Defining parameters
Level: | \( N \) | = | \( 768 = 2^{8} \cdot 3 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(131072\) | ||
Trace bound: | \(49\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(768))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 49856 | 20840 | 29016 |
Cusp forms | 48448 | 20632 | 27816 |
Eisenstein series | 1408 | 208 | 1200 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(768))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(768))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(768)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(384))\)\(^{\oplus 2}\)