Properties

Label 768.2.s.a.335.24
Level $768$
Weight $2$
Character 768.335
Analytic conductor $6.133$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(47,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.s (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 335.24
Character \(\chi\) \(=\) 768.335
Dual form 768.2.s.a.431.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36847 - 1.06173i) q^{3} +(1.45822 + 2.18239i) q^{5} +(1.27779 - 3.08486i) q^{7} +(0.745444 - 2.90591i) q^{9} +(2.31748 + 0.460975i) q^{11} +(-5.55652 - 3.71275i) q^{13} +(4.31265 + 1.43829i) q^{15} +(3.42067 + 3.42067i) q^{17} +(1.23054 + 0.822221i) q^{19} +(-1.52668 - 5.57823i) q^{21} +(-1.87568 - 4.52828i) q^{23} +(-0.722975 + 1.74542i) q^{25} +(-2.06518 - 4.76813i) q^{27} +(0.760797 + 3.82478i) q^{29} +0.0497279 q^{31} +(3.66084 - 1.82971i) q^{33} +(8.59567 - 1.70978i) q^{35} +(5.53510 + 8.28386i) q^{37} +(-11.5459 + 0.818742i) q^{39} +(-2.28385 + 0.946002i) q^{41} +(0.522190 + 0.103870i) q^{43} +(7.42884 - 2.61062i) q^{45} +(-2.51930 + 2.51930i) q^{47} +(-2.93388 - 2.93388i) q^{49} +(8.31294 + 1.04926i) q^{51} +(-1.79038 + 9.00087i) q^{53} +(2.37338 + 5.72983i) q^{55} +(2.55694 - 0.181318i) q^{57} +(2.56739 - 1.71547i) q^{59} +(-0.935842 - 4.70479i) q^{61} +(-8.01181 - 6.01274i) q^{63} -17.5405i q^{65} +(3.65093 - 0.726215i) q^{67} +(-7.37464 - 4.20537i) q^{69} +(-12.6483 - 5.23910i) q^{71} +(13.6168 - 5.64025i) q^{73} +(0.863794 + 3.15617i) q^{75} +(4.38330 - 6.56007i) q^{77} +(1.69637 - 1.69637i) q^{79} +(-7.88863 - 4.33239i) q^{81} +(-5.63016 + 8.42612i) q^{83} +(-2.47712 + 12.4533i) q^{85} +(5.10203 + 4.42636i) q^{87} +(-8.26075 - 3.42172i) q^{89} +(-18.5534 + 12.3970i) q^{91} +(0.0680513 - 0.0527977i) q^{93} +3.88450i q^{95} +3.93119i q^{97} +(3.06710 - 6.39075i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q + 8 q^{3} + 16 q^{7} - 8 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} - 8 q^{21} - 16 q^{25} + 8 q^{27} + 32 q^{31} - 16 q^{37} + 8 q^{39} + 16 q^{43} - 8 q^{45} - 16 q^{49} + 8 q^{51} + 80 q^{55} - 8 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.36847 1.06173i 0.790089 0.612992i
\(4\) 0 0
\(5\) 1.45822 + 2.18239i 0.652138 + 0.975993i 0.999271 + 0.0381770i \(0.0121551\pi\)
−0.347133 + 0.937816i \(0.612845\pi\)
\(6\) 0 0
\(7\) 1.27779 3.08486i 0.482960 1.16597i −0.475237 0.879858i \(-0.657638\pi\)
0.958197 0.286111i \(-0.0923625\pi\)
\(8\) 0 0
\(9\) 0.745444 2.90591i 0.248481 0.968637i
\(10\) 0 0
\(11\) 2.31748 + 0.460975i 0.698746 + 0.138989i 0.531666 0.846954i \(-0.321566\pi\)
0.167080 + 0.985943i \(0.446566\pi\)
\(12\) 0 0
\(13\) −5.55652 3.71275i −1.54110 1.02973i −0.979289 0.202465i \(-0.935105\pi\)
−0.561811 0.827266i \(-0.689895\pi\)
\(14\) 0 0
\(15\) 4.31265 + 1.43829i 1.11352 + 0.371366i
\(16\) 0 0
\(17\) 3.42067 + 3.42067i 0.829634 + 0.829634i 0.987466 0.157832i \(-0.0504503\pi\)
−0.157832 + 0.987466i \(0.550450\pi\)
\(18\) 0 0
\(19\) 1.23054 + 0.822221i 0.282305 + 0.188630i 0.688659 0.725086i \(-0.258200\pi\)
−0.406353 + 0.913716i \(0.633200\pi\)
\(20\) 0 0
\(21\) −1.52668 5.57823i −0.333148 1.21727i
\(22\) 0 0
\(23\) −1.87568 4.52828i −0.391105 0.944212i −0.989700 0.143160i \(-0.954274\pi\)
0.598594 0.801052i \(-0.295726\pi\)
\(24\) 0 0
\(25\) −0.722975 + 1.74542i −0.144595 + 0.349083i
\(26\) 0 0
\(27\) −2.06518 4.76813i −0.397444 0.917626i
\(28\) 0 0
\(29\) 0.760797 + 3.82478i 0.141276 + 0.710245i 0.984874 + 0.173269i \(0.0554331\pi\)
−0.843598 + 0.536975i \(0.819567\pi\)
\(30\) 0 0
\(31\) 0.0497279 0.00893139 0.00446569 0.999990i \(-0.498579\pi\)
0.00446569 + 0.999990i \(0.498579\pi\)
\(32\) 0 0
\(33\) 3.66084 1.82971i 0.637271 0.318512i
\(34\) 0 0
\(35\) 8.59567 1.70978i 1.45293 0.289006i
\(36\) 0 0
\(37\) 5.53510 + 8.28386i 0.909965 + 1.36186i 0.932138 + 0.362104i \(0.117942\pi\)
−0.0221727 + 0.999754i \(0.507058\pi\)
\(38\) 0 0
\(39\) −11.5459 + 0.818742i −1.84882 + 0.131104i
\(40\) 0 0
\(41\) −2.28385 + 0.946002i −0.356678 + 0.147741i −0.553825 0.832633i \(-0.686832\pi\)
0.197147 + 0.980374i \(0.436832\pi\)
\(42\) 0 0
\(43\) 0.522190 + 0.103870i 0.0796333 + 0.0158400i 0.234746 0.972057i \(-0.424574\pi\)
−0.155113 + 0.987897i \(0.549574\pi\)
\(44\) 0 0
\(45\) 7.42884 2.61062i 1.10743 0.389168i
\(46\) 0 0
\(47\) −2.51930 + 2.51930i −0.367477 + 0.367477i −0.866556 0.499079i \(-0.833672\pi\)
0.499079 + 0.866556i \(0.333672\pi\)
\(48\) 0 0
\(49\) −2.93388 2.93388i −0.419126 0.419126i
\(50\) 0 0
\(51\) 8.31294 + 1.04926i 1.16404 + 0.146926i
\(52\) 0 0
\(53\) −1.79038 + 9.00087i −0.245928 + 1.23636i 0.638476 + 0.769642i \(0.279565\pi\)
−0.884404 + 0.466722i \(0.845435\pi\)
\(54\) 0 0
\(55\) 2.37338 + 5.72983i 0.320026 + 0.772611i
\(56\) 0 0
\(57\) 2.55694 0.181318i 0.338675 0.0240161i
\(58\) 0 0
\(59\) 2.56739 1.71547i 0.334245 0.223336i −0.377109 0.926169i \(-0.623082\pi\)
0.711355 + 0.702833i \(0.248082\pi\)
\(60\) 0 0
\(61\) −0.935842 4.70479i −0.119822 0.602387i −0.993304 0.115530i \(-0.963143\pi\)
0.873482 0.486857i \(-0.161857\pi\)
\(62\) 0 0
\(63\) −8.01181 6.01274i −1.00939 0.757534i
\(64\) 0 0
\(65\) 17.5405i 2.17563i
\(66\) 0 0
\(67\) 3.65093 0.726215i 0.446032 0.0887213i 0.0330361 0.999454i \(-0.489482\pi\)
0.412996 + 0.910733i \(0.364482\pi\)
\(68\) 0 0
\(69\) −7.37464 4.20537i −0.887803 0.506267i
\(70\) 0 0
\(71\) −12.6483 5.23910i −1.50108 0.621767i −0.527384 0.849627i \(-0.676827\pi\)
−0.973694 + 0.227860i \(0.926827\pi\)
\(72\) 0 0
\(73\) 13.6168 5.64025i 1.59372 0.660142i 0.603213 0.797580i \(-0.293887\pi\)
0.990510 + 0.137439i \(0.0438870\pi\)
\(74\) 0 0
\(75\) 0.863794 + 3.15617i 0.0997424 + 0.364443i
\(76\) 0 0
\(77\) 4.38330 6.56007i 0.499523 0.747589i
\(78\) 0 0
\(79\) 1.69637 1.69637i 0.190856 0.190856i −0.605210 0.796066i \(-0.706911\pi\)
0.796066 + 0.605210i \(0.206911\pi\)
\(80\) 0 0
\(81\) −7.88863 4.33239i −0.876514 0.481376i
\(82\) 0 0
\(83\) −5.63016 + 8.42612i −0.617990 + 0.924887i 0.382010 + 0.924158i \(0.375232\pi\)
−1.00000 0.000728896i \(0.999768\pi\)
\(84\) 0 0
\(85\) −2.47712 + 12.4533i −0.268681 + 1.35075i
\(86\) 0 0
\(87\) 5.10203 + 4.42636i 0.546995 + 0.474555i
\(88\) 0 0
\(89\) −8.26075 3.42172i −0.875638 0.362701i −0.100834 0.994903i \(-0.532151\pi\)
−0.774804 + 0.632202i \(0.782151\pi\)
\(90\) 0 0
\(91\) −18.5534 + 12.3970i −1.94492 + 1.29956i
\(92\) 0 0
\(93\) 0.0680513 0.0527977i 0.00705659 0.00547487i
\(94\) 0 0
\(95\) 3.88450i 0.398541i
\(96\) 0 0
\(97\) 3.93119i 0.399152i 0.979882 + 0.199576i \(0.0639565\pi\)
−0.979882 + 0.199576i \(0.936044\pi\)
\(98\) 0 0
\(99\) 3.06710 6.39075i 0.308255 0.642294i
\(100\) 0 0
\(101\) 1.14688 0.766317i 0.114118 0.0762514i −0.497201 0.867635i \(-0.665639\pi\)
0.611320 + 0.791384i \(0.290639\pi\)
\(102\) 0 0
\(103\) −3.42308 1.41789i −0.337286 0.139708i 0.207611 0.978212i \(-0.433431\pi\)
−0.544897 + 0.838503i \(0.683431\pi\)
\(104\) 0 0
\(105\) 9.94762 11.4661i 0.970788 1.11898i
\(106\) 0 0
\(107\) 0.353820 1.77877i 0.0342051 0.171960i −0.959907 0.280319i \(-0.909560\pi\)
0.994112 + 0.108359i \(0.0345596\pi\)
\(108\) 0 0
\(109\) −4.27438 + 6.39706i −0.409411 + 0.612728i −0.977676 0.210118i \(-0.932615\pi\)
0.568264 + 0.822846i \(0.307615\pi\)
\(110\) 0 0
\(111\) 16.3699 + 5.45945i 1.55376 + 0.518188i
\(112\) 0 0
\(113\) −7.68145 + 7.68145i −0.722610 + 0.722610i −0.969136 0.246526i \(-0.920711\pi\)
0.246526 + 0.969136i \(0.420711\pi\)
\(114\) 0 0
\(115\) 7.14731 10.6967i 0.666490 0.997472i
\(116\) 0 0
\(117\) −14.9310 + 13.3791i −1.38037 + 1.23690i
\(118\) 0 0
\(119\) 14.9232 6.18139i 1.36801 0.566647i
\(120\) 0 0
\(121\) −5.00447 2.07292i −0.454952 0.188447i
\(122\) 0 0
\(123\) −2.12099 + 3.71942i −0.191243 + 0.335369i
\(124\) 0 0
\(125\) 8.00807 1.59290i 0.716263 0.142474i
\(126\) 0 0
\(127\) 2.11042i 0.187270i 0.995607 + 0.0936348i \(0.0298486\pi\)
−0.995607 + 0.0936348i \(0.970151\pi\)
\(128\) 0 0
\(129\) 0.824886 0.412283i 0.0726272 0.0362995i
\(130\) 0 0
\(131\) 2.13696 + 10.7432i 0.186707 + 0.938640i 0.954561 + 0.298015i \(0.0963246\pi\)
−0.767854 + 0.640625i \(0.778675\pi\)
\(132\) 0 0
\(133\) 4.10881 2.74542i 0.356279 0.238058i
\(134\) 0 0
\(135\) 7.39440 11.4600i 0.636408 0.986321i
\(136\) 0 0
\(137\) 1.35133 + 3.26240i 0.115452 + 0.278726i 0.971034 0.238942i \(-0.0768005\pi\)
−0.855582 + 0.517667i \(0.826800\pi\)
\(138\) 0 0
\(139\) −2.25479 + 11.3356i −0.191249 + 0.961475i 0.759262 + 0.650785i \(0.225560\pi\)
−0.950511 + 0.310690i \(0.899440\pi\)
\(140\) 0 0
\(141\) −0.772771 + 6.12242i −0.0650791 + 0.515600i
\(142\) 0 0
\(143\) −11.1656 11.1656i −0.933716 0.933716i
\(144\) 0 0
\(145\) −7.23774 + 7.23774i −0.601062 + 0.601062i
\(146\) 0 0
\(147\) −7.12994 0.899941i −0.588067 0.0742259i
\(148\) 0 0
\(149\) 9.41669 + 1.87310i 0.771445 + 0.153450i 0.565092 0.825028i \(-0.308841\pi\)
0.206353 + 0.978478i \(0.433841\pi\)
\(150\) 0 0
\(151\) −15.4374 + 6.39437i −1.25628 + 0.520367i −0.908765 0.417309i \(-0.862973\pi\)
−0.347511 + 0.937676i \(0.612973\pi\)
\(152\) 0 0
\(153\) 12.4901 7.39024i 1.00976 0.597466i
\(154\) 0 0
\(155\) 0.0725144 + 0.108525i 0.00582449 + 0.00871697i
\(156\) 0 0
\(157\) −1.10477 + 0.219752i −0.0881699 + 0.0175381i −0.238978 0.971025i \(-0.576812\pi\)
0.150808 + 0.988563i \(0.451812\pi\)
\(158\) 0 0
\(159\) 7.10643 + 14.2184i 0.563576 + 1.12759i
\(160\) 0 0
\(161\) −16.3659 −1.28981
\(162\) 0 0
\(163\) 3.95820 + 19.8992i 0.310030 + 1.55863i 0.750507 + 0.660862i \(0.229809\pi\)
−0.440477 + 0.897764i \(0.645191\pi\)
\(164\) 0 0
\(165\) 9.33146 + 5.32124i 0.726453 + 0.414258i
\(166\) 0 0
\(167\) −0.109882 + 0.265279i −0.00850292 + 0.0205279i −0.928074 0.372396i \(-0.878536\pi\)
0.919571 + 0.392924i \(0.128536\pi\)
\(168\) 0 0
\(169\) 12.1155 + 29.2494i 0.931963 + 2.24996i
\(170\) 0 0
\(171\) 3.30660 2.96292i 0.252862 0.226580i
\(172\) 0 0
\(173\) 11.1530 + 7.45221i 0.847948 + 0.566581i 0.901891 0.431963i \(-0.142179\pi\)
−0.0539429 + 0.998544i \(0.517179\pi\)
\(174\) 0 0
\(175\) 4.46056 + 4.46056i 0.337187 + 0.337187i
\(176\) 0 0
\(177\) 1.69203 5.07346i 0.127181 0.381345i
\(178\) 0 0
\(179\) −13.7986 9.21991i −1.03135 0.689128i −0.0798628 0.996806i \(-0.525448\pi\)
−0.951491 + 0.307677i \(0.900448\pi\)
\(180\) 0 0
\(181\) −0.368628 0.0733247i −0.0273999 0.00545018i 0.181371 0.983415i \(-0.441946\pi\)
−0.208771 + 0.977965i \(0.566946\pi\)
\(182\) 0 0
\(183\) −6.27591 5.44478i −0.463929 0.402489i
\(184\) 0 0
\(185\) −10.0072 + 24.1595i −0.735742 + 1.77624i
\(186\) 0 0
\(187\) 6.35048 + 9.50417i 0.464393 + 0.695014i
\(188\) 0 0
\(189\) −17.3479 + 0.278125i −1.26187 + 0.0202306i
\(190\) 0 0
\(191\) −4.88024 −0.353122 −0.176561 0.984290i \(-0.556497\pi\)
−0.176561 + 0.984290i \(0.556497\pi\)
\(192\) 0 0
\(193\) −7.52929 −0.541970 −0.270985 0.962584i \(-0.587349\pi\)
−0.270985 + 0.962584i \(0.587349\pi\)
\(194\) 0 0
\(195\) −18.6233 24.0037i −1.33364 1.71894i
\(196\) 0 0
\(197\) −8.61841 12.8984i −0.614036 0.918970i 0.385957 0.922517i \(-0.373871\pi\)
−0.999994 + 0.00354629i \(0.998871\pi\)
\(198\) 0 0
\(199\) −4.43073 + 10.6967i −0.314086 + 0.758271i 0.685459 + 0.728111i \(0.259602\pi\)
−0.999545 + 0.0301595i \(0.990398\pi\)
\(200\) 0 0
\(201\) 4.22516 4.87012i 0.298020 0.343512i
\(202\) 0 0
\(203\) 12.7711 + 2.54032i 0.896354 + 0.178296i
\(204\) 0 0
\(205\) −5.39491 3.60476i −0.376797 0.251768i
\(206\) 0 0
\(207\) −14.5570 + 2.07496i −1.01178 + 0.144220i
\(208\) 0 0
\(209\) 2.47273 + 2.47273i 0.171042 + 0.171042i
\(210\) 0 0
\(211\) −17.8899 11.9536i −1.23159 0.822923i −0.242489 0.970154i \(-0.577964\pi\)
−0.989102 + 0.147232i \(0.952964\pi\)
\(212\) 0 0
\(213\) −22.8714 + 6.25956i −1.56712 + 0.428898i
\(214\) 0 0
\(215\) 0.534786 + 1.29109i 0.0364721 + 0.0880514i
\(216\) 0 0
\(217\) 0.0635419 0.153404i 0.00431350 0.0104137i
\(218\) 0 0
\(219\) 12.6458 22.1759i 0.854521 1.49851i
\(220\) 0 0
\(221\) −6.30693 31.7071i −0.424250 2.13285i
\(222\) 0 0
\(223\) 1.45744 0.0975977 0.0487989 0.998809i \(-0.484461\pi\)
0.0487989 + 0.998809i \(0.484461\pi\)
\(224\) 0 0
\(225\) 4.53309 + 3.40201i 0.302206 + 0.226801i
\(226\) 0 0
\(227\) 19.3684 3.85261i 1.28552 0.255707i 0.495406 0.868662i \(-0.335019\pi\)
0.790118 + 0.612955i \(0.210019\pi\)
\(228\) 0 0
\(229\) 0.936069 + 1.40093i 0.0618572 + 0.0925758i 0.861109 0.508421i \(-0.169771\pi\)
−0.799252 + 0.600997i \(0.794771\pi\)
\(230\) 0 0
\(231\) −0.966614 13.6312i −0.0635985 0.896866i
\(232\) 0 0
\(233\) 14.4154 5.97104i 0.944382 0.391176i 0.143266 0.989684i \(-0.454240\pi\)
0.801117 + 0.598508i \(0.204240\pi\)
\(234\) 0 0
\(235\) −9.17178 1.82438i −0.598301 0.119009i
\(236\) 0 0
\(237\) 0.520345 4.12252i 0.0338000 0.267787i
\(238\) 0 0
\(239\) 0.690266 0.690266i 0.0446496 0.0446496i −0.684429 0.729079i \(-0.739949\pi\)
0.729079 + 0.684429i \(0.239949\pi\)
\(240\) 0 0
\(241\) −10.6103 10.6103i −0.683472 0.683472i 0.277309 0.960781i \(-0.410558\pi\)
−0.960781 + 0.277309i \(0.910558\pi\)
\(242\) 0 0
\(243\) −15.3952 + 2.44686i −0.987604 + 0.156966i
\(244\) 0 0
\(245\) 2.12461 10.6811i 0.135736 0.682391i
\(246\) 0 0
\(247\) −3.78482 9.13737i −0.240822 0.581397i
\(248\) 0 0
\(249\) 1.24157 + 17.5087i 0.0786815 + 1.10957i
\(250\) 0 0
\(251\) −22.7440 + 15.1971i −1.43559 + 0.959232i −0.437391 + 0.899272i \(0.644097\pi\)
−0.998201 + 0.0599600i \(0.980903\pi\)
\(252\) 0 0
\(253\) −2.25941 11.3588i −0.142048 0.714124i
\(254\) 0 0
\(255\) 9.83224 + 19.6721i 0.615719 + 1.23191i
\(256\) 0 0
\(257\) 4.51818i 0.281836i −0.990021 0.140918i \(-0.954995\pi\)
0.990021 0.140918i \(-0.0450054\pi\)
\(258\) 0 0
\(259\) 32.6273 6.48997i 2.02736 0.403267i
\(260\) 0 0
\(261\) 11.6816 + 0.640356i 0.723074 + 0.0396370i
\(262\) 0 0
\(263\) −2.04943 0.848904i −0.126374 0.0523456i 0.318601 0.947889i \(-0.396787\pi\)
−0.444974 + 0.895543i \(0.646787\pi\)
\(264\) 0 0
\(265\) −22.2541 + 9.21797i −1.36706 + 0.566255i
\(266\) 0 0
\(267\) −14.9376 + 4.08819i −0.914165 + 0.250193i
\(268\) 0 0
\(269\) −12.8156 + 19.1799i −0.781379 + 1.16942i 0.200460 + 0.979702i \(0.435756\pi\)
−0.981839 + 0.189715i \(0.939244\pi\)
\(270\) 0 0
\(271\) 4.68156 4.68156i 0.284384 0.284384i −0.550470 0.834855i \(-0.685552\pi\)
0.834855 + 0.550470i \(0.185552\pi\)
\(272\) 0 0
\(273\) −12.2275 + 36.6637i −0.740045 + 2.21899i
\(274\) 0 0
\(275\) −2.48007 + 3.71169i −0.149554 + 0.223823i
\(276\) 0 0
\(277\) 0.351539 1.76730i 0.0211219 0.106187i −0.968786 0.247898i \(-0.920260\pi\)
0.989908 + 0.141711i \(0.0452603\pi\)
\(278\) 0 0
\(279\) 0.0370693 0.144505i 0.00221928 0.00865127i
\(280\) 0 0
\(281\) −6.33662 2.62472i −0.378011 0.156577i 0.185584 0.982628i \(-0.440582\pi\)
−0.563595 + 0.826051i \(0.690582\pi\)
\(282\) 0 0
\(283\) 19.0458 12.7260i 1.13215 0.756481i 0.159146 0.987255i \(-0.449126\pi\)
0.973007 + 0.230774i \(0.0741259\pi\)
\(284\) 0 0
\(285\) 4.12430 + 5.31583i 0.244302 + 0.314883i
\(286\) 0 0
\(287\) 8.25416i 0.487228i
\(288\) 0 0
\(289\) 6.40197i 0.376586i
\(290\) 0 0
\(291\) 4.17388 + 5.37973i 0.244677 + 0.315366i
\(292\) 0 0
\(293\) 10.4198 6.96228i 0.608731 0.406741i −0.212644 0.977130i \(-0.568207\pi\)
0.821375 + 0.570389i \(0.193207\pi\)
\(294\) 0 0
\(295\) 7.48765 + 3.10149i 0.435948 + 0.180575i
\(296\) 0 0
\(297\) −2.58802 12.0020i −0.150172 0.696428i
\(298\) 0 0
\(299\) −6.39014 + 32.1254i −0.369551 + 1.85786i
\(300\) 0 0
\(301\) 0.987675 1.47816i 0.0569287 0.0851998i
\(302\) 0 0
\(303\) 0.755844 2.26636i 0.0434221 0.130199i
\(304\) 0 0
\(305\) 8.90301 8.90301i 0.509785 0.509785i
\(306\) 0 0
\(307\) 7.76821 11.6259i 0.443355 0.663528i −0.540736 0.841192i \(-0.681854\pi\)
0.984091 + 0.177665i \(0.0568542\pi\)
\(308\) 0 0
\(309\) −6.18982 + 1.69406i −0.352126 + 0.0963716i
\(310\) 0 0
\(311\) 30.5106 12.6379i 1.73010 0.716630i 0.730673 0.682728i \(-0.239206\pi\)
0.999425 0.0339024i \(-0.0107935\pi\)
\(312\) 0 0
\(313\) −0.773283 0.320305i −0.0437086 0.0181047i 0.360722 0.932673i \(-0.382530\pi\)
−0.404431 + 0.914569i \(0.632530\pi\)
\(314\) 0 0
\(315\) 1.43911 26.2528i 0.0810847 1.47918i
\(316\) 0 0
\(317\) −13.4190 + 2.66920i −0.753685 + 0.149917i −0.556958 0.830541i \(-0.688031\pi\)
−0.196728 + 0.980458i \(0.563031\pi\)
\(318\) 0 0
\(319\) 9.21456i 0.515916i
\(320\) 0 0
\(321\) −1.40439 2.80987i −0.0783853 0.156831i
\(322\) 0 0
\(323\) 1.39673 + 7.02182i 0.0777159 + 0.390704i
\(324\) 0 0
\(325\) 10.4975 7.01422i 0.582297 0.389079i
\(326\) 0 0
\(327\) 0.942595 + 13.2925i 0.0521256 + 0.735075i
\(328\) 0 0
\(329\) 4.55255 + 10.9908i 0.250990 + 0.605944i
\(330\) 0 0
\(331\) −2.41877 + 12.1600i −0.132947 + 0.668372i 0.855621 + 0.517602i \(0.173175\pi\)
−0.988569 + 0.150770i \(0.951825\pi\)
\(332\) 0 0
\(333\) 28.1983 9.90935i 1.54526 0.543029i
\(334\) 0 0
\(335\) 6.90875 + 6.90875i 0.377466 + 0.377466i
\(336\) 0 0
\(337\) 22.7974 22.7974i 1.24185 1.24185i 0.282622 0.959231i \(-0.408796\pi\)
0.959231 0.282622i \(-0.0912041\pi\)
\(338\) 0 0
\(339\) −2.35622 + 18.6675i −0.127972 + 1.01388i
\(340\) 0 0
\(341\) 0.115243 + 0.0229233i 0.00624077 + 0.00124137i
\(342\) 0 0
\(343\) 8.79454 3.64282i 0.474860 0.196694i
\(344\) 0 0
\(345\) −1.57614 22.2267i −0.0848564 1.19664i
\(346\) 0 0
\(347\) −15.3279 22.9398i −0.822843 1.23147i −0.970180 0.242385i \(-0.922070\pi\)
0.147338 0.989086i \(-0.452930\pi\)
\(348\) 0 0
\(349\) 8.15254 1.62164i 0.436395 0.0868044i 0.0279965 0.999608i \(-0.491087\pi\)
0.408399 + 0.912804i \(0.366087\pi\)
\(350\) 0 0
\(351\) −6.22763 + 34.1617i −0.332406 + 1.82341i
\(352\) 0 0
\(353\) −12.2210 −0.650460 −0.325230 0.945635i \(-0.605442\pi\)
−0.325230 + 0.945635i \(0.605442\pi\)
\(354\) 0 0
\(355\) −7.01032 35.2433i −0.372069 1.87052i
\(356\) 0 0
\(357\) 13.8590 24.3035i 0.733498 1.28628i
\(358\) 0 0
\(359\) −3.41180 + 8.23682i −0.180068 + 0.434723i −0.987980 0.154580i \(-0.950598\pi\)
0.807912 + 0.589303i \(0.200598\pi\)
\(360\) 0 0
\(361\) −6.43280 15.5302i −0.338569 0.817377i
\(362\) 0 0
\(363\) −9.04938 + 2.47668i −0.474969 + 0.129992i
\(364\) 0 0
\(365\) 32.1655 + 21.4923i 1.68362 + 1.12496i
\(366\) 0 0
\(367\) −11.6703 11.6703i −0.609183 0.609183i 0.333550 0.942733i \(-0.391754\pi\)
−0.942733 + 0.333550i \(0.891754\pi\)
\(368\) 0 0
\(369\) 1.04651 + 7.34186i 0.0544793 + 0.382202i
\(370\) 0 0
\(371\) 25.4787 + 17.0243i 1.32279 + 0.883859i
\(372\) 0 0
\(373\) 30.2561 + 6.01831i 1.56660 + 0.311616i 0.900706 0.434430i \(-0.143050\pi\)
0.665894 + 0.746046i \(0.268050\pi\)
\(374\) 0 0
\(375\) 9.26759 10.6823i 0.478576 0.551630i
\(376\) 0 0
\(377\) 9.97307 24.0771i 0.513639 1.24004i
\(378\) 0 0
\(379\) −12.8100 19.1715i −0.658005 0.984774i −0.999000 0.0447089i \(-0.985764\pi\)
0.340995 0.940065i \(-0.389236\pi\)
\(380\) 0 0
\(381\) 2.24070 + 2.88806i 0.114795 + 0.147960i
\(382\) 0 0
\(383\) 11.5359 0.589459 0.294729 0.955581i \(-0.404770\pi\)
0.294729 + 0.955581i \(0.404770\pi\)
\(384\) 0 0
\(385\) 20.7084 1.05540
\(386\) 0 0
\(387\) 0.691101 1.44001i 0.0351306 0.0731997i
\(388\) 0 0
\(389\) −12.8942 19.2976i −0.653764 0.978427i −0.999200 0.0399850i \(-0.987269\pi\)
0.345436 0.938442i \(-0.387731\pi\)
\(390\) 0 0
\(391\) 9.07369 21.9058i 0.458876 1.10783i
\(392\) 0 0
\(393\) 14.3308 + 12.4329i 0.722894 + 0.627159i
\(394\) 0 0
\(395\) 6.17581 + 1.22844i 0.310739 + 0.0618097i
\(396\) 0 0
\(397\) 2.60492 + 1.74055i 0.130737 + 0.0873557i 0.619219 0.785218i \(-0.287449\pi\)
−0.488482 + 0.872574i \(0.662449\pi\)
\(398\) 0 0
\(399\) 2.70790 8.11950i 0.135565 0.406483i
\(400\) 0 0
\(401\) 24.3210 + 24.3210i 1.21453 + 1.21453i 0.969520 + 0.245012i \(0.0787918\pi\)
0.245012 + 0.969520i \(0.421208\pi\)
\(402\) 0 0
\(403\) −0.276314 0.184627i −0.0137642 0.00919692i
\(404\) 0 0
\(405\) −2.04844 23.5336i −0.101788 1.16939i
\(406\) 0 0
\(407\) 9.00882 + 21.7492i 0.446550 + 1.07807i
\(408\) 0 0
\(409\) 3.24175 7.82629i 0.160294 0.386985i −0.823243 0.567689i \(-0.807838\pi\)
0.983538 + 0.180704i \(0.0578376\pi\)
\(410\) 0 0
\(411\) 5.31306 + 3.02976i 0.262074 + 0.149447i
\(412\) 0 0
\(413\) −2.01141 10.1121i −0.0989751 0.497582i
\(414\) 0 0
\(415\) −26.5991 −1.30570
\(416\) 0 0
\(417\) 8.94978 + 17.9065i 0.438272 + 0.876885i
\(418\) 0 0
\(419\) −30.5931 + 6.08535i −1.49457 + 0.297289i −0.873639 0.486575i \(-0.838246\pi\)
−0.620933 + 0.783864i \(0.713246\pi\)
\(420\) 0 0
\(421\) −3.52363 5.27349i −0.171731 0.257014i 0.735613 0.677402i \(-0.236894\pi\)
−0.907345 + 0.420388i \(0.861894\pi\)
\(422\) 0 0
\(423\) 5.44286 + 9.19885i 0.264641 + 0.447263i
\(424\) 0 0
\(425\) −8.44356 + 3.49744i −0.409573 + 0.169651i
\(426\) 0 0
\(427\) −15.7095 3.12481i −0.760234 0.151220i
\(428\) 0 0
\(429\) −27.1348 3.42495i −1.31008 0.165358i
\(430\) 0 0
\(431\) 25.0198 25.0198i 1.20516 1.20516i 0.232586 0.972576i \(-0.425281\pi\)
0.972576 0.232586i \(-0.0747186\pi\)
\(432\) 0 0
\(433\) −0.182313 0.182313i −0.00876139 0.00876139i 0.702713 0.711474i \(-0.251972\pi\)
−0.711474 + 0.702713i \(0.751972\pi\)
\(434\) 0 0
\(435\) −2.22011 + 17.5892i −0.106446 + 0.843339i
\(436\) 0 0
\(437\) 1.41515 7.11445i 0.0676959 0.340330i
\(438\) 0 0
\(439\) 15.4119 + 37.2076i 0.735570 + 1.77582i 0.623062 + 0.782172i \(0.285888\pi\)
0.112508 + 0.993651i \(0.464112\pi\)
\(440\) 0 0
\(441\) −10.7126 + 6.33855i −0.510125 + 0.301836i
\(442\) 0 0
\(443\) −5.50223 + 3.67647i −0.261419 + 0.174674i −0.679372 0.733794i \(-0.737748\pi\)
0.417953 + 0.908469i \(0.362748\pi\)
\(444\) 0 0
\(445\) −4.57852 23.0178i −0.217043 1.09115i
\(446\) 0 0
\(447\) 14.8752 7.43473i 0.703574 0.351651i
\(448\) 0 0
\(449\) 13.3291i 0.629041i 0.949251 + 0.314520i \(0.101844\pi\)
−0.949251 + 0.314520i \(0.898156\pi\)
\(450\) 0 0
\(451\) −5.72886 + 1.13954i −0.269761 + 0.0536589i
\(452\) 0 0
\(453\) −14.3365 + 25.1409i −0.673589 + 1.18122i
\(454\) 0 0
\(455\) −54.1100 22.4131i −2.53672 1.05074i
\(456\) 0 0
\(457\) −18.5018 + 7.66368i −0.865476 + 0.358492i −0.770847 0.637020i \(-0.780167\pi\)
−0.0946295 + 0.995513i \(0.530167\pi\)
\(458\) 0 0
\(459\) 9.24589 23.3745i 0.431561 1.09103i
\(460\) 0 0
\(461\) 19.4038 29.0398i 0.903724 1.35252i −0.0318892 0.999491i \(-0.510152\pi\)
0.935613 0.353027i \(-0.114848\pi\)
\(462\) 0 0
\(463\) 26.4304 26.4304i 1.22833 1.22833i 0.263728 0.964597i \(-0.415048\pi\)
0.964597 0.263728i \(-0.0849522\pi\)
\(464\) 0 0
\(465\) 0.214459 + 0.0715233i 0.00994530 + 0.00331681i
\(466\) 0 0
\(467\) 6.62269 9.91156i 0.306462 0.458652i −0.645988 0.763347i \(-0.723555\pi\)
0.952450 + 0.304695i \(0.0985545\pi\)
\(468\) 0 0
\(469\) 2.42485 12.1906i 0.111969 0.562908i
\(470\) 0 0
\(471\) −1.27853 + 1.47369i −0.0589114 + 0.0679041i
\(472\) 0 0
\(473\) 1.16228 + 0.481433i 0.0534418 + 0.0221363i
\(474\) 0 0
\(475\) −2.32477 + 1.55336i −0.106668 + 0.0712731i
\(476\) 0 0
\(477\) 24.8211 + 11.9123i 1.13648 + 0.545428i
\(478\) 0 0
\(479\) 37.9382i 1.73344i −0.498795 0.866720i \(-0.666224\pi\)
0.498795 0.866720i \(-0.333776\pi\)
\(480\) 0 0
\(481\) 66.5798i 3.03578i
\(482\) 0 0
\(483\) −22.3963 + 17.3762i −1.01906 + 0.790643i
\(484\) 0 0
\(485\) −8.57938 + 5.73256i −0.389569 + 0.260302i
\(486\) 0 0
\(487\) 20.1298 + 8.33804i 0.912168 + 0.377833i 0.788886 0.614539i \(-0.210658\pi\)
0.123282 + 0.992372i \(0.460658\pi\)
\(488\) 0 0
\(489\) 26.5443 + 23.0290i 1.20038 + 1.04141i
\(490\) 0 0
\(491\) 3.99742 20.0964i 0.180401 0.906936i −0.779458 0.626454i \(-0.784506\pi\)
0.959859 0.280482i \(-0.0904944\pi\)
\(492\) 0 0
\(493\) −10.4809 + 15.6858i −0.472036 + 0.706451i
\(494\) 0 0
\(495\) 18.4196 2.62554i 0.827900 0.118009i
\(496\) 0 0
\(497\) −32.3238 + 32.3238i −1.44992 + 1.44992i
\(498\) 0 0
\(499\) −10.8139 + 16.1841i −0.484095 + 0.724500i −0.990457 0.137821i \(-0.955990\pi\)
0.506362 + 0.862321i \(0.330990\pi\)
\(500\) 0 0
\(501\) 0.131284 + 0.479692i 0.00586536 + 0.0214311i
\(502\) 0 0
\(503\) −13.0766 + 5.41650i −0.583056 + 0.241510i −0.654660 0.755923i \(-0.727188\pi\)
0.0716041 + 0.997433i \(0.477188\pi\)
\(504\) 0 0
\(505\) 3.34480 + 1.38546i 0.148842 + 0.0616522i
\(506\) 0 0
\(507\) 47.6349 + 27.1637i 2.11554 + 1.20638i
\(508\) 0 0
\(509\) −21.9603 + 4.36817i −0.973371 + 0.193616i −0.656062 0.754707i \(-0.727779\pi\)
−0.317309 + 0.948322i \(0.602779\pi\)
\(510\) 0 0
\(511\) 49.2130i 2.17705i
\(512\) 0 0
\(513\) 1.37916 7.56540i 0.0608916 0.334021i
\(514\) 0 0
\(515\) −1.89724 9.53808i −0.0836025 0.420298i
\(516\) 0 0
\(517\) −6.99975 + 4.67708i −0.307848 + 0.205698i
\(518\) 0 0
\(519\) 23.1749 1.64338i 1.01726 0.0721362i
\(520\) 0 0
\(521\) 0.213242 + 0.514813i 0.00934232 + 0.0225544i 0.928482 0.371378i \(-0.121115\pi\)
−0.919140 + 0.393932i \(0.871115\pi\)
\(522\) 0 0
\(523\) 0.636430 3.19955i 0.0278291 0.139907i −0.964373 0.264547i \(-0.914778\pi\)
0.992202 + 0.124640i \(0.0397777\pi\)
\(524\) 0 0
\(525\) 10.8401 + 1.36824i 0.473100 + 0.0597147i
\(526\) 0 0
\(527\) 0.170103 + 0.170103i 0.00740979 + 0.00740979i
\(528\) 0 0
\(529\) −0.723726 + 0.723726i −0.0314664 + 0.0314664i
\(530\) 0 0
\(531\) −3.07117 8.73938i −0.133277 0.379257i
\(532\) 0 0
\(533\) 16.2025 + 3.22288i 0.701809 + 0.139599i
\(534\) 0 0
\(535\) 4.39792 1.82168i 0.190139 0.0787580i
\(536\) 0 0
\(537\) −28.6721 + 2.03319i −1.23729 + 0.0877388i
\(538\) 0 0
\(539\) −5.44675 8.15164i −0.234608 0.351116i
\(540\) 0 0
\(541\) −18.6138 + 3.70251i −0.800270 + 0.159184i −0.578251 0.815859i \(-0.696265\pi\)
−0.222019 + 0.975042i \(0.571265\pi\)
\(542\) 0 0
\(543\) −0.582309 + 0.291042i −0.0249893 + 0.0124898i
\(544\) 0 0
\(545\) −20.1939 −0.865010
\(546\) 0 0
\(547\) −0.321617 1.61688i −0.0137513 0.0691327i 0.973300 0.229535i \(-0.0737207\pi\)
−0.987052 + 0.160403i \(0.948721\pi\)
\(548\) 0 0
\(549\) −14.3693 0.787689i −0.613268 0.0336178i
\(550\) 0 0
\(551\) −2.20863 + 5.33209i −0.0940906 + 0.227155i
\(552\) 0 0
\(553\) −3.06545 7.40066i −0.130356 0.314708i
\(554\) 0 0
\(555\) 11.9563 + 43.6865i 0.507518 + 1.85439i
\(556\) 0 0
\(557\) 7.81765 + 5.22359i 0.331245 + 0.221330i 0.710059 0.704142i \(-0.248668\pi\)
−0.378815 + 0.925473i \(0.623668\pi\)
\(558\) 0 0
\(559\) −2.51592 2.51592i −0.106412 0.106412i
\(560\) 0 0
\(561\) 18.7814 + 6.26369i 0.792950 + 0.264453i
\(562\) 0 0
\(563\) −25.4030 16.9737i −1.07061 0.715357i −0.110186 0.993911i \(-0.535145\pi\)
−0.960420 + 0.278554i \(0.910145\pi\)
\(564\) 0 0
\(565\) −27.9652 5.56262i −1.17650 0.234021i
\(566\) 0 0
\(567\) −23.4448 + 18.7994i −0.984591 + 0.789502i
\(568\) 0 0
\(569\) 11.5727 27.9391i 0.485154 1.17127i −0.471977 0.881611i \(-0.656459\pi\)
0.957131 0.289655i \(-0.0935407\pi\)
\(570\) 0 0
\(571\) −7.03644 10.5308i −0.294466 0.440700i 0.654507 0.756056i \(-0.272876\pi\)
−0.948973 + 0.315356i \(0.897876\pi\)
\(572\) 0 0
\(573\) −6.67848 + 5.18151i −0.278998 + 0.216461i
\(574\) 0 0
\(575\) 9.25981 0.386161
\(576\) 0 0
\(577\) 9.10864 0.379198 0.189599 0.981862i \(-0.439281\pi\)
0.189599 + 0.981862i \(0.439281\pi\)
\(578\) 0 0
\(579\) −10.3036 + 7.99410i −0.428205 + 0.332223i
\(580\) 0 0
\(581\) 18.7993 + 28.1351i 0.779925 + 1.16724i
\(582\) 0 0
\(583\) −8.29835 + 20.0340i −0.343682 + 0.829723i
\(584\) 0 0
\(585\) −50.9711 13.0754i −2.10739 0.540603i
\(586\) 0 0
\(587\) 43.4391 + 8.64058i 1.79292 + 0.356635i 0.975602 0.219546i \(-0.0704575\pi\)
0.817322 + 0.576180i \(0.195457\pi\)
\(588\) 0 0
\(589\) 0.0611921 + 0.0408873i 0.00252138 + 0.00168473i
\(590\) 0 0
\(591\) −25.4887 8.50062i −1.04846 0.349669i
\(592\) 0 0
\(593\) 12.4091 + 12.4091i 0.509580 + 0.509580i 0.914398 0.404817i \(-0.132665\pi\)
−0.404817 + 0.914398i \(0.632665\pi\)
\(594\) 0 0
\(595\) 35.2516 + 23.5543i 1.44517 + 0.965634i
\(596\) 0 0
\(597\) 5.29373 + 19.3424i 0.216658 + 0.791633i
\(598\) 0 0
\(599\) 5.32882 + 12.8649i 0.217730 + 0.525646i 0.994572 0.104049i \(-0.0331799\pi\)
−0.776843 + 0.629695i \(0.783180\pi\)
\(600\) 0 0
\(601\) −9.61422 + 23.2108i −0.392172 + 0.946788i 0.597294 + 0.802023i \(0.296243\pi\)
−0.989466 + 0.144765i \(0.953757\pi\)
\(602\) 0 0
\(603\) 0.611248 11.1506i 0.0248920 0.454089i
\(604\) 0 0
\(605\) −2.77373 13.9445i −0.112768 0.566923i
\(606\) 0 0
\(607\) −7.83446 −0.317991 −0.158995 0.987279i \(-0.550825\pi\)
−0.158995 + 0.987279i \(0.550825\pi\)
\(608\) 0 0
\(609\) 20.1740 10.0831i 0.817493 0.408588i
\(610\) 0 0
\(611\) 23.3520 4.64501i 0.944722 0.187917i
\(612\) 0 0
\(613\) 16.6418 + 24.9062i 0.672154 + 1.00595i 0.998163 + 0.0605835i \(0.0192961\pi\)
−0.326009 + 0.945367i \(0.605704\pi\)
\(614\) 0 0
\(615\) −11.2101 + 0.794930i −0.452034 + 0.0320547i
\(616\) 0 0
\(617\) −34.0519 + 14.1048i −1.37088 + 0.567836i −0.942027 0.335538i \(-0.891082\pi\)
−0.428852 + 0.903375i \(0.641082\pi\)
\(618\) 0 0
\(619\) −29.7566 5.91895i −1.19602 0.237903i −0.443377 0.896335i \(-0.646220\pi\)
−0.752640 + 0.658433i \(0.771220\pi\)
\(620\) 0 0
\(621\) −17.7178 + 18.2952i −0.710991 + 0.734160i
\(622\) 0 0
\(623\) −21.1110 + 21.1110i −0.845796 + 0.845796i
\(624\) 0 0
\(625\) 21.8333 + 21.8333i 0.873332 + 0.873332i
\(626\) 0 0
\(627\) 6.00924 + 0.758486i 0.239986 + 0.0302910i
\(628\) 0 0
\(629\) −9.40261 + 47.2701i −0.374907 + 1.88478i
\(630\) 0 0
\(631\) 5.45257 + 13.1637i 0.217063 + 0.524037i 0.994477 0.104952i \(-0.0334689\pi\)
−0.777414 + 0.628989i \(0.783469\pi\)
\(632\) 0 0
\(633\) −37.1734 + 2.63604i −1.47751 + 0.104773i
\(634\) 0 0
\(635\) −4.60575 + 3.07747i −0.182774 + 0.122126i
\(636\) 0 0
\(637\) 5.40940 + 27.1949i 0.214328 + 1.07750i
\(638\) 0 0
\(639\) −24.6530 + 32.8494i −0.975256 + 1.29950i
\(640\) 0 0
\(641\) 7.05243i 0.278554i −0.990253 0.139277i \(-0.955522\pi\)
0.990253 0.139277i \(-0.0444779\pi\)
\(642\) 0 0
\(643\) −29.0442 + 5.77725i −1.14539 + 0.227832i −0.731072 0.682300i \(-0.760980\pi\)
−0.414318 + 0.910132i \(0.635980\pi\)
\(644\) 0 0
\(645\) 2.10263 + 1.19902i 0.0827910 + 0.0472113i
\(646\) 0 0
\(647\) 43.7051 + 18.1032i 1.71822 + 0.711711i 0.999871 + 0.0160315i \(0.00510319\pi\)
0.718352 + 0.695680i \(0.244897\pi\)
\(648\) 0 0
\(649\) 6.74065 2.79207i 0.264594 0.109598i
\(650\) 0 0
\(651\) −0.0759184 0.277394i −0.00297548 0.0108719i
\(652\) 0 0
\(653\) −14.1402 + 21.1623i −0.553348 + 0.828143i −0.997705 0.0677063i \(-0.978432\pi\)
0.444358 + 0.895849i \(0.353432\pi\)
\(654\) 0 0
\(655\) −20.3297 + 20.3297i −0.794347 + 0.794347i
\(656\) 0 0
\(657\) −6.23952 43.7736i −0.243427 1.70777i
\(658\) 0 0
\(659\) −18.1263 + 27.1279i −0.706100 + 1.05675i 0.288947 + 0.957345i \(0.406695\pi\)
−0.995047 + 0.0994083i \(0.968305\pi\)
\(660\) 0 0
\(661\) 5.91065 29.7149i 0.229898 1.15577i −0.677507 0.735516i \(-0.736940\pi\)
0.907405 0.420258i \(-0.138060\pi\)
\(662\) 0 0
\(663\) −42.2954 36.6941i −1.64262 1.42508i
\(664\) 0 0
\(665\) 11.9831 + 4.96358i 0.464686 + 0.192479i
\(666\) 0 0
\(667\) 15.8927 10.6192i 0.615368 0.411176i
\(668\) 0 0
\(669\) 1.99448 1.54742i 0.0771109 0.0598266i
\(670\) 0 0
\(671\) 11.3347i 0.437569i
\(672\) 0 0
\(673\) 11.0359i 0.425402i −0.977117 0.212701i \(-0.931774\pi\)
0.977117 0.212701i \(-0.0682259\pi\)
\(674\) 0 0
\(675\) 9.81544 0.157363i 0.377797 0.00605692i
\(676\) 0 0
\(677\) −16.1303 + 10.7779i −0.619939 + 0.414230i −0.825490 0.564416i \(-0.809101\pi\)
0.205551 + 0.978646i \(0.434101\pi\)
\(678\) 0 0
\(679\) 12.1272 + 5.02324i 0.465399 + 0.192774i
\(680\) 0 0
\(681\) 22.4147 25.8362i 0.858932 0.990047i
\(682\) 0 0
\(683\) 9.44062 47.4612i 0.361235 1.81605i −0.190095 0.981766i \(-0.560880\pi\)
0.551331 0.834287i \(-0.314120\pi\)
\(684\) 0 0
\(685\) −5.14927 + 7.70643i −0.196744 + 0.294448i
\(686\) 0 0
\(687\) 2.76840 + 0.923276i 0.105621 + 0.0352252i
\(688\) 0 0
\(689\) 43.3662 43.3662i 1.65212 1.65212i
\(690\) 0 0
\(691\) 2.62103 3.92264i 0.0997085 0.149224i −0.778261 0.627941i \(-0.783898\pi\)
0.877969 + 0.478717i \(0.158898\pi\)
\(692\) 0 0
\(693\) −15.7955 17.6276i −0.600020 0.669619i
\(694\) 0 0
\(695\) −28.0267 + 11.6090i −1.06311 + 0.440356i
\(696\) 0 0
\(697\) −11.0483 4.57634i −0.418483 0.173341i
\(698\) 0 0
\(699\) 13.3874 23.4765i 0.506358 0.887963i
\(700\) 0 0
\(701\) −0.420755 + 0.0836934i −0.0158917 + 0.00316106i −0.203030 0.979173i \(-0.565079\pi\)
0.187138 + 0.982334i \(0.440079\pi\)
\(702\) 0 0
\(703\) 14.7447i 0.556107i
\(704\) 0 0
\(705\) −14.4883 + 7.24137i −0.545663 + 0.272726i
\(706\) 0 0
\(707\) −0.898516 4.51715i −0.0337922 0.169885i
\(708\) 0 0
\(709\) 25.3814 16.9593i 0.953218 0.636920i 0.0213708 0.999772i \(-0.493197\pi\)
0.931847 + 0.362852i \(0.118197\pi\)
\(710\) 0 0
\(711\) −3.66494 6.19403i −0.137446 0.232294i
\(712\) 0 0
\(713\) −0.0932734 0.225182i −0.00349312 0.00843313i
\(714\) 0 0
\(715\) 8.08572 40.6497i 0.302389 1.52021i
\(716\) 0 0
\(717\) 0.211733 1.67749i 0.00790731 0.0626470i
\(718\) 0 0
\(719\) 4.47853 + 4.47853i 0.167021 + 0.167021i 0.785669 0.618648i \(-0.212319\pi\)
−0.618648 + 0.785669i \(0.712319\pi\)
\(720\) 0 0
\(721\) −8.74797 + 8.74797i −0.325791 + 0.325791i
\(722\) 0 0
\(723\) −25.7853 3.25463i −0.958967 0.121041i
\(724\) 0 0
\(725\) −7.22588 1.43732i −0.268363 0.0533806i
\(726\) 0 0
\(727\) 3.41297 1.41370i 0.126580 0.0524311i −0.318494 0.947925i \(-0.603177\pi\)
0.445074 + 0.895494i \(0.353177\pi\)
\(728\) 0 0
\(729\) −18.4701 + 19.6941i −0.684076 + 0.729411i
\(730\) 0 0
\(731\) 1.43094 + 2.14155i 0.0529250 + 0.0792079i
\(732\) 0 0
\(733\) −1.76647 + 0.351374i −0.0652462 + 0.0129783i −0.227605 0.973753i \(-0.573090\pi\)
0.162359 + 0.986732i \(0.448090\pi\)
\(734\) 0 0
\(735\) −8.43303 16.8726i −0.311057 0.622355i
\(736\) 0 0
\(737\) 8.79571 0.323994
\(738\) 0 0
\(739\) 7.50862 + 37.7484i 0.276209 + 1.38860i 0.830845 + 0.556504i \(0.187857\pi\)
−0.554636 + 0.832093i \(0.687143\pi\)
\(740\) 0 0
\(741\) −14.8809 8.48578i −0.546663 0.311733i
\(742\) 0 0
\(743\) 13.3142 32.1432i 0.488449 1.17922i −0.467051 0.884230i \(-0.654684\pi\)
0.955500 0.294990i \(-0.0953165\pi\)
\(744\) 0 0
\(745\) 9.64382 + 23.2822i 0.353322 + 0.852995i
\(746\) 0 0
\(747\) 20.2886 + 22.6419i 0.742321 + 0.828425i
\(748\) 0 0
\(749\) −5.03516 3.36439i −0.183981 0.122932i
\(750\) 0 0
\(751\) −30.0300 30.0300i −1.09581 1.09581i −0.994895 0.100914i \(-0.967823\pi\)
−0.100914 0.994895i \(-0.532177\pi\)
\(752\) 0 0
\(753\) −14.9894 + 44.9449i −0.546244 + 1.63788i
\(754\) 0 0
\(755\) −36.4661 24.3659i −1.32714 0.886766i
\(756\) 0 0
\(757\) 37.4839 + 7.45600i 1.36237 + 0.270993i 0.821547 0.570141i \(-0.193111\pi\)
0.540827 + 0.841134i \(0.318111\pi\)
\(758\) 0 0
\(759\) −15.1520 13.1454i −0.549983 0.477147i
\(760\) 0 0
\(761\) 5.61157 13.5475i 0.203419 0.491097i −0.788941 0.614468i \(-0.789371\pi\)
0.992361 + 0.123371i \(0.0393705\pi\)
\(762\) 0 0
\(763\) 14.2723 + 21.3600i 0.516692 + 0.773284i
\(764\) 0 0
\(765\) 34.3417 + 16.4815i 1.24163 + 0.595892i
\(766\) 0 0
\(767\) −20.6348 −0.745081
\(768\) 0 0
\(769\) 17.9581 0.647587 0.323793 0.946128i \(-0.395042\pi\)
0.323793 + 0.946128i \(0.395042\pi\)
\(770\) 0 0
\(771\) −4.79710 6.18301i −0.172763 0.222676i
\(772\) 0 0
\(773\) −9.82391 14.7025i −0.353341 0.528813i 0.611638 0.791138i \(-0.290511\pi\)
−0.964980 + 0.262325i \(0.915511\pi\)
\(774\) 0 0
\(775\) −0.0359520 + 0.0867959i −0.00129144 + 0.00311780i
\(776\) 0 0
\(777\) 37.7590 43.5228i 1.35460 1.56137i
\(778\) 0 0
\(779\) −3.58819 0.713736i −0.128560 0.0255722i
\(780\) 0 0
\(781\) −26.8971 17.9721i −0.962453 0.643091i
\(782\) 0 0
\(783\) 16.6659 11.5264i 0.595590 0.411922i
\(784\) 0 0
\(785\) −2.09058 2.09058i −0.0746160 0.0746160i
\(786\) 0 0
\(787\) 30.2625 + 20.2207i 1.07874 + 0.720791i 0.962186 0.272393i \(-0.0878151\pi\)
0.116554 + 0.993184i \(0.462815\pi\)
\(788\) 0 0
\(789\) −3.70591 + 1.01425i −0.131934 + 0.0361083i
\(790\) 0 0
\(791\) 13.8809 + 33.5115i 0.493549 + 1.19153i
\(792\) 0 0
\(793\) −12.2677 + 29.6168i −0.435638 + 1.05172i
\(794\) 0 0
\(795\) −20.6672 + 36.2425i −0.732990 + 1.28539i
\(796\) 0 0
\(797\) 4.54990 + 22.8739i 0.161166 + 0.810234i 0.973790 + 0.227447i \(0.0730378\pi\)
−0.812625 + 0.582787i \(0.801962\pi\)
\(798\) 0 0
\(799\) −17.2354 −0.609744
\(800\) 0 0
\(801\) −16.1011 + 21.4543i −0.568905 + 0.758051i
\(802\) 0 0
\(803\) 34.1566 6.79417i 1.20536 0.239761i
\(804\) 0 0
\(805\) −23.8651 35.7166i −0.841134 1.25885i
\(806\) 0 0
\(807\) 2.82612 + 39.8539i 0.0994840 + 1.40292i
\(808\) 0 0
\(809\) 18.3664 7.60762i 0.645729 0.267470i −0.0356905 0.999363i \(-0.511363\pi\)
0.681419 + 0.731893i \(0.261363\pi\)
\(810\) 0 0
\(811\) 46.0682 + 9.16353i 1.61767 + 0.321775i 0.919179 0.393840i \(-0.128854\pi\)
0.698494 + 0.715616i \(0.253854\pi\)
\(812\) 0 0
\(813\) 1.43603 11.3772i 0.0503636 0.399014i
\(814\) 0 0
\(815\) −37.6558 + 37.6558i −1.31903 + 1.31903i
\(816\) 0 0
\(817\) 0.557172 + 0.557172i 0.0194930 + 0.0194930i
\(818\) 0 0
\(819\) 22.1940 + 63.1557i 0.775521 + 2.20684i
\(820\) 0 0
\(821\) 7.82812 39.3546i 0.273203 1.37349i −0.563630 0.826028i \(-0.690596\pi\)
0.836833 0.547458i \(-0.184404\pi\)
\(822\) 0 0
\(823\) −10.4572 25.2460i −0.364516 0.880019i −0.994628 0.103515i \(-0.966991\pi\)
0.630112 0.776504i \(-0.283009\pi\)
\(824\) 0 0
\(825\) 0.546911 + 7.71253i 0.0190410 + 0.268516i
\(826\) 0 0
\(827\) −13.3380 + 8.91218i −0.463809 + 0.309907i −0.765428 0.643521i \(-0.777473\pi\)
0.301620 + 0.953428i \(0.402473\pi\)
\(828\) 0 0
\(829\) 4.63371 + 23.2952i 0.160935 + 0.809077i 0.973938 + 0.226816i \(0.0728317\pi\)
−0.813002 + 0.582261i \(0.802168\pi\)
\(830\) 0 0
\(831\) −1.39533 2.79175i −0.0484036 0.0968448i
\(832\) 0 0
\(833\) 20.0717i 0.695442i
\(834\) 0 0
\(835\) −0.739173 + 0.147031i −0.0255801 + 0.00508820i
\(836\) 0 0
\(837\) −0.102697 0.237109i −0.00354973 0.00819568i
\(838\) 0 0
\(839\) −27.5815 11.4246i −0.952220 0.394423i −0.148155 0.988964i \(-0.547334\pi\)
−0.804065 + 0.594542i \(0.797334\pi\)
\(840\) 0 0
\(841\) 12.7423 5.27805i 0.439391 0.182002i
\(842\) 0 0
\(843\) −11.4583 + 3.13595i −0.394643 + 0.108008i
\(844\) 0 0
\(845\) −46.1664 + 69.0930i −1.58817 + 2.37687i
\(846\) 0 0
\(847\) −12.7894 + 12.7894i −0.439447 + 0.439447i
\(848\) 0 0
\(849\) 12.5521 37.6367i 0.430785 1.29169i
\(850\) 0 0
\(851\) 27.1296 40.6023i 0.929991 1.39183i
\(852\) 0 0
\(853\) 0.300445 1.51044i 0.0102870 0.0517164i −0.975301 0.220881i \(-0.929107\pi\)
0.985588 + 0.169164i \(0.0541068\pi\)
\(854\) 0 0
\(855\) 11.2880 + 2.89567i 0.386041 + 0.0990300i
\(856\) 0 0
\(857\) −6.92900 2.87008i −0.236690 0.0980402i 0.261186 0.965289i \(-0.415886\pi\)
−0.497876 + 0.867248i \(0.665886\pi\)
\(858\) 0 0
\(859\) −12.3876 + 8.27714i −0.422660 + 0.282412i −0.748656 0.662959i \(-0.769300\pi\)
0.325996 + 0.945371i \(0.394300\pi\)
\(860\) 0 0
\(861\) 8.76372 + 11.2956i 0.298667 + 0.384953i
\(862\) 0 0
\(863\) 31.0444i 1.05676i 0.849007 + 0.528382i \(0.177201\pi\)
−0.849007 + 0.528382i \(0.822799\pi\)
\(864\) 0 0
\(865\) 35.2072i 1.19708i
\(866\) 0 0
\(867\) 6.79718 + 8.76093i 0.230844 + 0.297537i
\(868\) 0 0
\(869\) 4.71327 3.14931i 0.159887 0.106833i
\(870\) 0 0
\(871\) −22.9827 9.51975i −0.778739 0.322564i
\(872\) 0 0
\(873\) 11.4237 + 2.93048i 0.386633 + 0.0991818i
\(874\) 0 0
\(875\) 5.31875 26.7392i 0.179807 0.903949i
\(876\) 0 0
\(877\) 13.8663 20.7524i 0.468232 0.700759i −0.519924 0.854213i \(-0.674040\pi\)
0.988156 + 0.153454i \(0.0490397\pi\)
\(878\) 0 0
\(879\) 6.86713 20.5907i 0.231623 0.694509i
\(880\) 0 0
\(881\) 22.9018 22.9018i 0.771582 0.771582i −0.206801 0.978383i \(-0.566305\pi\)
0.978383 + 0.206801i \(0.0663052\pi\)
\(882\) 0 0
\(883\) −10.2732 + 15.3750i −0.345722 + 0.517409i −0.963059 0.269289i \(-0.913211\pi\)
0.617338 + 0.786698i \(0.288211\pi\)
\(884\) 0 0
\(885\) 13.5396 3.70558i 0.455129 0.124562i
\(886\) 0 0
\(887\) −9.52810 + 3.94667i −0.319922 + 0.132516i −0.536865 0.843668i \(-0.680392\pi\)
0.216943 + 0.976184i \(0.430392\pi\)
\(888\) 0 0
\(889\) 6.51036 + 2.69668i 0.218350 + 0.0904437i
\(890\) 0 0
\(891\) −16.2846 13.6767i −0.545554 0.458186i
\(892\) 0 0
\(893\) −5.17151 + 1.02868i −0.173058 + 0.0344234i
\(894\) 0 0
\(895\) 43.5585i 1.45600i
\(896\) 0 0
\(897\) 25.3639 + 50.7474i 0.846875 + 1.69441i
\(898\) 0 0
\(899\) 0.0378328 + 0.190198i 0.00126179 + 0.00634347i
\(900\) 0 0
\(901\) −36.9133 + 24.6647i −1.22976 + 0.821700i
\(902\) 0 0
\(903\) −0.217804 3.07147i −0.00724807 0.102212i
\(904\) 0 0
\(905\) −0.377519 0.911413i −0.0125492 0.0302964i
\(906\) 0 0
\(907\) −6.38322 + 32.0906i −0.211951 + 1.06555i 0.717487 + 0.696572i \(0.245292\pi\)
−0.929438 + 0.368979i \(0.879708\pi\)
\(908\) 0 0
\(909\) −1.37192 3.90396i −0.0455037 0.129486i
\(910\) 0 0
\(911\) 20.1753 + 20.1753i 0.668438 + 0.668438i 0.957354 0.288916i \(-0.0932950\pi\)
−0.288916 + 0.957354i \(0.593295\pi\)
\(912\) 0 0
\(913\) −16.9320 + 16.9320i −0.560367 + 0.560367i
\(914\) 0 0
\(915\) 2.73092 21.6362i 0.0902813 0.715270i
\(916\) 0 0
\(917\) 35.8720 + 7.13538i 1.18460 + 0.235631i
\(918\) 0 0
\(919\) 44.0591 18.2499i 1.45338 0.602008i 0.490377 0.871510i \(-0.336859\pi\)
0.963000 + 0.269502i \(0.0868591\pi\)
\(920\) 0 0
\(921\) −1.71306 24.1576i −0.0564473 0.796019i
\(922\) 0 0
\(923\) 50.8291 + 76.0711i 1.67306 + 2.50391i
\(924\) 0 0
\(925\) −18.4605 + 3.67203i −0.606979 + 0.120736i
\(926\) 0 0
\(927\) −6.67197 + 8.89021i −0.219136 + 0.291993i
\(928\) 0 0
\(929\) 28.1038 0.922057 0.461028 0.887385i \(-0.347481\pi\)
0.461028 + 0.887385i \(0.347481\pi\)
\(930\) 0 0
\(931\) −1.19796 6.02255i −0.0392616 0.197381i
\(932\) 0 0
\(933\) 28.3349 49.6888i 0.927643 1.62674i
\(934\) 0 0
\(935\) −11.4813 + 27.7184i −0.375480 + 0.906489i
\(936\) 0 0
\(937\) −7.86396 18.9853i −0.256904 0.620222i 0.741826 0.670592i \(-0.233960\pi\)
−0.998731 + 0.0503700i \(0.983960\pi\)
\(938\) 0 0
\(939\) −1.39830 + 0.382692i −0.0456317 + 0.0124887i
\(940\) 0 0
\(941\) −43.2971 28.9302i −1.41145 0.943098i −0.999491 0.0318944i \(-0.989846\pi\)
−0.411955 0.911204i \(-0.635154\pi\)
\(942\) 0 0
\(943\) 8.56753 + 8.56753i 0.278997 + 0.278997i
\(944\) 0 0
\(945\) −25.9041 37.4542i −0.842660 1.21839i
\(946\) 0 0
\(947\) −13.0677 8.73155i −0.424643 0.283737i 0.324830 0.945772i \(-0.394693\pi\)
−0.749473 + 0.662035i \(0.769693\pi\)
\(948\) 0 0
\(949\) −96.6027 19.2155i −3.13586 0.623760i
\(950\) 0 0
\(951\) −15.5296 + 17.9001i −0.503580 + 0.580451i
\(952\) 0 0
\(953\) 18.0842 43.6591i 0.585804 1.41426i −0.301676 0.953411i \(-0.597546\pi\)
0.887480 0.460846i \(-0.152454\pi\)
\(954\) 0 0
\(955\) −7.11648 10.6506i −0.230284 0.344644i
\(956\) 0 0
\(957\) 9.78341 + 12.6099i 0.316253 + 0.407620i
\(958\) 0 0
\(959\) 11.7908 0.380744
\(960\) 0 0
\(961\) −30.9975 −0.999920
\(962\) 0 0
\(963\) −4.90520 2.35414i −0.158068 0.0758612i
\(964\) 0 0
\(965\) −10.9794 16.4318i −0.353439 0.528959i
\(966\) 0 0
\(967\) −7.60618 + 18.3629i −0.244598 + 0.590512i −0.997729 0.0673588i \(-0.978543\pi\)
0.753131 + 0.657871i \(0.228543\pi\)
\(968\) 0 0
\(969\) 9.36668 + 8.12623i 0.300901 + 0.261052i
\(970\) 0 0
\(971\) −23.2362 4.62196i −0.745685 0.148326i −0.192398 0.981317i \(-0.561627\pi\)
−0.553286 + 0.832991i \(0.686627\pi\)
\(972\) 0 0
\(973\) 32.0877 + 21.4403i 1.02868 + 0.687344i
\(974\) 0 0
\(975\) 6.91835 20.7443i 0.221565 0.664351i
\(976\) 0 0
\(977\) −18.8219 18.8219i −0.602164 0.602164i 0.338722 0.940886i \(-0.390005\pi\)
−0.940886 + 0.338722i \(0.890005\pi\)
\(978\) 0 0
\(979\) −17.5668 11.7377i −0.561437 0.375140i
\(980\) 0 0
\(981\) 15.4030 + 17.1896i 0.491779 + 0.548822i
\(982\) 0 0
\(983\) −13.8501 33.4371i −0.441750 1.06648i −0.975335 0.220731i \(-0.929156\pi\)
0.533585 0.845746i \(-0.320844\pi\)
\(984\) 0 0
\(985\) 15.5816 37.6174i 0.496472 1.19859i
\(986\) 0 0
\(987\) 17.8994 + 10.2071i 0.569743 + 0.324895i
\(988\) 0 0
\(989\) −0.509107 2.55945i −0.0161886 0.0813858i
\(990\) 0 0
\(991\) −3.20062 −0.101671 −0.0508356 0.998707i \(-0.516188\pi\)
−0.0508356 + 0.998707i \(0.516188\pi\)
\(992\) 0 0
\(993\) 9.60062 + 19.2087i 0.304667 + 0.609569i
\(994\) 0 0
\(995\) −29.8054 + 5.92866i −0.944894 + 0.187951i
\(996\) 0 0
\(997\) 25.8757 + 38.7257i 0.819492 + 1.22646i 0.971256 + 0.238039i \(0.0765047\pi\)
−0.151764 + 0.988417i \(0.548495\pi\)
\(998\) 0 0
\(999\) 28.0675 43.4997i 0.888017 1.37627i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.s.a.335.24 240
3.2 odd 2 inner 768.2.s.a.335.28 240
4.3 odd 2 192.2.s.a.107.13 240
12.11 even 2 192.2.s.a.107.18 yes 240
64.3 odd 16 inner 768.2.s.a.431.28 240
64.61 even 16 192.2.s.a.131.18 yes 240
192.125 odd 16 192.2.s.a.131.13 yes 240
192.131 even 16 inner 768.2.s.a.431.24 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.s.a.107.13 240 4.3 odd 2
192.2.s.a.107.18 yes 240 12.11 even 2
192.2.s.a.131.13 yes 240 192.125 odd 16
192.2.s.a.131.18 yes 240 64.61 even 16
768.2.s.a.335.24 240 1.1 even 1 trivial
768.2.s.a.335.28 240 3.2 odd 2 inner
768.2.s.a.431.24 240 192.131 even 16 inner
768.2.s.a.431.28 240 64.3 odd 16 inner