Properties

Label 768.2.s.a.335.28
Level $768$
Weight $2$
Character 768.335
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 335.28
Character \(\chi\) \(=\) 768.335
Dual form 768.2.s.a.431.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67061 + 0.457221i) q^{3} +(-1.45822 - 2.18239i) q^{5} +(1.27779 - 3.08486i) q^{7} +(2.58190 + 1.52768i) q^{9} +(-2.31748 - 0.460975i) q^{11} +(-5.55652 - 3.71275i) q^{13} +(-1.43829 - 4.31265i) q^{15} +(-3.42067 - 3.42067i) q^{17} +(1.23054 + 0.822221i) q^{19} +(3.54516 - 4.56938i) q^{21} +(1.87568 + 4.52828i) q^{23} +(-0.722975 + 1.74542i) q^{25} +(3.61486 + 3.73266i) q^{27} +(-0.760797 - 3.82478i) q^{29} +0.0497279 q^{31} +(-3.66084 - 1.82971i) q^{33} +(-8.59567 + 1.70978i) q^{35} +(5.53510 + 8.28386i) q^{37} +(-7.58524 - 8.74312i) q^{39} +(2.28385 - 0.946002i) q^{41} +(0.522190 + 0.103870i) q^{43} +(-0.430996 - 7.86240i) q^{45} +(2.51930 - 2.51930i) q^{47} +(-2.93388 - 2.93388i) q^{49} +(-4.15061 - 7.27862i) q^{51} +(1.79038 - 9.00087i) q^{53} +(2.37338 + 5.72983i) q^{55} +(1.67982 + 1.93624i) q^{57} +(-2.56739 + 1.71547i) q^{59} +(-0.935842 - 4.70479i) q^{61} +(8.01181 - 6.01274i) q^{63} +17.5405i q^{65} +(3.65093 - 0.726215i) q^{67} +(1.06310 + 8.42261i) q^{69} +(12.6483 + 5.23910i) q^{71} +(13.6168 - 5.64025i) q^{73} +(-2.00585 + 2.58536i) q^{75} +(-4.38330 + 6.56007i) q^{77} +(1.69637 - 1.69637i) q^{79} +(4.33239 + 7.88863i) q^{81} +(5.63016 - 8.42612i) q^{83} +(-2.47712 + 12.4533i) q^{85} +(0.477776 - 6.73759i) q^{87} +(8.26075 + 3.42172i) q^{89} +(-18.5534 + 12.3970i) q^{91} +(0.0830760 + 0.0227366i) q^{93} -3.88450i q^{95} +3.93119i q^{97} +(-5.27927 - 4.73055i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67061 + 0.457221i 0.964529 + 0.263977i
\(4\) 0 0
\(5\) −1.45822 2.18239i −0.652138 0.975993i −0.999271 0.0381770i \(-0.987845\pi\)
0.347133 0.937816i \(-0.387155\pi\)
\(6\) 0 0
\(7\) 1.27779 3.08486i 0.482960 1.16597i −0.475237 0.879858i \(-0.657638\pi\)
0.958197 0.286111i \(-0.0923625\pi\)
\(8\) 0 0
\(9\) 2.58190 + 1.52768i 0.860632 + 0.509227i
\(10\) 0 0
\(11\) −2.31748 0.460975i −0.698746 0.138989i −0.167080 0.985943i \(-0.553434\pi\)
−0.531666 + 0.846954i \(0.678434\pi\)
\(12\) 0 0
\(13\) −5.55652 3.71275i −1.54110 1.02973i −0.979289 0.202465i \(-0.935105\pi\)
−0.561811 0.827266i \(-0.689895\pi\)
\(14\) 0 0
\(15\) −1.43829 4.31265i −0.371366 1.11352i
\(16\) 0 0
\(17\) −3.42067 3.42067i −0.829634 0.829634i 0.157832 0.987466i \(-0.449550\pi\)
−0.987466 + 0.157832i \(0.949550\pi\)
\(18\) 0 0
\(19\) 1.23054 + 0.822221i 0.282305 + 0.188630i 0.688659 0.725086i \(-0.258200\pi\)
−0.406353 + 0.913716i \(0.633200\pi\)
\(20\) 0 0
\(21\) 3.54516 4.56938i 0.773618 0.997120i
\(22\) 0 0
\(23\) 1.87568 + 4.52828i 0.391105 + 0.944212i 0.989700 + 0.143160i \(0.0457263\pi\)
−0.598594 + 0.801052i \(0.704274\pi\)
\(24\) 0 0
\(25\) −0.722975 + 1.74542i −0.144595 + 0.349083i
\(26\) 0 0
\(27\) 3.61486 + 3.73266i 0.695681 + 0.718351i
\(28\) 0 0
\(29\) −0.760797 3.82478i −0.141276 0.710245i −0.984874 0.173269i \(-0.944567\pi\)
0.843598 0.536975i \(-0.180433\pi\)
\(30\) 0 0
\(31\) 0.0497279 0.00893139 0.00446569 0.999990i \(-0.498579\pi\)
0.00446569 + 0.999990i \(0.498579\pi\)
\(32\) 0 0
\(33\) −3.66084 1.82971i −0.637271 0.318512i
\(34\) 0 0
\(35\) −8.59567 + 1.70978i −1.45293 + 0.289006i
\(36\) 0 0
\(37\) 5.53510 + 8.28386i 0.909965 + 1.36186i 0.932138 + 0.362104i \(0.117942\pi\)
−0.0221727 + 0.999754i \(0.507058\pi\)
\(38\) 0 0
\(39\) −7.58524 8.74312i −1.21461 1.40002i
\(40\) 0 0
\(41\) 2.28385 0.946002i 0.356678 0.147741i −0.197147 0.980374i \(-0.563168\pi\)
0.553825 + 0.832633i \(0.313168\pi\)
\(42\) 0 0
\(43\) 0.522190 + 0.103870i 0.0796333 + 0.0158400i 0.234746 0.972057i \(-0.424574\pi\)
−0.155113 + 0.987897i \(0.549574\pi\)
\(44\) 0 0
\(45\) −0.430996 7.86240i −0.0642491 1.17206i
\(46\) 0 0
\(47\) 2.51930 2.51930i 0.367477 0.367477i −0.499079 0.866556i \(-0.666328\pi\)
0.866556 + 0.499079i \(0.166328\pi\)
\(48\) 0 0
\(49\) −2.93388 2.93388i −0.419126 0.419126i
\(50\) 0 0
\(51\) −4.15061 7.27862i −0.581202 1.01921i
\(52\) 0 0
\(53\) 1.79038 9.00087i 0.245928 1.23636i −0.638476 0.769642i \(-0.720435\pi\)
0.884404 0.466722i \(-0.154565\pi\)
\(54\) 0 0
\(55\) 2.37338 + 5.72983i 0.320026 + 0.772611i
\(56\) 0 0
\(57\) 1.67982 + 1.93624i 0.222498 + 0.256461i
\(58\) 0 0
\(59\) −2.56739 + 1.71547i −0.334245 + 0.223336i −0.711355 0.702833i \(-0.751918\pi\)
0.377109 + 0.926169i \(0.376918\pi\)
\(60\) 0 0
\(61\) −0.935842 4.70479i −0.119822 0.602387i −0.993304 0.115530i \(-0.963143\pi\)
0.873482 0.486857i \(-0.161857\pi\)
\(62\) 0 0
\(63\) 8.01181 6.01274i 1.00939 0.757534i
\(64\) 0 0
\(65\) 17.5405i 2.17563i
\(66\) 0 0
\(67\) 3.65093 0.726215i 0.446032 0.0887213i 0.0330361 0.999454i \(-0.489482\pi\)
0.412996 + 0.910733i \(0.364482\pi\)
\(68\) 0 0
\(69\) 1.06310 + 8.42261i 0.127982 + 1.01396i
\(70\) 0 0
\(71\) 12.6483 + 5.23910i 1.50108 + 0.621767i 0.973694 0.227860i \(-0.0731728\pi\)
0.527384 + 0.849627i \(0.323173\pi\)
\(72\) 0 0
\(73\) 13.6168 5.64025i 1.59372 0.660142i 0.603213 0.797580i \(-0.293887\pi\)
0.990510 + 0.137439i \(0.0438870\pi\)
\(74\) 0 0
\(75\) −2.00585 + 2.58536i −0.231616 + 0.298531i
\(76\) 0 0
\(77\) −4.38330 + 6.56007i −0.499523 + 0.747589i
\(78\) 0 0
\(79\) 1.69637 1.69637i 0.190856 0.190856i −0.605210 0.796066i \(-0.706911\pi\)
0.796066 + 0.605210i \(0.206911\pi\)
\(80\) 0 0
\(81\) 4.33239 + 7.88863i 0.481376 + 0.876514i
\(82\) 0 0
\(83\) 5.63016 8.42612i 0.617990 0.924887i −0.382010 0.924158i \(-0.624768\pi\)
1.00000 0.000728896i \(-0.000232015\pi\)
\(84\) 0 0
\(85\) −2.47712 + 12.4533i −0.268681 + 1.35075i
\(86\) 0 0
\(87\) 0.477776 6.73759i 0.0512229 0.722345i
\(88\) 0 0
\(89\) 8.26075 + 3.42172i 0.875638 + 0.362701i 0.774804 0.632202i \(-0.217849\pi\)
0.100834 + 0.994903i \(0.467849\pi\)
\(90\) 0 0
\(91\) −18.5534 + 12.3970i −1.94492 + 1.29956i
\(92\) 0 0
\(93\) 0.0830760 + 0.0227366i 0.00861458 + 0.00235768i
\(94\) 0 0
\(95\) 3.88450i 0.398541i
\(96\) 0 0
\(97\) 3.93119i 0.399152i 0.979882 + 0.199576i \(0.0639565\pi\)
−0.979882 + 0.199576i \(0.936044\pi\)
\(98\) 0 0
\(99\) −5.27927 4.73055i −0.530586 0.475439i
\(100\) 0 0
\(101\) −1.14688 + 0.766317i −0.114118 + 0.0762514i −0.611320 0.791384i \(-0.709361\pi\)
0.497201 + 0.867635i \(0.334361\pi\)
\(102\) 0 0
\(103\) −3.42308 1.41789i −0.337286 0.139708i 0.207611 0.978212i \(-0.433431\pi\)
−0.544897 + 0.838503i \(0.683431\pi\)
\(104\) 0 0
\(105\) −15.1418 1.07373i −1.47769 0.104786i
\(106\) 0 0
\(107\) −0.353820 + 1.77877i −0.0342051 + 0.171960i −0.994112 0.108359i \(-0.965440\pi\)
0.959907 + 0.280319i \(0.0904404\pi\)
\(108\) 0 0
\(109\) −4.27438 + 6.39706i −0.409411 + 0.612728i −0.977676 0.210118i \(-0.932615\pi\)
0.568264 + 0.822846i \(0.307615\pi\)
\(110\) 0 0
\(111\) 5.45945 + 16.3699i 0.518188 + 1.55376i
\(112\) 0 0
\(113\) 7.68145 7.68145i 0.722610 0.722610i −0.246526 0.969136i \(-0.579289\pi\)
0.969136 + 0.246526i \(0.0792891\pi\)
\(114\) 0 0
\(115\) 7.14731 10.6967i 0.666490 0.997472i
\(116\) 0 0
\(117\) −8.67447 18.0745i −0.801955 1.67099i
\(118\) 0 0
\(119\) −14.9232 + 6.18139i −1.36801 + 0.566647i
\(120\) 0 0
\(121\) −5.00447 2.07292i −0.454952 0.188447i
\(122\) 0 0
\(123\) 4.24796 0.536178i 0.383026 0.0483456i
\(124\) 0 0
\(125\) −8.00807 + 1.59290i −0.716263 + 0.142474i
\(126\) 0 0
\(127\) 2.11042i 0.187270i 0.995607 + 0.0936348i \(0.0298486\pi\)
−0.995607 + 0.0936348i \(0.970151\pi\)
\(128\) 0 0
\(129\) 0.824886 + 0.412283i 0.0726272 + 0.0362995i
\(130\) 0 0
\(131\) −2.13696 10.7432i −0.186707 0.938640i −0.954561 0.298015i \(-0.903675\pi\)
0.767854 0.640625i \(-0.221325\pi\)
\(132\) 0 0
\(133\) 4.10881 2.74542i 0.356279 0.238058i
\(134\) 0 0
\(135\) 2.87483 13.3321i 0.247426 1.14744i
\(136\) 0 0
\(137\) −1.35133 3.26240i −0.115452 0.278726i 0.855582 0.517667i \(-0.173200\pi\)
−0.971034 + 0.238942i \(0.923200\pi\)
\(138\) 0 0
\(139\) −2.25479 + 11.3356i −0.191249 + 0.961475i 0.759262 + 0.650785i \(0.225560\pi\)
−0.950511 + 0.310690i \(0.899440\pi\)
\(140\) 0 0
\(141\) 5.36065 3.05689i 0.451448 0.257437i
\(142\) 0 0
\(143\) 11.1656 + 11.1656i 0.933716 + 0.933716i
\(144\) 0 0
\(145\) −7.23774 + 7.23774i −0.601062 + 0.601062i
\(146\) 0 0
\(147\) −3.55995 6.24281i −0.293619 0.514898i
\(148\) 0 0
\(149\) −9.41669 1.87310i −0.771445 0.153450i −0.206353 0.978478i \(-0.566159\pi\)
−0.565092 + 0.825028i \(0.691159\pi\)
\(150\) 0 0
\(151\) −15.4374 + 6.39437i −1.25628 + 0.520367i −0.908765 0.417309i \(-0.862973\pi\)
−0.347511 + 0.937676i \(0.612973\pi\)
\(152\) 0 0
\(153\) −3.60613 14.0575i −0.291538 1.13648i
\(154\) 0 0
\(155\) −0.0725144 0.108525i −0.00582449 0.00871697i
\(156\) 0 0
\(157\) −1.10477 + 0.219752i −0.0881699 + 0.0175381i −0.238978 0.971025i \(-0.576812\pi\)
0.150808 + 0.988563i \(0.451812\pi\)
\(158\) 0 0
\(159\) 7.10643 14.2184i 0.563576 1.12759i
\(160\) 0 0
\(161\) 16.3659 1.28981
\(162\) 0 0
\(163\) 3.95820 + 19.8992i 0.310030 + 1.55863i 0.750507 + 0.660862i \(0.229809\pi\)
−0.440477 + 0.897764i \(0.645191\pi\)
\(164\) 0 0
\(165\) 1.34519 + 10.6575i 0.104723 + 0.829685i
\(166\) 0 0
\(167\) 0.109882 0.265279i 0.00850292 0.0205279i −0.919571 0.392924i \(-0.871464\pi\)
0.928074 + 0.372396i \(0.121464\pi\)
\(168\) 0 0
\(169\) 12.1155 + 29.2494i 0.931963 + 2.24996i
\(170\) 0 0
\(171\) 1.92104 + 4.00276i 0.146905 + 0.306099i
\(172\) 0 0
\(173\) −11.1530 7.45221i −0.847948 0.566581i 0.0539429 0.998544i \(-0.482821\pi\)
−0.901891 + 0.431963i \(0.857821\pi\)
\(174\) 0 0
\(175\) 4.46056 + 4.46056i 0.337187 + 0.337187i
\(176\) 0 0
\(177\) −5.07346 + 1.69203i −0.381345 + 0.127181i
\(178\) 0 0
\(179\) 13.7986 + 9.21991i 1.03135 + 0.689128i 0.951491 0.307677i \(-0.0995518\pi\)
0.0798628 + 0.996806i \(0.474552\pi\)
\(180\) 0 0
\(181\) −0.368628 0.0733247i −0.0273999 0.00545018i 0.181371 0.983415i \(-0.441946\pi\)
−0.208771 + 0.977965i \(0.566946\pi\)
\(182\) 0 0
\(183\) 0.587703 8.28778i 0.0434442 0.612650i
\(184\) 0 0
\(185\) 10.0072 24.1595i 0.735742 1.77624i
\(186\) 0 0
\(187\) 6.35048 + 9.50417i 0.464393 + 0.695014i
\(188\) 0 0
\(189\) 16.1338 6.38180i 1.17356 0.464207i
\(190\) 0 0
\(191\) 4.88024 0.353122 0.176561 0.984290i \(-0.443503\pi\)
0.176561 + 0.984290i \(0.443503\pi\)
\(192\) 0 0
\(193\) −7.52929 −0.541970 −0.270985 0.962584i \(-0.587349\pi\)
−0.270985 + 0.962584i \(0.587349\pi\)
\(194\) 0 0
\(195\) −8.01988 + 29.3034i −0.574316 + 2.09846i
\(196\) 0 0
\(197\) 8.61841 + 12.8984i 0.614036 + 0.918970i 0.999994 0.00354629i \(-0.00112882\pi\)
−0.385957 + 0.922517i \(0.626129\pi\)
\(198\) 0 0
\(199\) −4.43073 + 10.6967i −0.314086 + 0.758271i 0.685459 + 0.728111i \(0.259602\pi\)
−0.999545 + 0.0301595i \(0.990398\pi\)
\(200\) 0 0
\(201\) 6.43133 + 0.456058i 0.453631 + 0.0321679i
\(202\) 0 0
\(203\) −12.7711 2.54032i −0.896354 0.178296i
\(204\) 0 0
\(205\) −5.39491 3.60476i −0.376797 0.251768i
\(206\) 0 0
\(207\) −2.07496 + 14.5570i −0.144220 + 1.01178i
\(208\) 0 0
\(209\) −2.47273 2.47273i −0.171042 0.171042i
\(210\) 0 0
\(211\) −17.8899 11.9536i −1.23159 0.822923i −0.242489 0.970154i \(-0.577964\pi\)
−0.989102 + 0.147232i \(0.952964\pi\)
\(212\) 0 0
\(213\) 18.7350 + 14.5356i 1.28370 + 0.995962i
\(214\) 0 0
\(215\) −0.534786 1.29109i −0.0364721 0.0880514i
\(216\) 0 0
\(217\) 0.0635419 0.153404i 0.00431350 0.0104137i
\(218\) 0 0
\(219\) 25.3272 3.19680i 1.71145 0.216020i
\(220\) 0 0
\(221\) 6.30693 + 31.7071i 0.424250 + 2.13285i
\(222\) 0 0
\(223\) 1.45744 0.0975977 0.0487989 0.998809i \(-0.484461\pi\)
0.0487989 + 0.998809i \(0.484461\pi\)
\(224\) 0 0
\(225\) −4.53309 + 3.40201i −0.302206 + 0.226801i
\(226\) 0 0
\(227\) −19.3684 + 3.85261i −1.28552 + 0.255707i −0.790118 0.612955i \(-0.789981\pi\)
−0.495406 + 0.868662i \(0.664981\pi\)
\(228\) 0 0
\(229\) 0.936069 + 1.40093i 0.0618572 + 0.0925758i 0.861109 0.508421i \(-0.169771\pi\)
−0.799252 + 0.600997i \(0.794771\pi\)
\(230\) 0 0
\(231\) −10.3222 + 8.95520i −0.679151 + 0.589209i
\(232\) 0 0
\(233\) −14.4154 + 5.97104i −0.944382 + 0.391176i −0.801117 0.598508i \(-0.795760\pi\)
−0.143266 + 0.989684i \(0.545760\pi\)
\(234\) 0 0
\(235\) −9.17178 1.82438i −0.598301 0.119009i
\(236\) 0 0
\(237\) 3.60959 2.05836i 0.234468 0.133705i
\(238\) 0 0
\(239\) −0.690266 + 0.690266i −0.0446496 + 0.0446496i −0.729079 0.684429i \(-0.760051\pi\)
0.684429 + 0.729079i \(0.260051\pi\)
\(240\) 0 0
\(241\) −10.6103 10.6103i −0.683472 0.683472i 0.277309 0.960781i \(-0.410558\pi\)
−0.960781 + 0.277309i \(0.910558\pi\)
\(242\) 0 0
\(243\) 3.63090 + 15.1597i 0.232922 + 0.972495i
\(244\) 0 0
\(245\) −2.12461 + 10.6811i −0.135736 + 0.682391i
\(246\) 0 0
\(247\) −3.78482 9.13737i −0.240822 0.581397i
\(248\) 0 0
\(249\) 13.2584 11.5026i 0.840218 0.728945i
\(250\) 0 0
\(251\) 22.7440 15.1971i 1.43559 0.959232i 0.437391 0.899272i \(-0.355903\pi\)
0.998201 0.0599600i \(-0.0190973\pi\)
\(252\) 0 0
\(253\) −2.25941 11.3588i −0.142048 0.714124i
\(254\) 0 0
\(255\) −9.83224 + 19.6721i −0.615719 + 1.23191i
\(256\) 0 0
\(257\) 4.51818i 0.281836i 0.990021 + 0.140918i \(0.0450054\pi\)
−0.990021 + 0.140918i \(0.954995\pi\)
\(258\) 0 0
\(259\) 32.6273 6.48997i 2.02736 0.403267i
\(260\) 0 0
\(261\) 3.87875 11.0375i 0.240088 0.683201i
\(262\) 0 0
\(263\) 2.04943 + 0.848904i 0.126374 + 0.0523456i 0.444974 0.895543i \(-0.353213\pi\)
−0.318601 + 0.947889i \(0.603213\pi\)
\(264\) 0 0
\(265\) −22.2541 + 9.21797i −1.36706 + 0.566255i
\(266\) 0 0
\(267\) 12.2360 + 9.49335i 0.748833 + 0.580984i
\(268\) 0 0
\(269\) 12.8156 19.1799i 0.781379 1.16942i −0.200460 0.979702i \(-0.564244\pi\)
0.981839 0.189715i \(-0.0607564\pi\)
\(270\) 0 0
\(271\) 4.68156 4.68156i 0.284384 0.284384i −0.550470 0.834855i \(-0.685552\pi\)
0.834855 + 0.550470i \(0.185552\pi\)
\(272\) 0 0
\(273\) −36.6637 + 12.2275i −2.21899 + 0.740045i
\(274\) 0 0
\(275\) 2.48007 3.71169i 0.149554 0.223823i
\(276\) 0 0
\(277\) 0.351539 1.76730i 0.0211219 0.106187i −0.968786 0.247898i \(-0.920260\pi\)
0.989908 + 0.141711i \(0.0452603\pi\)
\(278\) 0 0
\(279\) 0.128392 + 0.0759683i 0.00768664 + 0.00454810i
\(280\) 0 0
\(281\) 6.33662 + 2.62472i 0.378011 + 0.156577i 0.563595 0.826051i \(-0.309418\pi\)
−0.185584 + 0.982628i \(0.559418\pi\)
\(282\) 0 0
\(283\) 19.0458 12.7260i 1.13215 0.756481i 0.159146 0.987255i \(-0.449126\pi\)
0.973007 + 0.230774i \(0.0741259\pi\)
\(284\) 0 0
\(285\) 1.77607 6.48949i 0.105206 0.384404i
\(286\) 0 0
\(287\) 8.25416i 0.487228i
\(288\) 0 0
\(289\) 6.40197i 0.376586i
\(290\) 0 0
\(291\) −1.79742 + 6.56750i −0.105367 + 0.384994i
\(292\) 0 0
\(293\) −10.4198 + 6.96228i −0.608731 + 0.406741i −0.821375 0.570389i \(-0.806793\pi\)
0.212644 + 0.977130i \(0.431793\pi\)
\(294\) 0 0
\(295\) 7.48765 + 3.10149i 0.435948 + 0.180575i
\(296\) 0 0
\(297\) −6.65670 10.3167i −0.386261 0.598637i
\(298\) 0 0
\(299\) 6.39014 32.1254i 0.369551 1.85786i
\(300\) 0 0
\(301\) 0.987675 1.47816i 0.0569287 0.0851998i
\(302\) 0 0
\(303\) −2.26636 + 0.755844i −0.130199 + 0.0434221i
\(304\) 0 0
\(305\) −8.90301 + 8.90301i −0.509785 + 0.509785i
\(306\) 0 0
\(307\) 7.76821 11.6259i 0.443355 0.663528i −0.540736 0.841192i \(-0.681854\pi\)
0.984091 + 0.177665i \(0.0568542\pi\)
\(308\) 0 0
\(309\) −5.07036 3.93385i −0.288442 0.223789i
\(310\) 0 0
\(311\) −30.5106 + 12.6379i −1.73010 + 0.716630i −0.730673 + 0.682728i \(0.760794\pi\)
−0.999425 + 0.0339024i \(0.989206\pi\)
\(312\) 0 0
\(313\) −0.773283 0.320305i −0.0437086 0.0181047i 0.360722 0.932673i \(-0.382530\pi\)
−0.404431 + 0.914569i \(0.632530\pi\)
\(314\) 0 0
\(315\) −24.8051 8.71694i −1.39761 0.491144i
\(316\) 0 0
\(317\) 13.4190 2.66920i 0.753685 0.149917i 0.196728 0.980458i \(-0.436969\pi\)
0.556958 + 0.830541i \(0.311969\pi\)
\(318\) 0 0
\(319\) 9.21456i 0.515916i
\(320\) 0 0
\(321\) −1.40439 + 2.80987i −0.0783853 + 0.156831i
\(322\) 0 0
\(323\) −1.39673 7.02182i −0.0777159 0.390704i
\(324\) 0 0
\(325\) 10.4975 7.01422i 0.582297 0.389079i
\(326\) 0 0
\(327\) −10.0657 + 8.73268i −0.556635 + 0.482918i
\(328\) 0 0
\(329\) −4.55255 10.9908i −0.250990 0.605944i
\(330\) 0 0
\(331\) −2.41877 + 12.1600i −0.132947 + 0.668372i 0.855621 + 0.517602i \(0.173175\pi\)
−0.988569 + 0.150770i \(0.951825\pi\)
\(332\) 0 0
\(333\) 1.63597 + 29.8439i 0.0896505 + 1.63544i
\(334\) 0 0
\(335\) −6.90875 6.90875i −0.377466 0.377466i
\(336\) 0 0
\(337\) 22.7974 22.7974i 1.24185 1.24185i 0.282622 0.959231i \(-0.408796\pi\)
0.959231 0.282622i \(-0.0912041\pi\)
\(338\) 0 0
\(339\) 16.3449 9.32061i 0.887731 0.506226i
\(340\) 0 0
\(341\) −0.115243 0.0229233i −0.00624077 0.00124137i
\(342\) 0 0
\(343\) 8.79454 3.64282i 0.474860 0.196694i
\(344\) 0 0
\(345\) 16.8311 14.6021i 0.906158 0.786153i
\(346\) 0 0
\(347\) 15.3279 + 22.9398i 0.822843 + 1.23147i 0.970180 + 0.242385i \(0.0779296\pi\)
−0.147338 + 0.989086i \(0.547070\pi\)
\(348\) 0 0
\(349\) 8.15254 1.62164i 0.436395 0.0868044i 0.0279965 0.999608i \(-0.491087\pi\)
0.408399 + 0.912804i \(0.366087\pi\)
\(350\) 0 0
\(351\) −6.22763 34.1617i −0.332406 1.82341i
\(352\) 0 0
\(353\) 12.2210 0.650460 0.325230 0.945635i \(-0.394558\pi\)
0.325230 + 0.945635i \(0.394558\pi\)
\(354\) 0 0
\(355\) −7.01032 35.2433i −0.372069 1.87052i
\(356\) 0 0
\(357\) −27.7572 + 3.50351i −1.46907 + 0.185425i
\(358\) 0 0
\(359\) 3.41180 8.23682i 0.180068 0.434723i −0.807912 0.589303i \(-0.799402\pi\)
0.987980 + 0.154580i \(0.0494025\pi\)
\(360\) 0 0
\(361\) −6.43280 15.5302i −0.338569 0.817377i
\(362\) 0 0
\(363\) −7.41275 5.75120i −0.389069 0.301860i
\(364\) 0 0
\(365\) −32.1655 21.4923i −1.68362 1.12496i
\(366\) 0 0
\(367\) −11.6703 11.6703i −0.609183 0.609183i 0.333550 0.942733i \(-0.391754\pi\)
−0.942733 + 0.333550i \(0.891754\pi\)
\(368\) 0 0
\(369\) 7.34186 + 1.04651i 0.382202 + 0.0544793i
\(370\) 0 0
\(371\) −25.4787 17.0243i −1.32279 0.883859i
\(372\) 0 0
\(373\) 30.2561 + 6.01831i 1.56660 + 0.311616i 0.900706 0.434430i \(-0.143050\pi\)
0.665894 + 0.746046i \(0.268050\pi\)
\(374\) 0 0
\(375\) −14.1067 1.00033i −0.728466 0.0516570i
\(376\) 0 0
\(377\) −9.97307 + 24.0771i −0.513639 + 1.24004i
\(378\) 0 0
\(379\) −12.8100 19.1715i −0.658005 0.984774i −0.999000 0.0447089i \(-0.985764\pi\)
0.340995 0.940065i \(-0.389236\pi\)
\(380\) 0 0
\(381\) −0.964929 + 3.52570i −0.0494348 + 0.180627i
\(382\) 0 0
\(383\) −11.5359 −0.589459 −0.294729 0.955581i \(-0.595230\pi\)
−0.294729 + 0.955581i \(0.595230\pi\)
\(384\) 0 0
\(385\) 20.7084 1.05540
\(386\) 0 0
\(387\) 1.18956 + 1.06592i 0.0604688 + 0.0541838i
\(388\) 0 0
\(389\) 12.8942 + 19.2976i 0.653764 + 0.978427i 0.999200 + 0.0399850i \(0.0127310\pi\)
−0.345436 + 0.938442i \(0.612269\pi\)
\(390\) 0 0
\(391\) 9.07369 21.9058i 0.458876 1.10783i
\(392\) 0 0
\(393\) 1.34200 18.9248i 0.0676948 0.954632i
\(394\) 0 0
\(395\) −6.17581 1.22844i −0.310739 0.0618097i
\(396\) 0 0
\(397\) 2.60492 + 1.74055i 0.130737 + 0.0873557i 0.619219 0.785218i \(-0.287449\pi\)
−0.488482 + 0.872574i \(0.662449\pi\)
\(398\) 0 0
\(399\) 8.11950 2.70790i 0.406483 0.135565i
\(400\) 0 0
\(401\) −24.3210 24.3210i −1.21453 1.21453i −0.969520 0.245012i \(-0.921208\pi\)
−0.245012 0.969520i \(-0.578792\pi\)
\(402\) 0 0
\(403\) −0.276314 0.184627i −0.0137642 0.00919692i
\(404\) 0 0
\(405\) 10.8984 20.9583i 0.541548 1.04143i
\(406\) 0 0
\(407\) −9.00882 21.7492i −0.446550 1.07807i
\(408\) 0 0
\(409\) 3.24175 7.82629i 0.160294 0.386985i −0.823243 0.567689i \(-0.807838\pi\)
0.983538 + 0.180704i \(0.0578376\pi\)
\(410\) 0 0
\(411\) −0.765911 6.06807i −0.0377796 0.299316i
\(412\) 0 0
\(413\) 2.01141 + 10.1121i 0.0989751 + 0.497582i
\(414\) 0 0
\(415\) −26.5991 −1.30570
\(416\) 0 0
\(417\) −8.94978 + 17.9065i −0.438272 + 0.876885i
\(418\) 0 0
\(419\) 30.5931 6.08535i 1.49457 0.297289i 0.620933 0.783864i \(-0.286754\pi\)
0.873639 + 0.486575i \(0.161754\pi\)
\(420\) 0 0
\(421\) −3.52363 5.27349i −0.171731 0.257014i 0.735613 0.677402i \(-0.236894\pi\)
−0.907345 + 0.420388i \(0.861894\pi\)
\(422\) 0 0
\(423\) 10.3532 2.65589i 0.503392 0.129134i
\(424\) 0 0
\(425\) 8.44356 3.49744i 0.409573 0.169651i
\(426\) 0 0
\(427\) −15.7095 3.12481i −0.760234 0.151220i
\(428\) 0 0
\(429\) 13.5483 + 23.7586i 0.654117 + 1.14708i
\(430\) 0 0
\(431\) −25.0198 + 25.0198i −1.20516 + 1.20516i −0.232586 + 0.972576i \(0.574719\pi\)
−0.972576 + 0.232586i \(0.925281\pi\)
\(432\) 0 0
\(433\) −0.182313 0.182313i −0.00876139 0.00876139i 0.702713 0.711474i \(-0.251972\pi\)
−0.711474 + 0.702713i \(0.751972\pi\)
\(434\) 0 0
\(435\) −15.4007 + 8.78222i −0.738408 + 0.421075i
\(436\) 0 0
\(437\) −1.41515 + 7.11445i −0.0676959 + 0.340330i
\(438\) 0 0
\(439\) 15.4119 + 37.2076i 0.735570 + 1.77582i 0.623062 + 0.782172i \(0.285888\pi\)
0.112508 + 0.993651i \(0.464112\pi\)
\(440\) 0 0
\(441\) −3.09295 12.0570i −0.147283 0.574143i
\(442\) 0 0
\(443\) 5.50223 3.67647i 0.261419 0.174674i −0.417953 0.908469i \(-0.637252\pi\)
0.679372 + 0.733794i \(0.262252\pi\)
\(444\) 0 0
\(445\) −4.57852 23.0178i −0.217043 1.09115i
\(446\) 0 0
\(447\) −14.8752 7.43473i −0.703574 0.351651i
\(448\) 0 0
\(449\) 13.3291i 0.629041i −0.949251 0.314520i \(-0.898156\pi\)
0.949251 0.314520i \(-0.101844\pi\)
\(450\) 0 0
\(451\) −5.72886 + 1.13954i −0.269761 + 0.0536589i
\(452\) 0 0
\(453\) −28.7135 + 3.62422i −1.34908 + 0.170281i
\(454\) 0 0
\(455\) 54.1100 + 22.4131i 2.53672 + 1.05074i
\(456\) 0 0
\(457\) −18.5018 + 7.66368i −0.865476 + 0.358492i −0.770847 0.637020i \(-0.780167\pi\)
−0.0946295 + 0.995513i \(0.530167\pi\)
\(458\) 0 0
\(459\) 0.402945 25.1335i 0.0188079 1.17313i
\(460\) 0 0
\(461\) −19.4038 + 29.0398i −0.903724 + 1.35252i 0.0318892 + 0.999491i \(0.489848\pi\)
−0.935613 + 0.353027i \(0.885152\pi\)
\(462\) 0 0
\(463\) 26.4304 26.4304i 1.22833 1.22833i 0.263728 0.964597i \(-0.415048\pi\)
0.964597 0.263728i \(-0.0849522\pi\)
\(464\) 0 0
\(465\) −0.0715233 0.214459i −0.00331681 0.00994530i
\(466\) 0 0
\(467\) −6.62269 + 9.91156i −0.306462 + 0.458652i −0.952450 0.304695i \(-0.901445\pi\)
0.645988 + 0.763347i \(0.276445\pi\)
\(468\) 0 0
\(469\) 2.42485 12.1906i 0.111969 0.562908i
\(470\) 0 0
\(471\) −1.94611 0.138003i −0.0896721 0.00635882i
\(472\) 0 0
\(473\) −1.16228 0.481433i −0.0534418 0.0221363i
\(474\) 0 0
\(475\) −2.32477 + 1.55336i −0.106668 + 0.0712731i
\(476\) 0 0
\(477\) 18.3730 20.5042i 0.841243 0.938822i
\(478\) 0 0
\(479\) 37.9382i 1.73344i 0.498795 + 0.866720i \(0.333776\pi\)
−0.498795 + 0.866720i \(0.666224\pi\)
\(480\) 0 0
\(481\) 66.5798i 3.03578i
\(482\) 0 0
\(483\) 27.3410 + 7.48282i 1.24406 + 0.340480i
\(484\) 0 0
\(485\) 8.57938 5.73256i 0.389569 0.260302i
\(486\) 0 0
\(487\) 20.1298 + 8.33804i 0.912168 + 0.377833i 0.788886 0.614539i \(-0.210658\pi\)
0.123282 + 0.992372i \(0.460658\pi\)
\(488\) 0 0
\(489\) −2.48572 + 35.0536i −0.112408 + 1.58518i
\(490\) 0 0
\(491\) −3.99742 + 20.0964i −0.180401 + 0.906936i 0.779458 + 0.626454i \(0.215494\pi\)
−0.959859 + 0.280482i \(0.909506\pi\)
\(492\) 0 0
\(493\) −10.4809 + 15.6858i −0.472036 + 0.706451i
\(494\) 0 0
\(495\) −2.62554 + 18.4196i −0.118009 + 0.827900i
\(496\) 0 0
\(497\) 32.3238 32.3238i 1.44992 1.44992i
\(498\) 0 0
\(499\) −10.8139 + 16.1841i −0.484095 + 0.724500i −0.990457 0.137821i \(-0.955990\pi\)
0.506362 + 0.862321i \(0.330990\pi\)
\(500\) 0 0
\(501\) 0.304861 0.392937i 0.0136202 0.0175551i
\(502\) 0 0
\(503\) 13.0766 5.41650i 0.583056 0.241510i −0.0716041 0.997433i \(-0.522812\pi\)
0.654660 + 0.755923i \(0.272812\pi\)
\(504\) 0 0
\(505\) 3.34480 + 1.38546i 0.148842 + 0.0616522i
\(506\) 0 0
\(507\) 6.86687 + 54.4040i 0.304969 + 2.41617i
\(508\) 0 0
\(509\) 21.9603 4.36817i 0.973371 0.193616i 0.317309 0.948322i \(-0.397221\pi\)
0.656062 + 0.754707i \(0.272221\pi\)
\(510\) 0 0
\(511\) 49.2130i 2.17705i
\(512\) 0 0
\(513\) 1.37916 + 7.56540i 0.0608916 + 0.334021i
\(514\) 0 0
\(515\) 1.89724 + 9.53808i 0.0836025 + 0.420298i
\(516\) 0 0
\(517\) −6.99975 + 4.67708i −0.307848 + 0.205698i
\(518\) 0 0
\(519\) −15.2251 17.5492i −0.668307 0.770323i
\(520\) 0 0
\(521\) −0.213242 0.514813i −0.00934232 0.0225544i 0.919140 0.393932i \(-0.128885\pi\)
−0.928482 + 0.371378i \(0.878885\pi\)
\(522\) 0 0
\(523\) 0.636430 3.19955i 0.0278291 0.139907i −0.964373 0.264547i \(-0.914778\pi\)
0.992202 + 0.124640i \(0.0397777\pi\)
\(524\) 0 0
\(525\) 5.41241 + 9.49134i 0.236217 + 0.414236i
\(526\) 0 0
\(527\) −0.170103 0.170103i −0.00740979 0.00740979i
\(528\) 0 0
\(529\) −0.723726 + 0.723726i −0.0314664 + 0.0314664i
\(530\) 0 0
\(531\) −9.24942 + 0.507029i −0.401391 + 0.0220032i
\(532\) 0 0
\(533\) −16.2025 3.22288i −0.701809 0.139599i
\(534\) 0 0
\(535\) 4.39792 1.82168i 0.190139 0.0787580i
\(536\) 0 0
\(537\) 18.8365 + 21.7119i 0.812856 + 0.936938i
\(538\) 0 0
\(539\) 5.44675 + 8.15164i 0.234608 + 0.351116i
\(540\) 0 0
\(541\) −18.6138 + 3.70251i −0.800270 + 0.159184i −0.578251 0.815859i \(-0.696265\pi\)
−0.222019 + 0.975042i \(0.571265\pi\)
\(542\) 0 0
\(543\) −0.582309 0.291042i −0.0249893 0.0124898i
\(544\) 0 0
\(545\) 20.1939 0.865010
\(546\) 0 0
\(547\) −0.321617 1.61688i −0.0137513 0.0691327i 0.973300 0.229535i \(-0.0737207\pi\)
−0.987052 + 0.160403i \(0.948721\pi\)
\(548\) 0 0
\(549\) 4.77117 13.5770i 0.203629 0.579451i
\(550\) 0 0
\(551\) 2.20863 5.33209i 0.0940906 0.227155i
\(552\) 0 0
\(553\) −3.06545 7.40066i −0.130356 0.314708i
\(554\) 0 0
\(555\) 27.7643 35.7856i 1.17853 1.51901i
\(556\) 0 0
\(557\) −7.81765 5.22359i −0.331245 0.221330i 0.378815 0.925473i \(-0.376332\pi\)
−0.710059 + 0.704142i \(0.751332\pi\)
\(558\) 0 0
\(559\) −2.51592 2.51592i −0.106412 0.106412i
\(560\) 0 0
\(561\) 6.26369 + 18.7814i 0.264453 + 0.792950i
\(562\) 0 0
\(563\) 25.4030 + 16.9737i 1.07061 + 0.715357i 0.960420 0.278554i \(-0.0898552\pi\)
0.110186 + 0.993911i \(0.464855\pi\)
\(564\) 0 0
\(565\) −27.9652 5.56262i −1.17650 0.234021i
\(566\) 0 0
\(567\) 29.8712 3.28480i 1.25447 0.137949i
\(568\) 0 0
\(569\) −11.5727 + 27.9391i −0.485154 + 1.17127i 0.471977 + 0.881611i \(0.343541\pi\)
−0.957131 + 0.289655i \(0.906459\pi\)
\(570\) 0 0
\(571\) −7.03644 10.5308i −0.294466 0.440700i 0.654507 0.756056i \(-0.272876\pi\)
−0.948973 + 0.315356i \(0.897876\pi\)
\(572\) 0 0
\(573\) 8.15299 + 2.23135i 0.340596 + 0.0932160i
\(574\) 0 0
\(575\) −9.25981 −0.386161
\(576\) 0 0
\(577\) 9.10864 0.379198 0.189599 0.981862i \(-0.439281\pi\)
0.189599 + 0.981862i \(0.439281\pi\)
\(578\) 0 0
\(579\) −12.5785 3.44255i −0.522746 0.143068i
\(580\) 0 0
\(581\) −18.7993 28.1351i −0.779925 1.16724i
\(582\) 0 0
\(583\) −8.29835 + 20.0340i −0.343682 + 0.829723i
\(584\) 0 0
\(585\) −26.7962 + 45.2877i −1.10789 + 1.87242i
\(586\) 0 0
\(587\) −43.4391 8.64058i −1.79292 0.356635i −0.817322 0.576180i \(-0.804543\pi\)
−0.975602 + 0.219546i \(0.929543\pi\)
\(588\) 0 0
\(589\) 0.0611921 + 0.0408873i 0.00252138 + 0.00168473i
\(590\) 0 0
\(591\) 8.50062 + 25.4887i 0.349669 + 1.04846i
\(592\) 0 0
\(593\) −12.4091 12.4091i −0.509580 0.509580i 0.404817 0.914398i \(-0.367335\pi\)
−0.914398 + 0.404817i \(0.867335\pi\)
\(594\) 0 0
\(595\) 35.2516 + 23.5543i 1.44517 + 0.965634i
\(596\) 0 0
\(597\) −12.2928 + 15.8443i −0.503111 + 0.648463i
\(598\) 0 0
\(599\) −5.32882 12.8649i −0.217730 0.525646i 0.776843 0.629695i \(-0.216820\pi\)
−0.994572 + 0.104049i \(0.966820\pi\)
\(600\) 0 0
\(601\) −9.61422 + 23.2108i −0.392172 + 0.946788i 0.597294 + 0.802023i \(0.296243\pi\)
−0.989466 + 0.144765i \(0.953757\pi\)
\(602\) 0 0
\(603\) 10.5357 + 3.70244i 0.429049 + 0.150775i
\(604\) 0 0
\(605\) 2.77373 + 13.9445i 0.112768 + 0.566923i
\(606\) 0 0
\(607\) −7.83446 −0.317991 −0.158995 0.987279i \(-0.550825\pi\)
−0.158995 + 0.987279i \(0.550825\pi\)
\(608\) 0 0
\(609\) −20.1740 10.0831i −0.817493 0.408588i
\(610\) 0 0
\(611\) −23.3520 + 4.64501i −0.944722 + 0.187917i
\(612\) 0 0
\(613\) 16.6418 + 24.9062i 0.672154 + 1.00595i 0.998163 + 0.0605835i \(0.0192961\pi\)
−0.326009 + 0.945367i \(0.605704\pi\)
\(614\) 0 0
\(615\) −7.36463 8.48883i −0.296971 0.342303i
\(616\) 0 0
\(617\) 34.0519 14.1048i 1.37088 0.567836i 0.428852 0.903375i \(-0.358918\pi\)
0.942027 + 0.335538i \(0.108918\pi\)
\(618\) 0 0
\(619\) −29.7566 5.91895i −1.19602 0.237903i −0.443377 0.896335i \(-0.646220\pi\)
−0.752640 + 0.658433i \(0.771220\pi\)
\(620\) 0 0
\(621\) −10.1222 + 23.3704i −0.406191 + 0.937821i
\(622\) 0 0
\(623\) 21.1110 21.1110i 0.845796 0.845796i
\(624\) 0 0
\(625\) 21.8333 + 21.8333i 0.873332 + 0.873332i
\(626\) 0 0
\(627\) −3.00038 5.26155i −0.119824 0.210126i
\(628\) 0 0
\(629\) 9.40261 47.2701i 0.374907 1.88478i
\(630\) 0 0
\(631\) 5.45257 + 13.1637i 0.217063 + 0.524037i 0.994477 0.104952i \(-0.0334689\pi\)
−0.777414 + 0.628989i \(0.783469\pi\)
\(632\) 0 0
\(633\) −24.4216 28.1496i −0.970672 1.11884i
\(634\) 0 0
\(635\) 4.60575 3.07747i 0.182774 0.122126i
\(636\) 0 0
\(637\) 5.40940 + 27.1949i 0.214328 + 1.07750i
\(638\) 0 0
\(639\) 24.6530 + 32.8494i 0.975256 + 1.29950i
\(640\) 0 0
\(641\) 7.05243i 0.278554i 0.990253 + 0.139277i \(0.0444779\pi\)
−0.990253 + 0.139277i \(0.955522\pi\)
\(642\) 0 0
\(643\) −29.0442 + 5.77725i −1.14539 + 0.227832i −0.731072 0.682300i \(-0.760980\pi\)
−0.414318 + 0.910132i \(0.635980\pi\)
\(644\) 0 0
\(645\) −0.303107 2.40142i −0.0119348 0.0945559i
\(646\) 0 0
\(647\) −43.7051 18.1032i −1.71822 0.711711i −0.999871 0.0160315i \(-0.994897\pi\)
−0.718352 0.695680i \(-0.755103\pi\)
\(648\) 0 0
\(649\) 6.74065 2.79207i 0.264594 0.109598i
\(650\) 0 0
\(651\) 0.176293 0.227225i 0.00690948 0.00890567i
\(652\) 0 0
\(653\) 14.1402 21.1623i 0.553348 0.828143i −0.444358 0.895849i \(-0.646568\pi\)
0.997705 + 0.0677063i \(0.0215681\pi\)
\(654\) 0 0
\(655\) −20.3297 + 20.3297i −0.794347 + 0.794347i
\(656\) 0 0
\(657\) 43.7736 + 6.23952i 1.70777 + 0.243427i
\(658\) 0 0
\(659\) 18.1263 27.1279i 0.706100 1.05675i −0.288947 0.957345i \(-0.593305\pi\)
0.995047 0.0994083i \(-0.0316950\pi\)
\(660\) 0 0
\(661\) 5.91065 29.7149i 0.229898 1.15577i −0.677507 0.735516i \(-0.736940\pi\)
0.907405 0.420258i \(-0.138060\pi\)
\(662\) 0 0
\(663\) −3.96071 + 55.8540i −0.153821 + 2.16919i
\(664\) 0 0
\(665\) −11.9831 4.96358i −0.464686 0.192479i
\(666\) 0 0
\(667\) 15.8927 10.6192i 0.615368 0.411176i
\(668\) 0 0
\(669\) 2.43483 + 0.666375i 0.0941358 + 0.0257635i
\(670\) 0 0
\(671\) 11.3347i 0.437569i
\(672\) 0 0
\(673\) 11.0359i 0.425402i −0.977117 0.212701i \(-0.931774\pi\)
0.977117 0.212701i \(-0.0682259\pi\)
\(674\) 0 0
\(675\) −9.12851 + 3.61082i −0.351356 + 0.138981i
\(676\) 0 0
\(677\) 16.1303 10.7779i 0.619939 0.414230i −0.205551 0.978646i \(-0.565899\pi\)
0.825490 + 0.564416i \(0.190899\pi\)
\(678\) 0 0
\(679\) 12.1272 + 5.02324i 0.465399 + 0.192774i
\(680\) 0 0
\(681\) −34.1185 2.41941i −1.30743 0.0927121i
\(682\) 0 0
\(683\) −9.44062 + 47.4612i −0.361235 + 1.81605i 0.190095 + 0.981766i \(0.439120\pi\)
−0.551331 + 0.834287i \(0.685880\pi\)
\(684\) 0 0
\(685\) −5.14927 + 7.70643i −0.196744 + 0.294448i
\(686\) 0 0
\(687\) 0.923276 + 2.76840i 0.0352252 + 0.105621i
\(688\) 0 0
\(689\) −43.3662 + 43.3662i −1.65212 + 1.65212i
\(690\) 0 0
\(691\) 2.62103 3.92264i 0.0997085 0.149224i −0.778261 0.627941i \(-0.783898\pi\)
0.877969 + 0.478717i \(0.158898\pi\)
\(692\) 0 0
\(693\) −21.3389 + 10.2411i −0.810598 + 0.389029i
\(694\) 0 0
\(695\) 28.0267 11.6090i 1.06311 0.440356i
\(696\) 0 0
\(697\) −11.0483 4.57634i −0.418483 0.173341i
\(698\) 0 0
\(699\) −26.8126 + 3.38429i −1.01415 + 0.128005i
\(700\) 0 0
\(701\) 0.420755 0.0836934i 0.0158917 0.00316106i −0.187138 0.982334i \(-0.559921\pi\)
0.203030 + 0.979173i \(0.434921\pi\)
\(702\) 0 0
\(703\) 14.7447i 0.556107i
\(704\) 0 0
\(705\) −14.4883 7.24137i −0.545663 0.272726i
\(706\) 0 0
\(707\) 0.898516 + 4.51715i 0.0337922 + 0.169885i
\(708\) 0 0
\(709\) 25.3814 16.9593i 0.953218 0.636920i 0.0213708 0.999772i \(-0.493197\pi\)
0.931847 + 0.362852i \(0.118197\pi\)
\(710\) 0 0
\(711\) 6.97135 1.78834i 0.261446 0.0670679i
\(712\) 0 0
\(713\) 0.0932734 + 0.225182i 0.00349312 + 0.00843313i
\(714\) 0 0
\(715\) 8.08572 40.6497i 0.302389 1.52021i
\(716\) 0 0
\(717\) −1.46877 + 0.837563i −0.0548523 + 0.0312794i
\(718\) 0 0
\(719\) −4.47853 4.47853i −0.167021 0.167021i 0.618648 0.785669i \(-0.287681\pi\)
−0.785669 + 0.618648i \(0.787681\pi\)
\(720\) 0 0
\(721\) −8.74797 + 8.74797i −0.325791 + 0.325791i
\(722\) 0 0
\(723\) −12.8745 22.5770i −0.478808 0.839649i
\(724\) 0 0
\(725\) 7.22588 + 1.43732i 0.268363 + 0.0533806i
\(726\) 0 0
\(727\) 3.41297 1.41370i 0.126580 0.0524311i −0.318494 0.947925i \(-0.603177\pi\)
0.445074 + 0.895494i \(0.353177\pi\)
\(728\) 0 0
\(729\) −0.865518 + 26.9861i −0.0320562 + 0.999486i
\(730\) 0 0
\(731\) −1.43094 2.14155i −0.0529250 0.0792079i
\(732\) 0 0
\(733\) −1.76647 + 0.351374i −0.0652462 + 0.0129783i −0.227605 0.973753i \(-0.573090\pi\)
0.162359 + 0.986732i \(0.448090\pi\)
\(734\) 0 0
\(735\) −8.43303 + 16.8726i −0.311057 + 0.622355i
\(736\) 0 0
\(737\) −8.79571 −0.323994
\(738\) 0 0
\(739\) 7.50862 + 37.7484i 0.276209 + 1.38860i 0.830845 + 0.556504i \(0.187857\pi\)
−0.554636 + 0.832093i \(0.687143\pi\)
\(740\) 0 0
\(741\) −2.14517 16.9955i −0.0788049 0.624345i
\(742\) 0 0
\(743\) −13.3142 + 32.1432i −0.488449 + 1.17922i 0.467051 + 0.884230i \(0.345316\pi\)
−0.955500 + 0.294990i \(0.904684\pi\)
\(744\) 0 0
\(745\) 9.64382 + 23.2822i 0.353322 + 0.852995i
\(746\) 0 0
\(747\) 27.4089 13.1543i 1.00284 0.481291i
\(748\) 0 0
\(749\) 5.03516 + 3.36439i 0.183981 + 0.122932i
\(750\) 0 0
\(751\) −30.0300 30.0300i −1.09581 1.09581i −0.994895 0.100914i \(-0.967823\pi\)
−0.100914 0.994895i \(-0.532177\pi\)
\(752\) 0 0
\(753\) 44.9449 14.9894i 1.63788 0.546244i
\(754\) 0 0
\(755\) 36.4661 + 24.3659i 1.32714 + 0.886766i
\(756\) 0 0
\(757\) 37.4839 + 7.45600i 1.36237 + 0.270993i 0.821547 0.570141i \(-0.193111\pi\)
0.540827 + 0.841134i \(0.318111\pi\)
\(758\) 0 0
\(759\) 1.41890 20.0093i 0.0515027 0.726290i
\(760\) 0 0
\(761\) −5.61157 + 13.5475i −0.203419 + 0.491097i −0.992361 0.123371i \(-0.960629\pi\)
0.788941 + 0.614468i \(0.210629\pi\)
\(762\) 0 0
\(763\) 14.2723 + 21.3600i 0.516692 + 0.773284i
\(764\) 0 0
\(765\) −25.4204 + 28.3690i −0.919075 + 1.02568i
\(766\) 0 0
\(767\) 20.6348 0.745081
\(768\) 0 0
\(769\) 17.9581 0.647587 0.323793 0.946128i \(-0.395042\pi\)
0.323793 + 0.946128i \(0.395042\pi\)
\(770\) 0 0
\(771\) −2.06581 + 7.54813i −0.0743982 + 0.271839i
\(772\) 0 0
\(773\) 9.82391 + 14.7025i 0.353341 + 0.528813i 0.964980 0.262325i \(-0.0844892\pi\)
−0.611638 + 0.791138i \(0.709489\pi\)
\(774\) 0 0
\(775\) −0.0359520 + 0.0867959i −0.00129144 + 0.00311780i
\(776\) 0 0
\(777\) 57.4749 + 4.07566i 2.06190 + 0.146214i
\(778\) 0 0
\(779\) 3.58819 + 0.713736i 0.128560 + 0.0255722i
\(780\) 0 0
\(781\) −26.8971 17.9721i −0.962453 0.643091i
\(782\) 0 0
\(783\) 11.5264 16.6659i 0.411922 0.595590i
\(784\) 0 0
\(785\) 2.09058 + 2.09058i 0.0746160 + 0.0746160i
\(786\) 0 0
\(787\) 30.2625 + 20.2207i 1.07874 + 0.720791i 0.962186 0.272393i \(-0.0878151\pi\)
0.116554 + 0.993184i \(0.462815\pi\)
\(788\) 0 0
\(789\) 3.03568 + 2.35523i 0.108073 + 0.0838486i
\(790\) 0 0
\(791\) −13.8809 33.5115i −0.493549 1.19153i
\(792\) 0 0
\(793\) −12.2677 + 29.6168i −0.435638 + 1.05172i
\(794\) 0 0
\(795\) −41.3927 + 5.22459i −1.46805 + 0.185297i
\(796\) 0 0
\(797\) −4.54990 22.8739i −0.161166 0.810234i −0.973790 0.227447i \(-0.926962\pi\)
0.812625 0.582787i \(-0.198038\pi\)
\(798\) 0 0
\(799\) −17.2354 −0.609744
\(800\) 0 0
\(801\) 16.1011 + 21.4543i 0.568905 + 0.758051i
\(802\) 0 0
\(803\) −34.1566 + 6.79417i −1.20536 + 0.239761i
\(804\) 0 0
\(805\) −23.8651 35.7166i −0.841134 1.25885i
\(806\) 0 0
\(807\) 30.1793 26.1826i 1.06236 0.921671i
\(808\) 0 0
\(809\) −18.3664 + 7.60762i −0.645729 + 0.267470i −0.681419 0.731893i \(-0.738637\pi\)
0.0356905 + 0.999363i \(0.488637\pi\)
\(810\) 0 0
\(811\) 46.0682 + 9.16353i 1.61767 + 0.321775i 0.919179 0.393840i \(-0.128854\pi\)
0.698494 + 0.715616i \(0.253854\pi\)
\(812\) 0 0
\(813\) 9.96158 5.68056i 0.349368 0.199226i
\(814\) 0 0
\(815\) 37.6558 37.6558i 1.31903 1.31903i
\(816\) 0 0
\(817\) 0.557172 + 0.557172i 0.0194930 + 0.0194930i
\(818\) 0 0
\(819\) −66.8416 + 3.66408i −2.33563 + 0.128033i
\(820\) 0 0
\(821\) −7.82812 + 39.3546i −0.273203 + 1.37349i 0.563630 + 0.826028i \(0.309404\pi\)
−0.836833 + 0.547458i \(0.815596\pi\)
\(822\) 0 0
\(823\) −10.4572 25.2460i −0.364516 0.880019i −0.994628 0.103515i \(-0.966991\pi\)
0.630112 0.776504i \(-0.283009\pi\)
\(824\) 0 0
\(825\) 5.84031 5.06686i 0.203333 0.176405i
\(826\) 0 0
\(827\) 13.3380 8.91218i 0.463809 0.309907i −0.301620 0.953428i \(-0.597527\pi\)
0.765428 + 0.643521i \(0.222527\pi\)
\(828\) 0 0
\(829\) 4.63371 + 23.2952i 0.160935 + 0.809077i 0.973938 + 0.226816i \(0.0728317\pi\)
−0.813002 + 0.582261i \(0.802168\pi\)
\(830\) 0 0
\(831\) 1.39533 2.79175i 0.0484036 0.0968448i
\(832\) 0 0
\(833\) 20.0717i 0.695442i
\(834\) 0 0
\(835\) −0.739173 + 0.147031i −0.0255801 + 0.00508820i
\(836\) 0 0
\(837\) 0.179759 + 0.185617i 0.00621340 + 0.00641587i
\(838\) 0 0
\(839\) 27.5815 + 11.4246i 0.952220 + 0.394423i 0.804065 0.594542i \(-0.202666\pi\)
0.148155 + 0.988964i \(0.452666\pi\)
\(840\) 0 0
\(841\) 12.7423 5.27805i 0.439391 0.182002i
\(842\) 0 0
\(843\) 9.38597 + 7.28212i 0.323270 + 0.250810i
\(844\) 0 0
\(845\) 46.1664 69.0930i 1.58817 2.37687i
\(846\) 0 0
\(847\) −12.7894 + 12.7894i −0.439447 + 0.439447i
\(848\) 0 0
\(849\) 37.6367 12.5521i 1.29169 0.430785i
\(850\) 0 0
\(851\) −27.1296 + 40.6023i −0.929991 + 1.39183i
\(852\) 0 0
\(853\) 0.300445 1.51044i 0.0102870 0.0517164i −0.975301 0.220881i \(-0.929107\pi\)
0.985588 + 0.169164i \(0.0541068\pi\)
\(854\) 0 0
\(855\) 5.93427 10.0294i 0.202948 0.342997i
\(856\) 0 0
\(857\) 6.92900 + 2.87008i 0.236690 + 0.0980402i 0.497876 0.867248i \(-0.334114\pi\)
−0.261186 + 0.965289i \(0.584114\pi\)
\(858\) 0 0
\(859\) −12.3876 + 8.27714i −0.422660 + 0.282412i −0.748656 0.662959i \(-0.769300\pi\)
0.325996 + 0.945371i \(0.394300\pi\)
\(860\) 0 0
\(861\) 3.77398 13.7895i 0.128617 0.469945i
\(862\) 0 0
\(863\) 31.0444i 1.05676i −0.849007 0.528382i \(-0.822799\pi\)
0.849007 0.528382i \(-0.177201\pi\)
\(864\) 0 0
\(865\) 35.2072i 1.19708i
\(866\) 0 0
\(867\) −2.92712 + 10.6952i −0.0994101 + 0.363228i
\(868\) 0 0
\(869\) −4.71327 + 3.14931i −0.159887 + 0.106833i
\(870\) 0 0
\(871\) −22.9827 9.51975i −0.778739 0.322564i
\(872\) 0 0
\(873\) −6.00560 + 10.1499i −0.203259 + 0.343523i
\(874\) 0 0
\(875\) −5.31875 + 26.7392i −0.179807 + 0.903949i
\(876\) 0 0
\(877\) 13.8663 20.7524i 0.468232 0.700759i −0.519924 0.854213i \(-0.674040\pi\)
0.988156 + 0.153454i \(0.0490397\pi\)
\(878\) 0 0
\(879\) −20.5907 + 6.86713i −0.694509 + 0.231623i
\(880\) 0 0
\(881\) −22.9018 + 22.9018i −0.771582 + 0.771582i −0.978383 0.206801i \(-0.933695\pi\)
0.206801 + 0.978383i \(0.433695\pi\)
\(882\) 0 0
\(883\) −10.2732 + 15.3750i −0.345722 + 0.517409i −0.963059 0.269289i \(-0.913211\pi\)
0.617338 + 0.786698i \(0.288211\pi\)
\(884\) 0 0
\(885\) 11.0909 + 8.60490i 0.372817 + 0.289250i
\(886\) 0 0
\(887\) 9.52810 3.94667i 0.319922 0.132516i −0.216943 0.976184i \(-0.569608\pi\)
0.536865 + 0.843668i \(0.319608\pi\)
\(888\) 0 0
\(889\) 6.51036 + 2.69668i 0.218350 + 0.0904437i
\(890\) 0 0
\(891\) −6.40375 20.2788i −0.214534 0.679366i
\(892\) 0 0
\(893\) 5.17151 1.02868i 0.173058 0.0344234i
\(894\) 0 0
\(895\) 43.5585i 1.45600i
\(896\) 0 0
\(897\) 25.3639 50.7474i 0.846875 1.69441i
\(898\) 0 0
\(899\) −0.0378328 0.190198i −0.00126179 0.00634347i
\(900\) 0 0
\(901\) −36.9133 + 24.6647i −1.22976 + 0.821700i
\(902\) 0 0
\(903\) 2.32587 2.01785i 0.0774001 0.0671498i
\(904\) 0 0
\(905\) 0.377519 + 0.911413i 0.0125492 + 0.0302964i
\(906\) 0 0
\(907\) −6.38322 + 32.0906i −0.211951 + 1.06555i 0.717487 + 0.696572i \(0.245292\pi\)
−0.929438 + 0.368979i \(0.879708\pi\)
\(908\) 0 0
\(909\) −4.13180 + 0.226495i −0.137043 + 0.00751235i
\(910\) 0 0
\(911\) −20.1753 20.1753i −0.668438 0.668438i 0.288916 0.957354i \(-0.406705\pi\)
−0.957354 + 0.288916i \(0.906705\pi\)
\(912\) 0 0
\(913\) −16.9320 + 16.9320i −0.560367 + 0.560367i
\(914\) 0 0
\(915\) −18.9441 + 10.8028i −0.626274 + 0.357131i
\(916\) 0 0
\(917\) −35.8720 7.13538i −1.18460 0.235631i
\(918\) 0 0
\(919\) 44.0591 18.2499i 1.45338 0.602008i 0.490377 0.871510i \(-0.336859\pi\)
0.963000 + 0.269502i \(0.0868591\pi\)
\(920\) 0 0
\(921\) 18.2933 15.8707i 0.602785 0.522956i
\(922\) 0 0
\(923\) −50.8291 76.0711i −1.67306 2.50391i
\(924\) 0 0
\(925\) −18.4605 + 3.67203i −0.606979 + 0.120736i
\(926\) 0 0
\(927\) −6.67197 8.89021i −0.219136 0.291993i
\(928\) 0 0
\(929\) −28.1038 −0.922057 −0.461028 0.887385i \(-0.652519\pi\)
−0.461028 + 0.887385i \(0.652519\pi\)
\(930\) 0 0
\(931\) −1.19796 6.02255i −0.0392616 0.197381i
\(932\) 0 0
\(933\) −56.7498 + 7.16296i −1.85790 + 0.234505i
\(934\) 0 0
\(935\) 11.4813 27.7184i 0.375480 0.906489i
\(936\) 0 0
\(937\) −7.86396 18.9853i −0.256904 0.620222i 0.741826 0.670592i \(-0.233960\pi\)
−0.998731 + 0.0503700i \(0.983960\pi\)
\(938\) 0 0
\(939\) −1.14541 0.888667i −0.0373790 0.0290005i
\(940\) 0 0
\(941\) 43.2971 + 28.9302i 1.41145 + 0.943098i 0.999491 + 0.0318944i \(0.0101540\pi\)
0.411955 + 0.911204i \(0.364846\pi\)
\(942\) 0 0
\(943\) 8.56753 + 8.56753i 0.278997 + 0.278997i
\(944\) 0 0
\(945\) −37.4542 25.9041i −1.21839 0.842660i
\(946\) 0 0
\(947\) 13.0677 + 8.73155i 0.424643 + 0.283737i 0.749473 0.662035i \(-0.230307\pi\)
−0.324830 + 0.945772i \(0.605307\pi\)
\(948\) 0 0
\(949\) −96.6027 19.2155i −3.13586 0.623760i
\(950\) 0 0
\(951\) 23.6384 + 1.67624i 0.766526 + 0.0543559i
\(952\) 0 0
\(953\) −18.0842 + 43.6591i −0.585804 + 1.41426i 0.301676 + 0.953411i \(0.402454\pi\)
−0.887480 + 0.460846i \(0.847546\pi\)
\(954\) 0 0
\(955\) −7.11648 10.6506i −0.230284 0.344644i
\(956\) 0 0
\(957\) −4.21309 + 15.3940i −0.136190 + 0.497616i
\(958\) 0 0
\(959\) −11.7908 −0.380744
\(960\) 0 0
\(961\) −30.9975 −0.999920
\(962\) 0 0
\(963\) −3.63092 + 4.05208i −0.117005 + 0.130577i
\(964\) 0 0
\(965\) 10.9794 + 16.4318i 0.353439 + 0.528959i
\(966\) 0 0
\(967\) −7.60618 + 18.3629i −0.244598 + 0.590512i −0.997729 0.0673588i \(-0.978543\pi\)
0.753131 + 0.657871i \(0.228543\pi\)
\(968\) 0 0
\(969\) 0.877135 12.3694i 0.0281776 0.397361i
\(970\) 0 0
\(971\) 23.2362 + 4.62196i 0.745685 + 0.148326i 0.553286 0.832991i \(-0.313373\pi\)
0.192398 + 0.981317i \(0.438373\pi\)
\(972\) 0 0
\(973\) 32.0877 + 21.4403i 1.02868 + 0.687344i
\(974\) 0 0
\(975\) 20.7443 6.91835i 0.664351 0.221565i
\(976\) 0 0
\(977\) 18.8219 + 18.8219i 0.602164 + 0.602164i 0.940886 0.338722i \(-0.109995\pi\)
−0.338722 + 0.940886i \(0.609995\pi\)
\(978\) 0 0
\(979\) −17.5668 11.7377i −0.561437 0.375140i
\(980\) 0 0
\(981\) −20.8087 + 9.98667i −0.664370 + 0.318850i
\(982\) 0 0
\(983\) 13.8501 + 33.4371i 0.441750 + 1.06648i 0.975335 + 0.220731i \(0.0708444\pi\)
−0.533585 + 0.845746i \(0.679156\pi\)
\(984\) 0 0
\(985\) 15.5816 37.6174i 0.496472 1.19859i
\(986\) 0 0
\(987\) −2.58031 20.4429i −0.0821321 0.650706i
\(988\) 0 0
\(989\) 0.509107 + 2.55945i 0.0161886 + 0.0813858i
\(990\) 0 0
\(991\) −3.20062 −0.101671 −0.0508356 0.998707i \(-0.516188\pi\)
−0.0508356 + 0.998707i \(0.516188\pi\)
\(992\) 0 0
\(993\) −9.60062 + 19.2087i −0.304667 + 0.609569i
\(994\) 0 0
\(995\) 29.8054 5.92866i 0.944894 0.187951i
\(996\) 0 0
\(997\) 25.8757 + 38.7257i 0.819492 + 1.22646i 0.971256 + 0.238039i \(0.0765047\pi\)
−0.151764 + 0.988417i \(0.548495\pi\)
\(998\) 0 0
\(999\) −10.9122 + 50.6057i −0.345247 + 1.60109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.335.28 240
3.2 odd 2 inner 768.2.s.a.335.24 240
4.3 odd 2 192.2.s.a.107.18 yes 240
12.11 even 2 192.2.s.a.107.13 240
64.3 odd 16 inner 768.2.s.a.431.24 240
64.61 even 16 192.2.s.a.131.13 yes 240
192.125 odd 16 192.2.s.a.131.18 yes 240
192.131 even 16 inner 768.2.s.a.431.28 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.107.13 240 12.11 even 2
192.2.s.a.107.18 yes 240 4.3 odd 2
192.2.s.a.131.13 yes 240 64.61 even 16
192.2.s.a.131.18 yes 240 192.125 odd 16
768.2.s.a.335.24 240 3.2 odd 2 inner
768.2.s.a.335.28 240 1.1 even 1 trivial
768.2.s.a.431.24 240 64.3 odd 16 inner
768.2.s.a.431.28 240 192.131 even 16 inner