.0 49715.4i −0.718536 1.76146i
\(928\) 0 0
\(929\) 1815.25i 0.0641081i 0.999486 + 0.0320541i \(0.0102049\pi\)
−0.999486 + 0.0320541i \(0.989795\pi\)
\(930\) 0 0
\(931\) 2437.33i 0.0858005i
\(932\) 0 0
\(933\) −10104.0 51520.5i −0.354545 1.80783i
\(934\) 0 0
\(935\) 9568.00 0.334660
\(936\) 0 0
\(937\) −34034.0 −1.18660 −0.593299 0.804982i \(-0.702175\pi\)
−0.593299 + 0.804982i \(0.702175\pi\)
\(938\) 0 0
\(939\) 1198.00 + 6108.63i 0.0416350 + 0.212298i
\(940\) 0 0
\(941\) 36967.9i 1.28068i −0.768092 0.640339i \(-0.778794\pi\)
0.768092 0.640339i \(-0.221206\pi\)
\(942\) 0 0
\(943\) 43076.5i 1.48756i
\(944\) 0 0
\(945\) 8008.00 + 12196.9i 0.275662 + 0.419856i
\(946\) 0 0
\(947\) 24862.0 0.853122 0.426561 0.904459i \(-0.359725\pi\)
0.426561 + 0.904459i \(0.359725\pi\)
\(948\) 0 0
\(949\) 18568.0 0.635135
\(950\) 0 0
\(951\) −25636.0 + 5027.63i −0.874137 + 0.171432i
\(952\) 0 0
\(953\) 22802.8i 0.775085i −0.921852 0.387542i \(-0.873324\pi\)
0.921852 0.387542i \(-0.126676\pi\)
\(954\) 0 0
\(955\) 48787.4i 1.65311i
\(956\) 0 0
\(957\) −59800.0 + 11727.7i −2.01992 + 0.396138i
\(958\) 0 0
\(959\) −24544.0 −0.826452
\(960\) 0 0
\(961\) −16073.0 −0.539525
\(962\) 0 0
\(963\) −5850.00 + 2386.34i −0.195757 + 0.0798533i
\(964\) 0 0
\(965\) 31348.8i 1.04575i
\(966\) 0 0
\(967\) 40068.1i 1.33247i −0.745740 0.666237i \(-0.767904\pi\)
0.745740 0.666237i \(-0.232096\pi\)
\(968\) 0 0
\(969\) −208.000 1060.60i −0.00689569 0.0351613i
\(970\) 0 0
\(971\) −43522.0 −1.43840 −0.719201 0.694803i \(-0.755492\pi\)
−0.719201 + 0.694803i \(0.755492\pi\)
\(972\) 0 0
\(973\) 7800.00 0.256995
\(974\) 0 0
\(975\) 924.000 + 4711.49i 0.0303504 + 0.154758i
\(976\) 0 0
\(977\) 17683.4i 0.579060i 0.957169 + 0.289530i \(0.0934991\pi\)
−0.957169 + 0.289530i \(0.906501\pi\)
\(978\) 0 0
\(979\) 44096.3i 1.43956i
\(980\) 0 0
\(981\) −18100.0 + 7383.38i −0.589081 + 0.240299i
\(982\) 0 0
\(983\) 42360.0 1.37444 0.687220 0.726450i \(-0.258831\pi\)
0.687220 + 0.726450i \(0.258831\pi\)
\(984\) 0 0
\(985\) 49400.0 1.59798
\(986\) 0 0
\(987\) 19968.0 3916.05i 0.643960 0.126291i
\(988\) 0 0
\(989\) 20640.8i 0.663640i
\(990\) 0 0
\(991\) 25199.4i 0.807754i −0.914813 0.403877i \(-0.867662\pi\)
0.914813 0.403877i \(-0.132338\pi\)
\(992\) 0 0
\(993\) −31252.0 + 6129.02i −0.998743 + 0.195870i
\(994\) 0 0
\(995\) 19656.0 0.626268
\(996\) 0 0
\(997\) −5356.00 −0.170137 −0.0850683 0.996375i \(-0.527111\pi\)
−0.0850683 + 0.996375i \(0.527111\pi\)
\(998\) 0 0
\(999\) −25564.0 38936.1i −0.809619 1.23312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.4.c.d.767.1 2
3.2 odd 2 768.4.c.f.767.1 2
4.3 odd 2 768.4.c.f.767.2 2
8.3 odd 2 768.4.c.e.767.1 2
8.5 even 2 768.4.c.g.767.2 2
12.11 even 2 inner 768.4.c.d.767.2 2
16.3 odd 4 384.4.f.e.191.2 yes 4
16.5 even 4 384.4.f.f.191.2 yes 4
16.11 odd 4 384.4.f.e.191.3 yes 4
16.13 even 4 384.4.f.f.191.3 yes 4
24.5 odd 2 768.4.c.e.767.2 2
24.11 even 2 768.4.c.g.767.1 2
48.5 odd 4 384.4.f.e.191.1 4
48.11 even 4 384.4.f.f.191.4 yes 4
48.29 odd 4 384.4.f.e.191.4 yes 4
48.35 even 4 384.4.f.f.191.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.f.e.191.1 4 48.5 odd 4
384.4.f.e.191.2 yes 4 16.3 odd 4
384.4.f.e.191.3 yes 4 16.11 odd 4
384.4.f.e.191.4 yes 4 48.29 odd 4
384.4.f.f.191.1 yes 4 48.35 even 4
384.4.f.f.191.2 yes 4 16.5 even 4
384.4.f.f.191.3 yes 4 16.13 even 4
384.4.f.f.191.4 yes 4 48.11 even 4
768.4.c.d.767.1 2 1.1 even 1 trivial
768.4.c.d.767.2 2 12.11 even 2 inner
768.4.c.e.767.1 2 8.3 odd 2
768.4.c.e.767.2 2 24.5 odd 2
768.4.c.f.767.1 2 3.2 odd 2
768.4.c.f.767.2 2 4.3 odd 2
768.4.c.g.767.1 2 24.11 even 2
768.4.c.g.767.2 2 8.5 even 2