Properties

Label 765.2.n.e.647.10
Level $765$
Weight $2$
Character 765.647
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(188,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.10
Character \(\chi\) \(=\) 765.647
Dual form 765.2.n.e.188.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34783 - 1.34783i) q^{2} -1.63327i q^{4} +(-1.47114 - 1.68397i) q^{5} +(2.83235 + 2.83235i) q^{7} +(0.494282 + 0.494282i) q^{8} +(-4.25254 - 0.286850i) q^{10} -5.95927i q^{11} +(1.43074 - 1.43074i) q^{13} +7.63505 q^{14} +4.59896 q^{16} +(-0.707107 + 0.707107i) q^{17} -3.89447i q^{19} +(-2.75038 + 2.40278i) q^{20} +(-8.03207 - 8.03207i) q^{22} +(-1.20139 - 1.20139i) q^{23} +(-0.671484 + 4.95471i) q^{25} -3.85679i q^{26} +(4.62601 - 4.62601i) q^{28} -2.03715 q^{29} +9.98051 q^{31} +(5.21004 - 5.21004i) q^{32} +1.90612i q^{34} +(0.602794 - 8.93639i) q^{35} +(-5.07077 - 5.07077i) q^{37} +(-5.24907 - 5.24907i) q^{38} +(0.105195 - 1.55951i) q^{40} +1.02348i q^{41} +(-5.74522 + 5.74522i) q^{43} -9.73313 q^{44} -3.23853 q^{46} +(-2.64170 + 2.64170i) q^{47} +9.04447i q^{49} +(5.77304 + 7.58313i) q^{50} +(-2.33680 - 2.33680i) q^{52} +(7.74013 + 7.74013i) q^{53} +(-10.0352 + 8.76694i) q^{55} +2.79997i q^{56} +(-2.74573 + 2.74573i) q^{58} -3.81699 q^{59} -0.803225 q^{61} +(13.4520 - 13.4520i) q^{62} -4.84654i q^{64} +(-4.51415 - 0.304497i) q^{65} +(-5.17596 - 5.17596i) q^{67} +(1.15490 + 1.15490i) q^{68} +(-11.2322 - 12.8572i) q^{70} -2.40278i q^{71} +(-6.90975 + 6.90975i) q^{73} -13.6690 q^{74} -6.36074 q^{76} +(16.8788 - 16.8788i) q^{77} +1.25928i q^{79} +(-6.76573 - 7.74450i) q^{80} +(1.37947 + 1.37947i) q^{82} +(12.6459 + 12.6459i) q^{83} +(2.23100 + 0.150490i) q^{85} +15.4871i q^{86} +(2.94556 - 2.94556i) q^{88} +4.48063 q^{89} +8.10474 q^{91} +(-1.96220 + 1.96220i) q^{92} +7.12111i q^{94} +(-6.55815 + 5.72931i) q^{95} +(12.1047 + 12.1047i) q^{97} +(12.1904 + 12.1904i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{7} - 20 q^{10} - 20 q^{13} - 8 q^{16} - 40 q^{22} - 24 q^{28} + 72 q^{31} + 16 q^{37} - 88 q^{40} + 36 q^{43} + 56 q^{46} + 32 q^{52} - 88 q^{55} - 80 q^{58} - 8 q^{61} + 104 q^{67} - 136 q^{70}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34783 1.34783i 0.953058 0.953058i −0.0458890 0.998947i \(-0.514612\pi\)
0.998947 + 0.0458890i \(0.0146121\pi\)
\(3\) 0 0
\(4\) 1.63327i 0.816637i
\(5\) −1.47114 1.68397i −0.657915 0.753093i
\(6\) 0 0
\(7\) 2.83235 + 2.83235i 1.07053 + 1.07053i 0.997316 + 0.0732132i \(0.0233254\pi\)
0.0732132 + 0.997316i \(0.476675\pi\)
\(8\) 0.494282 + 0.494282i 0.174755 + 0.174755i
\(9\) 0 0
\(10\) −4.25254 0.286850i −1.34477 0.0907101i
\(11\) 5.95927i 1.79679i −0.439190 0.898394i \(-0.644734\pi\)
0.439190 0.898394i \(-0.355266\pi\)
\(12\) 0 0
\(13\) 1.43074 1.43074i 0.396817 0.396817i −0.480292 0.877109i \(-0.659469\pi\)
0.877109 + 0.480292i \(0.159469\pi\)
\(14\) 7.63505 2.04055
\(15\) 0 0
\(16\) 4.59896 1.14974
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 3.89447i 0.893452i −0.894671 0.446726i \(-0.852590\pi\)
0.894671 0.446726i \(-0.147410\pi\)
\(20\) −2.75038 + 2.40278i −0.615003 + 0.537278i
\(21\) 0 0
\(22\) −8.03207 8.03207i −1.71244 1.71244i
\(23\) −1.20139 1.20139i −0.250507 0.250507i 0.570671 0.821178i \(-0.306683\pi\)
−0.821178 + 0.570671i \(0.806683\pi\)
\(24\) 0 0
\(25\) −0.671484 + 4.95471i −0.134297 + 0.990941i
\(26\) 3.85679i 0.756378i
\(27\) 0 0
\(28\) 4.62601 4.62601i 0.874234 0.874234i
\(29\) −2.03715 −0.378290 −0.189145 0.981949i \(-0.560572\pi\)
−0.189145 + 0.981949i \(0.560572\pi\)
\(30\) 0 0
\(31\) 9.98051 1.79255 0.896277 0.443496i \(-0.146262\pi\)
0.896277 + 0.443496i \(0.146262\pi\)
\(32\) 5.21004 5.21004i 0.921014 0.921014i
\(33\) 0 0
\(34\) 1.90612i 0.326896i
\(35\) 0.602794 8.93639i 0.101891 1.51052i
\(36\) 0 0
\(37\) −5.07077 5.07077i −0.833629 0.833629i 0.154382 0.988011i \(-0.450661\pi\)
−0.988011 + 0.154382i \(0.950661\pi\)
\(38\) −5.24907 5.24907i −0.851511 0.851511i
\(39\) 0 0
\(40\) 0.105195 1.55951i 0.0166328 0.246581i
\(41\) 1.02348i 0.159840i 0.996801 + 0.0799201i \(0.0254665\pi\)
−0.996801 + 0.0799201i \(0.974533\pi\)
\(42\) 0 0
\(43\) −5.74522 + 5.74522i −0.876138 + 0.876138i −0.993133 0.116995i \(-0.962674\pi\)
0.116995 + 0.993133i \(0.462674\pi\)
\(44\) −9.73313 −1.46732
\(45\) 0 0
\(46\) −3.23853 −0.477495
\(47\) −2.64170 + 2.64170i −0.385332 + 0.385332i −0.873019 0.487687i \(-0.837841\pi\)
0.487687 + 0.873019i \(0.337841\pi\)
\(48\) 0 0
\(49\) 9.04447i 1.29207i
\(50\) 5.77304 + 7.58313i 0.816431 + 1.07242i
\(51\) 0 0
\(52\) −2.33680 2.33680i −0.324055 0.324055i
\(53\) 7.74013 + 7.74013i 1.06319 + 1.06319i 0.997864 + 0.0653251i \(0.0208084\pi\)
0.0653251 + 0.997864i \(0.479192\pi\)
\(54\) 0 0
\(55\) −10.0352 + 8.76694i −1.35315 + 1.18213i
\(56\) 2.79997i 0.374161i
\(57\) 0 0
\(58\) −2.74573 + 2.74573i −0.360532 + 0.360532i
\(59\) −3.81699 −0.496930 −0.248465 0.968641i \(-0.579926\pi\)
−0.248465 + 0.968641i \(0.579926\pi\)
\(60\) 0 0
\(61\) −0.803225 −0.102842 −0.0514212 0.998677i \(-0.516375\pi\)
−0.0514212 + 0.998677i \(0.516375\pi\)
\(62\) 13.4520 13.4520i 1.70841 1.70841i
\(63\) 0 0
\(64\) 4.84654i 0.605818i
\(65\) −4.51415 0.304497i −0.559911 0.0377682i
\(66\) 0 0
\(67\) −5.17596 5.17596i −0.632344 0.632344i 0.316311 0.948655i \(-0.397556\pi\)
−0.948655 + 0.316311i \(0.897556\pi\)
\(68\) 1.15490 + 1.15490i 0.140052 + 0.140052i
\(69\) 0 0
\(70\) −11.2322 12.8572i −1.34251 1.53672i
\(71\) 2.40278i 0.285157i −0.989783 0.142579i \(-0.954461\pi\)
0.989783 0.142579i \(-0.0455394\pi\)
\(72\) 0 0
\(73\) −6.90975 + 6.90975i −0.808725 + 0.808725i −0.984441 0.175716i \(-0.943776\pi\)
0.175716 + 0.984441i \(0.443776\pi\)
\(74\) −13.6690 −1.58899
\(75\) 0 0
\(76\) −6.36074 −0.729626
\(77\) 16.8788 16.8788i 1.92352 1.92352i
\(78\) 0 0
\(79\) 1.25928i 0.141680i 0.997488 + 0.0708402i \(0.0225680\pi\)
−0.997488 + 0.0708402i \(0.977432\pi\)
\(80\) −6.76573 7.74450i −0.756431 0.865861i
\(81\) 0 0
\(82\) 1.37947 + 1.37947i 0.152337 + 0.152337i
\(83\) 12.6459 + 12.6459i 1.38807 + 1.38807i 0.829377 + 0.558690i \(0.188696\pi\)
0.558690 + 0.829377i \(0.311304\pi\)
\(84\) 0 0
\(85\) 2.23100 + 0.150490i 0.241986 + 0.0163229i
\(86\) 15.4871i 1.67002i
\(87\) 0 0
\(88\) 2.94556 2.94556i 0.313998 0.313998i
\(89\) 4.48063 0.474946 0.237473 0.971394i \(-0.423681\pi\)
0.237473 + 0.971394i \(0.423681\pi\)
\(90\) 0 0
\(91\) 8.10474 0.849608
\(92\) −1.96220 + 1.96220i −0.204573 + 0.204573i
\(93\) 0 0
\(94\) 7.12111i 0.734487i
\(95\) −6.55815 + 5.72931i −0.672852 + 0.587815i
\(96\) 0 0
\(97\) 12.1047 + 12.1047i 1.22905 + 1.22905i 0.964323 + 0.264727i \(0.0852817\pi\)
0.264727 + 0.964323i \(0.414718\pi\)
\(98\) 12.1904 + 12.1904i 1.23141 + 1.23141i
\(99\) 0 0
\(100\) 8.09239 + 1.09672i 0.809239 + 0.109672i
\(101\) 6.10347i 0.607318i 0.952781 + 0.303659i \(0.0982083\pi\)
−0.952781 + 0.303659i \(0.901792\pi\)
\(102\) 0 0
\(103\) −4.29792 + 4.29792i −0.423487 + 0.423487i −0.886402 0.462916i \(-0.846803\pi\)
0.462916 + 0.886402i \(0.346803\pi\)
\(104\) 1.41438 0.138692
\(105\) 0 0
\(106\) 20.8647 2.02656
\(107\) −5.44844 + 5.44844i −0.526720 + 0.526720i −0.919593 0.392873i \(-0.871481\pi\)
0.392873 + 0.919593i \(0.371481\pi\)
\(108\) 0 0
\(109\) 16.6290i 1.59276i −0.604793 0.796382i \(-0.706744\pi\)
0.604793 0.796382i \(-0.293256\pi\)
\(110\) −1.70942 + 25.3420i −0.162987 + 2.41627i
\(111\) 0 0
\(112\) 13.0259 + 13.0259i 1.23083 + 1.23083i
\(113\) 6.58641 + 6.58641i 0.619598 + 0.619598i 0.945428 0.325831i \(-0.105644\pi\)
−0.325831 + 0.945428i \(0.605644\pi\)
\(114\) 0 0
\(115\) −0.255685 + 3.79051i −0.0238427 + 0.353467i
\(116\) 3.32723i 0.308926i
\(117\) 0 0
\(118\) −5.14464 + 5.14464i −0.473603 + 0.473603i
\(119\) −4.00555 −0.367189
\(120\) 0 0
\(121\) −24.5129 −2.22845
\(122\) −1.08261 + 1.08261i −0.0980147 + 0.0980147i
\(123\) 0 0
\(124\) 16.3009i 1.46387i
\(125\) 9.33140 6.15832i 0.834626 0.550817i
\(126\) 0 0
\(127\) −2.56224 2.56224i −0.227362 0.227362i 0.584228 0.811590i \(-0.301397\pi\)
−0.811590 + 0.584228i \(0.801397\pi\)
\(128\) 3.88778 + 3.88778i 0.343635 + 0.343635i
\(129\) 0 0
\(130\) −6.49470 + 5.67388i −0.569623 + 0.497632i
\(131\) 13.1494i 1.14887i −0.818550 0.574435i \(-0.805222\pi\)
0.818550 0.574435i \(-0.194778\pi\)
\(132\) 0 0
\(133\) 11.0305 11.0305i 0.956467 0.956467i
\(134\) −13.9526 −1.20532
\(135\) 0 0
\(136\) −0.699021 −0.0599405
\(137\) 0.0775311 0.0775311i 0.00662393 0.00662393i −0.703787 0.710411i \(-0.748509\pi\)
0.710411 + 0.703787i \(0.248509\pi\)
\(138\) 0 0
\(139\) 18.9107i 1.60399i 0.597332 + 0.801994i \(0.296227\pi\)
−0.597332 + 0.801994i \(0.703773\pi\)
\(140\) −14.5956 0.984528i −1.23355 0.0832078i
\(141\) 0 0
\(142\) −3.23853 3.23853i −0.271771 0.271771i
\(143\) −8.52618 8.52618i −0.712995 0.712995i
\(144\) 0 0
\(145\) 2.99694 + 3.43050i 0.248883 + 0.284887i
\(146\) 18.6263i 1.54152i
\(147\) 0 0
\(148\) −8.28195 + 8.28195i −0.680772 + 0.680772i
\(149\) −17.6761 −1.44808 −0.724042 0.689756i \(-0.757718\pi\)
−0.724042 + 0.689756i \(0.757718\pi\)
\(150\) 0 0
\(151\) −3.74113 −0.304449 −0.152225 0.988346i \(-0.548644\pi\)
−0.152225 + 0.988346i \(0.548644\pi\)
\(152\) 1.92497 1.92497i 0.156135 0.156135i
\(153\) 0 0
\(154\) 45.4993i 3.66644i
\(155\) −14.6828 16.8068i −1.17935 1.34996i
\(156\) 0 0
\(157\) 5.80294 + 5.80294i 0.463125 + 0.463125i 0.899678 0.436553i \(-0.143801\pi\)
−0.436553 + 0.899678i \(0.643801\pi\)
\(158\) 1.69730 + 1.69730i 0.135030 + 0.135030i
\(159\) 0 0
\(160\) −16.4382 1.10882i −1.29956 0.0876602i
\(161\) 6.80552i 0.536350i
\(162\) 0 0
\(163\) 15.4773 15.4773i 1.21228 1.21228i 0.242003 0.970276i \(-0.422196\pi\)
0.970276 0.242003i \(-0.0778043\pi\)
\(164\) 1.67162 0.130532
\(165\) 0 0
\(166\) 34.0889 2.64581
\(167\) −12.0656 + 12.0656i −0.933661 + 0.933661i −0.997932 0.0642712i \(-0.979528\pi\)
0.0642712 + 0.997932i \(0.479528\pi\)
\(168\) 0 0
\(169\) 8.90595i 0.685073i
\(170\) 3.20983 2.80417i 0.246183 0.215070i
\(171\) 0 0
\(172\) 9.38352 + 9.38352i 0.715487 + 0.715487i
\(173\) −10.8638 10.8638i −0.825959 0.825959i 0.160996 0.986955i \(-0.448529\pi\)
−0.986955 + 0.160996i \(0.948529\pi\)
\(174\) 0 0
\(175\) −15.9354 + 12.1316i −1.20460 + 0.917063i
\(176\) 27.4065i 2.06584i
\(177\) 0 0
\(178\) 6.03911 6.03911i 0.452651 0.452651i
\(179\) −19.6834 −1.47121 −0.735605 0.677411i \(-0.763102\pi\)
−0.735605 + 0.677411i \(0.763102\pi\)
\(180\) 0 0
\(181\) 2.54568 0.189219 0.0946095 0.995514i \(-0.469840\pi\)
0.0946095 + 0.995514i \(0.469840\pi\)
\(182\) 10.9238 10.9238i 0.809725 0.809725i
\(183\) 0 0
\(184\) 1.18765i 0.0875548i
\(185\) −1.07918 + 15.9988i −0.0793431 + 1.17626i
\(186\) 0 0
\(187\) 4.21384 + 4.21384i 0.308147 + 0.308147i
\(188\) 4.31462 + 4.31462i 0.314676 + 0.314676i
\(189\) 0 0
\(190\) −1.11713 + 16.5614i −0.0810451 + 1.20149i
\(191\) 22.5510i 1.63173i 0.578241 + 0.815866i \(0.303739\pi\)
−0.578241 + 0.815866i \(0.696261\pi\)
\(192\) 0 0
\(193\) −1.54423 + 1.54423i −0.111156 + 0.111156i −0.760497 0.649341i \(-0.775045\pi\)
0.649341 + 0.760497i \(0.275045\pi\)
\(194\) 32.6302 2.34271
\(195\) 0 0
\(196\) 14.7721 1.05515
\(197\) 1.33287 1.33287i 0.0949632 0.0949632i −0.658029 0.752992i \(-0.728610\pi\)
0.752992 + 0.658029i \(0.228610\pi\)
\(198\) 0 0
\(199\) 17.0664i 1.20981i −0.796299 0.604904i \(-0.793212\pi\)
0.796299 0.604904i \(-0.206788\pi\)
\(200\) −2.78093 + 2.11712i −0.196641 + 0.149703i
\(201\) 0 0
\(202\) 8.22642 + 8.22642i 0.578809 + 0.578809i
\(203\) −5.76994 5.76994i −0.404971 0.404971i
\(204\) 0 0
\(205\) 1.72350 1.50568i 0.120375 0.105161i
\(206\) 11.5857i 0.807215i
\(207\) 0 0
\(208\) 6.57993 6.57993i 0.456236 0.456236i
\(209\) −23.2082 −1.60534
\(210\) 0 0
\(211\) −7.63136 −0.525365 −0.262682 0.964882i \(-0.584607\pi\)
−0.262682 + 0.964882i \(0.584607\pi\)
\(212\) 12.6418 12.6418i 0.868240 0.868240i
\(213\) 0 0
\(214\) 14.6871i 1.00399i
\(215\) 18.1268 + 1.22272i 1.23624 + 0.0833890i
\(216\) 0 0
\(217\) 28.2684 + 28.2684i 1.91898 + 1.91898i
\(218\) −22.4129 22.4129i −1.51800 1.51800i
\(219\) 0 0
\(220\) 14.3188 + 16.3903i 0.965374 + 1.10503i
\(221\) 2.02338i 0.136107i
\(222\) 0 0
\(223\) 4.63569 4.63569i 0.310429 0.310429i −0.534647 0.845076i \(-0.679555\pi\)
0.845076 + 0.534647i \(0.179555\pi\)
\(224\) 29.5134 1.97195
\(225\) 0 0
\(226\) 17.7547 1.18102
\(227\) −3.66615 + 3.66615i −0.243331 + 0.243331i −0.818227 0.574896i \(-0.805043\pi\)
0.574896 + 0.818227i \(0.305043\pi\)
\(228\) 0 0
\(229\) 13.6663i 0.903093i 0.892248 + 0.451546i \(0.149127\pi\)
−0.892248 + 0.451546i \(0.850873\pi\)
\(230\) 4.76434 + 5.45357i 0.314151 + 0.359598i
\(231\) 0 0
\(232\) −1.00693 1.00693i −0.0661082 0.0661082i
\(233\) −8.38892 8.38892i −0.549576 0.549576i 0.376742 0.926318i \(-0.377044\pi\)
−0.926318 + 0.376742i \(0.877044\pi\)
\(234\) 0 0
\(235\) 8.33485 + 0.562218i 0.543706 + 0.0366751i
\(236\) 6.23420i 0.405812i
\(237\) 0 0
\(238\) −5.39879 + 5.39879i −0.349952 + 0.349952i
\(239\) −7.17220 −0.463931 −0.231966 0.972724i \(-0.574516\pi\)
−0.231966 + 0.972724i \(0.574516\pi\)
\(240\) 0 0
\(241\) −0.542222 −0.0349276 −0.0174638 0.999847i \(-0.505559\pi\)
−0.0174638 + 0.999847i \(0.505559\pi\)
\(242\) −33.0392 + 33.0392i −2.12384 + 2.12384i
\(243\) 0 0
\(244\) 1.31189i 0.0839850i
\(245\) 15.2306 13.3057i 0.973046 0.850070i
\(246\) 0 0
\(247\) −5.57198 5.57198i −0.354537 0.354537i
\(248\) 4.93319 + 4.93319i 0.313258 + 0.313258i
\(249\) 0 0
\(250\) 4.27677 20.8775i 0.270487 1.32041i
\(251\) 30.2271i 1.90792i 0.299940 + 0.953958i \(0.403033\pi\)
−0.299940 + 0.953958i \(0.596967\pi\)
\(252\) 0 0
\(253\) −7.15941 + 7.15941i −0.450108 + 0.450108i
\(254\) −6.90690 −0.433377
\(255\) 0 0
\(256\) 20.1732 1.26083
\(257\) 14.2384 14.2384i 0.888165 0.888165i −0.106182 0.994347i \(-0.533863\pi\)
0.994347 + 0.106182i \(0.0338626\pi\)
\(258\) 0 0
\(259\) 28.7244i 1.78485i
\(260\) −0.497327 + 7.37284i −0.0308429 + 0.457244i
\(261\) 0 0
\(262\) −17.7231 17.7231i −1.09494 1.09494i
\(263\) 2.77074 + 2.77074i 0.170851 + 0.170851i 0.787353 0.616502i \(-0.211451\pi\)
−0.616502 + 0.787353i \(0.711451\pi\)
\(264\) 0 0
\(265\) 1.64729 24.4210i 0.101192 1.50017i
\(266\) 29.7345i 1.82314i
\(267\) 0 0
\(268\) −8.45376 + 8.45376i −0.516396 + 0.516396i
\(269\) −16.2740 −0.992242 −0.496121 0.868253i \(-0.665243\pi\)
−0.496121 + 0.868253i \(0.665243\pi\)
\(270\) 0 0
\(271\) −2.05507 −0.124837 −0.0624184 0.998050i \(-0.519881\pi\)
−0.0624184 + 0.998050i \(0.519881\pi\)
\(272\) −3.25196 + 3.25196i −0.197179 + 0.197179i
\(273\) 0 0
\(274\) 0.208997i 0.0126260i
\(275\) 29.5264 + 4.00156i 1.78051 + 0.241303i
\(276\) 0 0
\(277\) −19.8539 19.8539i −1.19291 1.19291i −0.976247 0.216659i \(-0.930484\pi\)
−0.216659 0.976247i \(-0.569516\pi\)
\(278\) 25.4884 + 25.4884i 1.52869 + 1.52869i
\(279\) 0 0
\(280\) 4.71505 4.11915i 0.281778 0.246166i
\(281\) 12.8292i 0.765327i −0.923888 0.382664i \(-0.875007\pi\)
0.923888 0.382664i \(-0.124993\pi\)
\(282\) 0 0
\(283\) 11.3840 11.3840i 0.676707 0.676707i −0.282547 0.959254i \(-0.591179\pi\)
0.959254 + 0.282547i \(0.0911792\pi\)
\(284\) −3.92440 −0.232870
\(285\) 0 0
\(286\) −22.9836 −1.35905
\(287\) −2.89885 + 2.89885i −0.171114 + 0.171114i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 8.66308 + 0.584359i 0.508713 + 0.0343147i
\(291\) 0 0
\(292\) 11.2855 + 11.2855i 0.660435 + 0.660435i
\(293\) 5.45554 + 5.45554i 0.318716 + 0.318716i 0.848274 0.529558i \(-0.177642\pi\)
−0.529558 + 0.848274i \(0.677642\pi\)
\(294\) 0 0
\(295\) 5.61534 + 6.42769i 0.326938 + 0.374234i
\(296\) 5.01278i 0.291362i
\(297\) 0 0
\(298\) −23.8244 + 23.8244i −1.38011 + 1.38011i
\(299\) −3.43776 −0.198811
\(300\) 0 0
\(301\) −32.5450 −1.87586
\(302\) −5.04240 + 5.04240i −0.290158 + 0.290158i
\(303\) 0 0
\(304\) 17.9105i 1.02724i
\(305\) 1.18166 + 1.35260i 0.0676615 + 0.0774499i
\(306\) 0 0
\(307\) 2.60964 + 2.60964i 0.148940 + 0.148940i 0.777644 0.628704i \(-0.216414\pi\)
−0.628704 + 0.777644i \(0.716414\pi\)
\(308\) −27.5677 27.5677i −1.57081 1.57081i
\(309\) 0 0
\(310\) −42.4425 2.86291i −2.41057 0.162603i
\(311\) 2.93740i 0.166565i −0.996526 0.0832824i \(-0.973460\pi\)
0.996526 0.0832824i \(-0.0265403\pi\)
\(312\) 0 0
\(313\) 3.49597 3.49597i 0.197604 0.197604i −0.601368 0.798972i \(-0.705377\pi\)
0.798972 + 0.601368i \(0.205377\pi\)
\(314\) 15.6427 0.882770
\(315\) 0 0
\(316\) 2.05675 0.115702
\(317\) 13.5894 13.5894i 0.763257 0.763257i −0.213652 0.976910i \(-0.568536\pi\)
0.976910 + 0.213652i \(0.0685360\pi\)
\(318\) 0 0
\(319\) 12.1400i 0.679707i
\(320\) −8.16141 + 7.12995i −0.456237 + 0.398576i
\(321\) 0 0
\(322\) −9.17266 9.17266i −0.511173 0.511173i
\(323\) 2.75380 + 2.75380i 0.153226 + 0.153226i
\(324\) 0 0
\(325\) 6.12819 + 8.04963i 0.339931 + 0.446513i
\(326\) 41.7215i 2.31074i
\(327\) 0 0
\(328\) −0.505887 + 0.505887i −0.0279329 + 0.0279329i
\(329\) −14.9645 −0.825018
\(330\) 0 0
\(331\) 10.2938 0.565797 0.282899 0.959150i \(-0.408704\pi\)
0.282899 + 0.959150i \(0.408704\pi\)
\(332\) 20.6542 20.6542i 1.13355 1.13355i
\(333\) 0 0
\(334\) 32.5246i 1.77967i
\(335\) −1.10157 + 16.3307i −0.0601852 + 0.892242i
\(336\) 0 0
\(337\) −10.5622 10.5622i −0.575358 0.575358i 0.358263 0.933621i \(-0.383369\pi\)
−0.933621 + 0.358263i \(0.883369\pi\)
\(338\) 12.0037 + 12.0037i 0.652914 + 0.652914i
\(339\) 0 0
\(340\) 0.245791 3.64383i 0.0133299 0.197615i
\(341\) 59.4766i 3.22084i
\(342\) 0 0
\(343\) −5.79066 + 5.79066i −0.312666 + 0.312666i
\(344\) −5.67952 −0.306219
\(345\) 0 0
\(346\) −29.2850 −1.57437
\(347\) −17.3495 + 17.3495i −0.931369 + 0.931369i −0.997792 0.0664227i \(-0.978841\pi\)
0.0664227 + 0.997792i \(0.478841\pi\)
\(348\) 0 0
\(349\) 14.2017i 0.760202i −0.924945 0.380101i \(-0.875889\pi\)
0.924945 0.380101i \(-0.124111\pi\)
\(350\) −5.12681 + 37.8294i −0.274040 + 2.02207i
\(351\) 0 0
\(352\) −31.0481 31.0481i −1.65487 1.65487i
\(353\) 2.76159 + 2.76159i 0.146984 + 0.146984i 0.776769 0.629785i \(-0.216857\pi\)
−0.629785 + 0.776769i \(0.716857\pi\)
\(354\) 0 0
\(355\) −4.04620 + 3.53483i −0.214750 + 0.187609i
\(356\) 7.31810i 0.387858i
\(357\) 0 0
\(358\) −26.5299 + 26.5299i −1.40215 + 1.40215i
\(359\) 27.8631 1.47056 0.735278 0.677766i \(-0.237052\pi\)
0.735278 + 0.677766i \(0.237052\pi\)
\(360\) 0 0
\(361\) 3.83312 0.201743
\(362\) 3.43114 3.43114i 0.180337 0.180337i
\(363\) 0 0
\(364\) 13.2373i 0.693821i
\(365\) 21.8010 + 1.47056i 1.14112 + 0.0769728i
\(366\) 0 0
\(367\) 18.8299 + 18.8299i 0.982915 + 0.982915i 0.999856 0.0169413i \(-0.00539285\pi\)
−0.0169413 + 0.999856i \(0.505393\pi\)
\(368\) −5.52514 5.52514i −0.288018 0.288018i
\(369\) 0 0
\(370\) 20.1091 + 23.0182i 1.04542 + 1.19666i
\(371\) 43.8456i 2.27635i
\(372\) 0 0
\(373\) 7.46992 7.46992i 0.386778 0.386778i −0.486759 0.873536i \(-0.661821\pi\)
0.873536 + 0.486759i \(0.161821\pi\)
\(374\) 11.3591 0.587363
\(375\) 0 0
\(376\) −2.61149 −0.134677
\(377\) −2.91464 + 2.91464i −0.150112 + 0.150112i
\(378\) 0 0
\(379\) 3.01511i 0.154876i −0.996997 0.0774379i \(-0.975326\pi\)
0.996997 0.0774379i \(-0.0246740\pi\)
\(380\) 9.35754 + 10.7113i 0.480032 + 0.549476i
\(381\) 0 0
\(382\) 30.3948 + 30.3948i 1.55513 + 1.55513i
\(383\) −0.519651 0.519651i −0.0265529 0.0265529i 0.693706 0.720259i \(-0.255977\pi\)
−0.720259 + 0.693706i \(0.755977\pi\)
\(384\) 0 0
\(385\) −53.2544 3.59221i −2.71409 0.183076i
\(386\) 4.16272i 0.211877i
\(387\) 0 0
\(388\) 19.7704 19.7704i 1.00369 1.00369i
\(389\) −13.6490 −0.692034 −0.346017 0.938228i \(-0.612466\pi\)
−0.346017 + 0.938228i \(0.612466\pi\)
\(390\) 0 0
\(391\) 1.69902 0.0859232
\(392\) −4.47052 + 4.47052i −0.225795 + 0.225795i
\(393\) 0 0
\(394\) 3.59296i 0.181011i
\(395\) 2.12059 1.85258i 0.106698 0.0932136i
\(396\) 0 0
\(397\) −15.8057 15.8057i −0.793263 0.793263i 0.188760 0.982023i \(-0.439553\pi\)
−0.982023 + 0.188760i \(0.939553\pi\)
\(398\) −23.0026 23.0026i −1.15302 1.15302i
\(399\) 0 0
\(400\) −3.08813 + 22.7865i −0.154406 + 1.13933i
\(401\) 18.7484i 0.936249i −0.883663 0.468124i \(-0.844930\pi\)
0.883663 0.468124i \(-0.155070\pi\)
\(402\) 0 0
\(403\) 14.2795 14.2795i 0.711315 0.711315i
\(404\) 9.96864 0.495958
\(405\) 0 0
\(406\) −15.5538 −0.771921
\(407\) −30.2181 + 30.2181i −1.49785 + 1.49785i
\(408\) 0 0
\(409\) 31.4769i 1.55643i −0.627995 0.778217i \(-0.716124\pi\)
0.627995 0.778217i \(-0.283876\pi\)
\(410\) 0.293585 4.35238i 0.0144991 0.214949i
\(411\) 0 0
\(412\) 7.01969 + 7.01969i 0.345835 + 0.345835i
\(413\) −10.8111 10.8111i −0.531978 0.531978i
\(414\) 0 0
\(415\) 2.69135 39.8991i 0.132113 1.95857i
\(416\) 14.9085i 0.730947i
\(417\) 0 0
\(418\) −31.2806 + 31.2806i −1.52999 + 1.52999i
\(419\) −11.4126 −0.557541 −0.278771 0.960358i \(-0.589927\pi\)
−0.278771 + 0.960358i \(0.589927\pi\)
\(420\) 0 0
\(421\) −16.8519 −0.821313 −0.410656 0.911790i \(-0.634700\pi\)
−0.410656 + 0.911790i \(0.634700\pi\)
\(422\) −10.2858 + 10.2858i −0.500703 + 0.500703i
\(423\) 0 0
\(424\) 7.65162i 0.371596i
\(425\) −3.02870 3.97832i −0.146913 0.192977i
\(426\) 0 0
\(427\) −2.27502 2.27502i −0.110096 0.110096i
\(428\) 8.89879 + 8.89879i 0.430139 + 0.430139i
\(429\) 0 0
\(430\) 26.0798 22.7837i 1.25768 1.09873i
\(431\) 18.8723i 0.909048i −0.890734 0.454524i \(-0.849809\pi\)
0.890734 0.454524i \(-0.150191\pi\)
\(432\) 0 0
\(433\) −10.2835 + 10.2835i −0.494194 + 0.494194i −0.909625 0.415431i \(-0.863631\pi\)
0.415431 + 0.909625i \(0.363631\pi\)
\(434\) 76.2017 3.65780
\(435\) 0 0
\(436\) −27.1596 −1.30071
\(437\) −4.67877 + 4.67877i −0.223816 + 0.223816i
\(438\) 0 0
\(439\) 34.7074i 1.65649i 0.560363 + 0.828247i \(0.310662\pi\)
−0.560363 + 0.828247i \(0.689338\pi\)
\(440\) −9.29357 0.626888i −0.443054 0.0298857i
\(441\) 0 0
\(442\) 2.72716 + 2.72716i 0.129718 + 0.129718i
\(443\) −10.7742 10.7742i −0.511898 0.511898i 0.403210 0.915108i \(-0.367895\pi\)
−0.915108 + 0.403210i \(0.867895\pi\)
\(444\) 0 0
\(445\) −6.59164 7.54523i −0.312474 0.357678i
\(446\) 12.4962i 0.591713i
\(447\) 0 0
\(448\) 13.7271 13.7271i 0.648546 0.648546i
\(449\) 0.0830944 0.00392147 0.00196073 0.999998i \(-0.499376\pi\)
0.00196073 + 0.999998i \(0.499376\pi\)
\(450\) 0 0
\(451\) 6.09918 0.287199
\(452\) 10.7574 10.7574i 0.505987 0.505987i
\(453\) 0 0
\(454\) 9.88268i 0.463817i
\(455\) −11.9232 13.6481i −0.558969 0.639833i
\(456\) 0 0
\(457\) 11.0377 + 11.0377i 0.516323 + 0.516323i 0.916457 0.400134i \(-0.131036\pi\)
−0.400134 + 0.916457i \(0.631036\pi\)
\(458\) 18.4198 + 18.4198i 0.860699 + 0.860699i
\(459\) 0 0
\(460\) 6.19095 + 0.417604i 0.288654 + 0.0194709i
\(461\) 9.79176i 0.456048i 0.973656 + 0.228024i \(0.0732264\pi\)
−0.973656 + 0.228024i \(0.926774\pi\)
\(462\) 0 0
\(463\) −9.75463 + 9.75463i −0.453336 + 0.453336i −0.896460 0.443124i \(-0.853870\pi\)
0.443124 + 0.896460i \(0.353870\pi\)
\(464\) −9.36880 −0.434936
\(465\) 0 0
\(466\) −22.6136 −1.04756
\(467\) −0.304088 + 0.304088i −0.0140715 + 0.0140715i −0.714108 0.700036i \(-0.753167\pi\)
0.700036 + 0.714108i \(0.253167\pi\)
\(468\) 0 0
\(469\) 29.3203i 1.35389i
\(470\) 11.9917 10.4762i 0.553136 0.483230i
\(471\) 0 0
\(472\) −1.88667 1.88667i −0.0868411 0.0868411i
\(473\) 34.2373 + 34.2373i 1.57423 + 1.57423i
\(474\) 0 0
\(475\) 19.2959 + 2.61507i 0.885359 + 0.119988i
\(476\) 6.54217i 0.299860i
\(477\) 0 0
\(478\) −9.66689 + 9.66689i −0.442153 + 0.442153i
\(479\) 36.0280 1.64616 0.823080 0.567925i \(-0.192254\pi\)
0.823080 + 0.567925i \(0.192254\pi\)
\(480\) 0 0
\(481\) −14.5099 −0.661595
\(482\) −0.730821 + 0.730821i −0.0332880 + 0.0332880i
\(483\) 0 0
\(484\) 40.0364i 1.81983i
\(485\) 2.57618 38.1918i 0.116978 1.73420i
\(486\) 0 0
\(487\) −0.392844 0.392844i −0.0178015 0.0178015i 0.698150 0.715951i \(-0.254007\pi\)
−0.715951 + 0.698150i \(0.754007\pi\)
\(488\) −0.397020 0.397020i −0.0179723 0.0179723i
\(489\) 0 0
\(490\) 2.59441 38.4620i 0.117203 1.73753i
\(491\) 12.5111i 0.564617i −0.959324 0.282308i \(-0.908900\pi\)
0.959324 0.282308i \(-0.0911001\pi\)
\(492\) 0 0
\(493\) 1.44049 1.44049i 0.0648762 0.0648762i
\(494\) −15.0201 −0.675788
\(495\) 0 0
\(496\) 45.9000 2.06097
\(497\) 6.80552 6.80552i 0.305269 0.305269i
\(498\) 0 0
\(499\) 13.2427i 0.592824i 0.955060 + 0.296412i \(0.0957902\pi\)
−0.955060 + 0.296412i \(0.904210\pi\)
\(500\) −10.0582 15.2407i −0.449817 0.681587i
\(501\) 0 0
\(502\) 40.7409 + 40.7409i 1.81835 + 1.81835i
\(503\) −20.3814 20.3814i −0.908760 0.908760i 0.0874120 0.996172i \(-0.472140\pi\)
−0.996172 + 0.0874120i \(0.972140\pi\)
\(504\) 0 0
\(505\) 10.2780 8.97907i 0.457366 0.399563i
\(506\) 19.2993i 0.857958i
\(507\) 0 0
\(508\) −4.18483 + 4.18483i −0.185672 + 0.185672i
\(509\) 21.3134 0.944699 0.472350 0.881411i \(-0.343406\pi\)
0.472350 + 0.881411i \(0.343406\pi\)
\(510\) 0 0
\(511\) −39.1417 −1.73153
\(512\) 19.4144 19.4144i 0.858004 0.858004i
\(513\) 0 0
\(514\) 38.3817i 1.69294i
\(515\) 13.5604 + 0.914702i 0.597543 + 0.0403066i
\(516\) 0 0
\(517\) 15.7426 + 15.7426i 0.692360 + 0.692360i
\(518\) −38.7155 38.7155i −1.70106 1.70106i
\(519\) 0 0
\(520\) −2.08076 2.38177i −0.0912472 0.104448i
\(521\) 8.77751i 0.384550i −0.981341 0.192275i \(-0.938413\pi\)
0.981341 0.192275i \(-0.0615865\pi\)
\(522\) 0 0
\(523\) 3.61286 3.61286i 0.157979 0.157979i −0.623691 0.781671i \(-0.714368\pi\)
0.781671 + 0.623691i \(0.214368\pi\)
\(524\) −21.4766 −0.938210
\(525\) 0 0
\(526\) 7.46895 0.325662
\(527\) −7.05729 + 7.05729i −0.307420 + 0.307420i
\(528\) 0 0
\(529\) 20.1133i 0.874493i
\(530\) −30.6950 35.1355i −1.33330 1.52619i
\(531\) 0 0
\(532\) −18.0159 18.0159i −0.781087 0.781087i
\(533\) 1.46433 + 1.46433i 0.0634273 + 0.0634273i
\(534\) 0 0
\(535\) 17.1904 + 1.15956i 0.743206 + 0.0501321i
\(536\) 5.11677i 0.221011i
\(537\) 0 0
\(538\) −21.9345 + 21.9345i −0.945664 + 0.945664i
\(539\) 53.8985 2.32157
\(540\) 0 0
\(541\) −12.8459 −0.552289 −0.276145 0.961116i \(-0.589057\pi\)
−0.276145 + 0.961116i \(0.589057\pi\)
\(542\) −2.76988 + 2.76988i −0.118977 + 0.118977i
\(543\) 0 0
\(544\) 7.36811i 0.315905i
\(545\) −28.0026 + 24.4635i −1.19950 + 1.04790i
\(546\) 0 0
\(547\) 24.8784 + 24.8784i 1.06372 + 1.06372i 0.997826 + 0.0658965i \(0.0209907\pi\)
0.0658965 + 0.997826i \(0.479009\pi\)
\(548\) −0.126630 0.126630i −0.00540935 0.00540935i
\(549\) 0 0
\(550\) 45.1899 34.4031i 1.92691 1.46695i
\(551\) 7.93363i 0.337984i
\(552\) 0 0
\(553\) −3.56674 + 3.56674i −0.151673 + 0.151673i
\(554\) −53.5193 −2.27382
\(555\) 0 0
\(556\) 30.8864 1.30988
\(557\) −9.94894 + 9.94894i −0.421550 + 0.421550i −0.885737 0.464187i \(-0.846347\pi\)
0.464187 + 0.885737i \(0.346347\pi\)
\(558\) 0 0
\(559\) 16.4399i 0.695332i
\(560\) 2.77223 41.0981i 0.117148 1.73671i
\(561\) 0 0
\(562\) −17.2916 17.2916i −0.729401 0.729401i
\(563\) 7.89353 + 7.89353i 0.332673 + 0.332673i 0.853601 0.520928i \(-0.174414\pi\)
−0.520928 + 0.853601i \(0.674414\pi\)
\(564\) 0 0
\(565\) 1.40175 20.7808i 0.0589720 0.874257i
\(566\) 30.6873i 1.28988i
\(567\) 0 0
\(568\) 1.18765 1.18765i 0.0498327 0.0498327i
\(569\) 16.9717 0.711490 0.355745 0.934583i \(-0.384227\pi\)
0.355745 + 0.934583i \(0.384227\pi\)
\(570\) 0 0
\(571\) 29.6545 1.24100 0.620500 0.784206i \(-0.286930\pi\)
0.620500 + 0.784206i \(0.286930\pi\)
\(572\) −13.9256 + 13.9256i −0.582259 + 0.582259i
\(573\) 0 0
\(574\) 7.81430i 0.326162i
\(575\) 6.75924 5.14582i 0.281880 0.214595i
\(576\) 0 0
\(577\) −0.842451 0.842451i −0.0350717 0.0350717i 0.689353 0.724425i \(-0.257895\pi\)
−0.724425 + 0.689353i \(0.757895\pi\)
\(578\) −1.34783 1.34783i −0.0560622 0.0560622i
\(579\) 0 0
\(580\) 5.60295 4.89483i 0.232650 0.203247i
\(581\) 71.6353i 2.97193i
\(582\) 0 0
\(583\) 46.1256 46.1256i 1.91033 1.91033i
\(584\) −6.83073 −0.282658
\(585\) 0 0
\(586\) 14.7062 0.607509
\(587\) 10.8865 10.8865i 0.449336 0.449336i −0.445798 0.895134i \(-0.647080\pi\)
0.895134 + 0.445798i \(0.147080\pi\)
\(588\) 0 0
\(589\) 38.8688i 1.60156i
\(590\) 16.2319 + 1.09491i 0.668257 + 0.0450766i
\(591\) 0 0
\(592\) −23.3203 23.3203i −0.958457 0.958457i
\(593\) −10.2611 10.2611i −0.421373 0.421373i 0.464304 0.885676i \(-0.346305\pi\)
−0.885676 + 0.464304i \(0.846305\pi\)
\(594\) 0 0
\(595\) 5.89274 + 6.74522i 0.241579 + 0.276527i
\(596\) 28.8700i 1.18256i
\(597\) 0 0
\(598\) −4.63350 + 4.63350i −0.189478 + 0.189478i
\(599\) −39.6270 −1.61911 −0.809557 0.587042i \(-0.800292\pi\)
−0.809557 + 0.587042i \(0.800292\pi\)
\(600\) 0 0
\(601\) −26.4277 −1.07801 −0.539004 0.842303i \(-0.681199\pi\)
−0.539004 + 0.842303i \(0.681199\pi\)
\(602\) −43.8650 + 43.8650i −1.78780 + 1.78780i
\(603\) 0 0
\(604\) 6.11030i 0.248625i
\(605\) 36.0620 + 41.2790i 1.46613 + 1.67823i
\(606\) 0 0
\(607\) 11.4082 + 11.4082i 0.463044 + 0.463044i 0.899652 0.436608i \(-0.143820\pi\)
−0.436608 + 0.899652i \(0.643820\pi\)
\(608\) −20.2903 20.2903i −0.822882 0.822882i
\(609\) 0 0
\(610\) 3.41575 + 0.230405i 0.138300 + 0.00932884i
\(611\) 7.55919i 0.305812i
\(612\) 0 0
\(613\) −10.5234 + 10.5234i −0.425037 + 0.425037i −0.886934 0.461896i \(-0.847169\pi\)
0.461896 + 0.886934i \(0.347169\pi\)
\(614\) 7.03469 0.283897
\(615\) 0 0
\(616\) 16.6858 0.672289
\(617\) 29.6718 29.6718i 1.19454 1.19454i 0.218765 0.975777i \(-0.429797\pi\)
0.975777 0.218765i \(-0.0702029\pi\)
\(618\) 0 0
\(619\) 22.8080i 0.916731i 0.888764 + 0.458365i \(0.151565\pi\)
−0.888764 + 0.458365i \(0.848435\pi\)
\(620\) −27.4502 + 23.9810i −1.10243 + 0.963099i
\(621\) 0 0
\(622\) −3.95911 3.95911i −0.158746 0.158746i
\(623\) 12.6907 + 12.6907i 0.508443 + 0.508443i
\(624\) 0 0
\(625\) −24.0982 6.65401i −0.963929 0.266160i
\(626\) 9.42393i 0.376656i
\(627\) 0 0
\(628\) 9.47780 9.47780i 0.378205 0.378205i
\(629\) 7.17115 0.285932
\(630\) 0 0
\(631\) 41.2154 1.64076 0.820379 0.571820i \(-0.193762\pi\)
0.820379 + 0.571820i \(0.193762\pi\)
\(632\) −0.622441 + 0.622441i −0.0247594 + 0.0247594i
\(633\) 0 0
\(634\) 36.6323i 1.45486i
\(635\) −0.545306 + 8.08413i −0.0216398 + 0.320809i
\(636\) 0 0
\(637\) 12.9403 + 12.9403i 0.512713 + 0.512713i
\(638\) 16.3626 + 16.3626i 0.647800 + 0.647800i
\(639\) 0 0
\(640\) 0.827415 12.2664i 0.0327065 0.484871i
\(641\) 12.2797i 0.485018i −0.970149 0.242509i \(-0.922030\pi\)
0.970149 0.242509i \(-0.0779704\pi\)
\(642\) 0 0
\(643\) 16.0366 16.0366i 0.632420 0.632420i −0.316254 0.948674i \(-0.602425\pi\)
0.948674 + 0.316254i \(0.102425\pi\)
\(644\) −11.1153 −0.438004
\(645\) 0 0
\(646\) 7.42330 0.292066
\(647\) −20.3237 + 20.3237i −0.799008 + 0.799008i −0.982939 0.183931i \(-0.941118\pi\)
0.183931 + 0.982939i \(0.441118\pi\)
\(648\) 0 0
\(649\) 22.7465i 0.892878i
\(650\) 19.1092 + 2.58977i 0.749526 + 0.101579i
\(651\) 0 0
\(652\) −25.2787 25.2787i −0.989992 0.989992i
\(653\) −7.23170 7.23170i −0.282998 0.282998i 0.551305 0.834304i \(-0.314130\pi\)
−0.834304 + 0.551305i \(0.814130\pi\)
\(654\) 0 0
\(655\) −22.1432 + 19.3447i −0.865206 + 0.755859i
\(656\) 4.70693i 0.183775i
\(657\) 0 0
\(658\) −20.1695 + 20.1695i −0.786290 + 0.786290i
\(659\) 46.4581 1.80975 0.904875 0.425677i \(-0.139964\pi\)
0.904875 + 0.425677i \(0.139964\pi\)
\(660\) 0 0
\(661\) 37.2982 1.45073 0.725366 0.688364i \(-0.241671\pi\)
0.725366 + 0.688364i \(0.241671\pi\)
\(662\) 13.8742 13.8742i 0.539237 0.539237i
\(663\) 0 0
\(664\) 12.5013i 0.485144i
\(665\) −34.8025 2.34756i −1.34958 0.0910346i
\(666\) 0 0
\(667\) 2.44742 + 2.44742i 0.0947643 + 0.0947643i
\(668\) 19.7064 + 19.7064i 0.762463 + 0.762463i
\(669\) 0 0
\(670\) 20.5262 + 23.4957i 0.792998 + 0.907718i
\(671\) 4.78664i 0.184786i
\(672\) 0 0
\(673\) 21.8962 21.8962i 0.844035 0.844035i −0.145346 0.989381i \(-0.546430\pi\)
0.989381 + 0.145346i \(0.0464296\pi\)
\(674\) −28.4719 −1.09670
\(675\) 0 0
\(676\) 14.5459 0.559456
\(677\) 10.5006 10.5006i 0.403571 0.403571i −0.475918 0.879490i \(-0.657884\pi\)
0.879490 + 0.475918i \(0.157884\pi\)
\(678\) 0 0
\(679\) 68.5698i 2.63147i
\(680\) 1.02836 + 1.17713i 0.0394358 + 0.0451408i
\(681\) 0 0
\(682\) −80.1642 80.1642i −3.06964 3.06964i
\(683\) −13.0770 13.0770i −0.500376 0.500376i 0.411179 0.911555i \(-0.365117\pi\)
−0.911555 + 0.411179i \(0.865117\pi\)
\(684\) 0 0
\(685\) −0.244619 0.0165005i −0.00934641 0.000630452i
\(686\) 15.6096i 0.595978i
\(687\) 0 0
\(688\) −26.4220 + 26.4220i −1.00733 + 1.00733i
\(689\) 22.1483 0.843782
\(690\) 0 0
\(691\) −3.36760 −0.128110 −0.0640548 0.997946i \(-0.520403\pi\)
−0.0640548 + 0.997946i \(0.520403\pi\)
\(692\) −17.7436 + 17.7436i −0.674509 + 0.674509i
\(693\) 0 0
\(694\) 46.7682i 1.77530i
\(695\) 31.8450 27.8204i 1.20795 1.05529i
\(696\) 0 0
\(697\) −0.723708 0.723708i −0.0274124 0.0274124i
\(698\) −19.1415 19.1415i −0.724516 0.724516i
\(699\) 0 0
\(700\) 19.8142 + 26.0268i 0.748908 + 0.983722i
\(701\) 4.90728i 0.185345i −0.995697 0.0926726i \(-0.970459\pi\)
0.995697 0.0926726i \(-0.0295410\pi\)
\(702\) 0 0
\(703\) −19.7479 + 19.7479i −0.744807 + 0.744807i
\(704\) −28.8819 −1.08853
\(705\) 0 0
\(706\) 7.44428 0.280169
\(707\) −17.2872 + 17.2872i −0.650152 + 0.650152i
\(708\) 0 0
\(709\) 47.8742i 1.79795i 0.437995 + 0.898977i \(0.355689\pi\)
−0.437995 + 0.898977i \(0.644311\pi\)
\(710\) −0.689238 + 10.2179i −0.0258666 + 0.383471i
\(711\) 0 0
\(712\) 2.21470 + 2.21470i 0.0829993 + 0.0829993i
\(713\) −11.9905 11.9905i −0.449047 0.449047i
\(714\) 0 0
\(715\) −1.81458 + 26.9010i −0.0678614 + 1.00604i
\(716\) 32.1485i 1.20144i
\(717\) 0 0
\(718\) 37.5546 37.5546i 1.40152 1.40152i
\(719\) −39.7225 −1.48140 −0.740699 0.671837i \(-0.765505\pi\)
−0.740699 + 0.671837i \(0.765505\pi\)
\(720\) 0 0
\(721\) −24.3465 −0.906710
\(722\) 5.16638 5.16638i 0.192273 0.192273i
\(723\) 0 0
\(724\) 4.15780i 0.154523i
\(725\) 1.36792 10.0935i 0.0508031 0.374863i
\(726\) 0 0
\(727\) 5.66609 + 5.66609i 0.210144 + 0.210144i 0.804328 0.594185i \(-0.202525\pi\)
−0.594185 + 0.804328i \(0.702525\pi\)
\(728\) 4.00603 + 4.00603i 0.148473 + 0.148473i
\(729\) 0 0
\(730\) 31.3660 27.4019i 1.16091 1.01419i
\(731\) 8.12497i 0.300513i
\(732\) 0 0
\(733\) 28.0671 28.0671i 1.03668 1.03668i 0.0373826 0.999301i \(-0.488098\pi\)
0.999301 0.0373826i \(-0.0119020\pi\)
\(734\) 50.7590 1.87355
\(735\) 0 0
\(736\) −12.5186 −0.461441
\(737\) −30.8450 + 30.8450i −1.13619 + 1.13619i
\(738\) 0 0
\(739\) 50.7412i 1.86654i −0.359171 0.933272i \(-0.616940\pi\)
0.359171 0.933272i \(-0.383060\pi\)
\(740\) 26.1305 + 1.76260i 0.960575 + 0.0647945i
\(741\) 0 0
\(742\) 59.0963 + 59.0963i 2.16949 + 2.16949i
\(743\) 20.7995 + 20.7995i 0.763059 + 0.763059i 0.976874 0.213815i \(-0.0685890\pi\)
−0.213815 + 0.976874i \(0.568589\pi\)
\(744\) 0 0
\(745\) 26.0041 + 29.7660i 0.952716 + 1.09054i
\(746\) 20.1363i 0.737243i
\(747\) 0 0
\(748\) 6.88236 6.88236i 0.251644 0.251644i
\(749\) −30.8638 −1.12774
\(750\) 0 0
\(751\) −45.9138 −1.67542 −0.837708 0.546118i \(-0.816105\pi\)
−0.837708 + 0.546118i \(0.816105\pi\)
\(752\) −12.1491 + 12.1491i −0.443032 + 0.443032i
\(753\) 0 0
\(754\) 7.85687i 0.286130i
\(755\) 5.50374 + 6.29994i 0.200302 + 0.229278i
\(756\) 0 0
\(757\) 11.5524 + 11.5524i 0.419880 + 0.419880i 0.885162 0.465282i \(-0.154047\pi\)
−0.465282 + 0.885162i \(0.654047\pi\)
\(758\) −4.06385 4.06385i −0.147606 0.147606i
\(759\) 0 0
\(760\) −6.07348 0.409680i −0.220308 0.0148607i
\(761\) 21.4014i 0.775799i −0.921702 0.387900i \(-0.873201\pi\)
0.921702 0.387900i \(-0.126799\pi\)
\(762\) 0 0
\(763\) 47.0991 47.0991i 1.70510 1.70510i
\(764\) 36.8320 1.33253
\(765\) 0 0
\(766\) −1.40080 −0.0506129
\(767\) −5.46113 + 5.46113i −0.197190 + 0.197190i
\(768\) 0 0
\(769\) 21.8053i 0.786320i −0.919470 0.393160i \(-0.871382\pi\)
0.919470 0.393160i \(-0.128618\pi\)
\(770\) −76.6193 + 66.9360i −2.76117 + 2.41221i
\(771\) 0 0
\(772\) 2.52216 + 2.52216i 0.0907745 + 0.0907745i
\(773\) 13.6880 + 13.6880i 0.492323 + 0.492323i 0.909037 0.416715i \(-0.136819\pi\)
−0.416715 + 0.909037i \(0.636819\pi\)
\(774\) 0 0
\(775\) −6.70175 + 49.4505i −0.240734 + 1.77631i
\(776\) 11.9663i 0.429566i
\(777\) 0 0
\(778\) −18.3965 + 18.3965i −0.659548 + 0.659548i
\(779\) 3.98590 0.142810
\(780\) 0 0
\(781\) −14.3188 −0.512367
\(782\) 2.28999 2.28999i 0.0818897 0.0818897i
\(783\) 0 0
\(784\) 41.5952i 1.48554i
\(785\) 1.23501 18.3089i 0.0440793 0.653473i
\(786\) 0 0
\(787\) −4.49629 4.49629i −0.160275 0.160275i 0.622413 0.782689i \(-0.286152\pi\)
−0.782689 + 0.622413i \(0.786152\pi\)
\(788\) −2.17695 2.17695i −0.0775505 0.0775505i
\(789\) 0 0
\(790\) 0.361226 5.35515i 0.0128518 0.190528i
\(791\) 37.3101i 1.32660i
\(792\) 0 0
\(793\) −1.14921 + 1.14921i −0.0408096 + 0.0408096i
\(794\) −42.6066 −1.51205
\(795\) 0 0
\(796\) −27.8742 −0.987974
\(797\) 9.29986 9.29986i 0.329418 0.329418i −0.522947 0.852365i \(-0.675168\pi\)
0.852365 + 0.522947i \(0.175168\pi\)
\(798\) 0 0
\(799\) 3.73593i 0.132168i
\(800\) 22.3158 + 29.3127i 0.788981 + 1.03636i
\(801\) 0 0
\(802\) −25.2696 25.2696i −0.892299 0.892299i
\(803\) 41.1771 + 41.1771i 1.45311 + 1.45311i
\(804\) 0 0
\(805\) −11.4603 + 10.0119i −0.403921 + 0.352873i
\(806\) 38.4927i 1.35585i
\(807\) 0 0
\(808\) −3.01684 + 3.01684i −0.106132 + 0.106132i
\(809\) 35.0967 1.23393 0.616967 0.786989i \(-0.288361\pi\)
0.616967 + 0.786989i \(0.288361\pi\)
\(810\) 0 0
\(811\) −45.8292 −1.60928 −0.804641 0.593762i \(-0.797642\pi\)
−0.804641 + 0.593762i \(0.797642\pi\)
\(812\) −9.42390 + 9.42390i −0.330714 + 0.330714i
\(813\) 0 0
\(814\) 81.4575i 2.85508i
\(815\) −48.8327 3.29395i −1.71053 0.115382i
\(816\) 0 0
\(817\) 22.3746 + 22.3746i 0.782787 + 0.782787i
\(818\) −42.4255 42.4255i −1.48337 1.48337i
\(819\) 0 0
\(820\) −2.45919 2.81495i −0.0858786 0.0983023i
\(821\) 32.4166i 1.13135i 0.824629 + 0.565674i \(0.191384\pi\)
−0.824629 + 0.565674i \(0.808616\pi\)
\(822\) 0 0
\(823\) 0.636529 0.636529i 0.0221880 0.0221880i −0.695926 0.718114i \(-0.745006\pi\)
0.718114 + 0.695926i \(0.245006\pi\)
\(824\) −4.24877 −0.148013
\(825\) 0 0
\(826\) −29.1429 −1.01401
\(827\) 31.3800 31.3800i 1.09119 1.09119i 0.0957859 0.995402i \(-0.469464\pi\)
0.995402 0.0957859i \(-0.0305364\pi\)
\(828\) 0 0
\(829\) 24.1035i 0.837150i −0.908182 0.418575i \(-0.862530\pi\)
0.908182 0.418575i \(-0.137470\pi\)
\(830\) −50.1497 57.4046i −1.74072 1.99254i
\(831\) 0 0
\(832\) −6.93415 6.93415i −0.240398 0.240398i
\(833\) −6.39540 6.39540i −0.221588 0.221588i
\(834\) 0 0
\(835\) 38.0682 + 2.56785i 1.31740 + 0.0888640i
\(836\) 37.9054i 1.31098i
\(837\) 0 0
\(838\) −15.3822 + 15.3822i −0.531369 + 0.531369i
\(839\) −16.2856 −0.562240 −0.281120 0.959673i \(-0.590706\pi\)
−0.281120 + 0.959673i \(0.590706\pi\)
\(840\) 0 0
\(841\) −24.8500 −0.856897
\(842\) −22.7135 + 22.7135i −0.782758 + 0.782758i
\(843\) 0 0
\(844\) 12.4641i 0.429032i
\(845\) 14.9973 13.1019i 0.515924 0.450720i
\(846\) 0 0
\(847\) −69.4293 69.4293i −2.38562 2.38562i
\(848\) 35.5966 + 35.5966i 1.22239 + 1.22239i
\(849\) 0 0
\(850\) −9.44424 1.27993i −0.323935 0.0439011i
\(851\) 12.1839i 0.417660i
\(852\) 0 0
\(853\) −30.9846 + 30.9846i −1.06089 + 1.06089i −0.0628692 + 0.998022i \(0.520025\pi\)
−0.998022 + 0.0628692i \(0.979975\pi\)
\(854\) −6.13266 −0.209855
\(855\) 0 0
\(856\) −5.38613 −0.184094
\(857\) 17.6625 17.6625i 0.603340 0.603340i −0.337857 0.941197i \(-0.609702\pi\)
0.941197 + 0.337857i \(0.109702\pi\)
\(858\) 0 0
\(859\) 18.8491i 0.643122i 0.946889 + 0.321561i \(0.104208\pi\)
−0.946889 + 0.321561i \(0.895792\pi\)
\(860\) 1.99704 29.6060i 0.0680985 1.00956i
\(861\) 0 0
\(862\) −25.4366 25.4366i −0.866375 0.866375i
\(863\) −3.20650 3.20650i −0.109150 0.109150i 0.650422 0.759573i \(-0.274592\pi\)
−0.759573 + 0.650422i \(0.774592\pi\)
\(864\) 0 0
\(865\) −2.31208 + 34.2765i −0.0786131 + 1.16543i
\(866\) 27.7208i 0.941991i
\(867\) 0 0
\(868\) 46.1700 46.1700i 1.56711 1.56711i
\(869\) 7.50441 0.254570
\(870\) 0 0
\(871\) −14.8109 −0.501849
\(872\) 8.21940 8.21940i 0.278344 0.278344i
\(873\) 0 0
\(874\) 12.6123i 0.426619i
\(875\) 43.8724 + 8.98731i 1.48316 + 0.303826i
\(876\) 0 0
\(877\) −39.6600 39.6600i −1.33922 1.33922i −0.896813 0.442410i \(-0.854124\pi\)
−0.442410 0.896813i \(-0.645876\pi\)
\(878\) 46.7796 + 46.7796i 1.57873 + 1.57873i
\(879\) 0 0
\(880\) −46.1516 + 40.3188i −1.55577 + 1.35915i
\(881\) 22.1777i 0.747187i 0.927593 + 0.373593i \(0.121874\pi\)
−0.927593 + 0.373593i \(0.878126\pi\)
\(882\) 0 0
\(883\) −14.5160 + 14.5160i −0.488502 + 0.488502i −0.907833 0.419331i \(-0.862265\pi\)
0.419331 + 0.907833i \(0.362265\pi\)
\(884\) 3.30473 0.111150
\(885\) 0 0
\(886\) −29.0435 −0.975736
\(887\) 11.7038 11.7038i 0.392974 0.392974i −0.482772 0.875746i \(-0.660370\pi\)
0.875746 + 0.482772i \(0.160370\pi\)
\(888\) 0 0
\(889\) 14.5143i 0.486795i
\(890\) −19.0541 1.28527i −0.638693 0.0430824i
\(891\) 0 0
\(892\) −7.57136 7.57136i −0.253508 0.253508i
\(893\) 10.2880 + 10.2880i 0.344276 + 0.344276i
\(894\) 0 0
\(895\) 28.9571 + 33.1463i 0.967930 + 1.10796i
\(896\) 22.0232i 0.735742i
\(897\) 0 0
\(898\) 0.111997 0.111997i 0.00373739 0.00373739i
\(899\) −20.3318 −0.678105
\(900\) 0 0
\(901\) −10.9462 −0.364671
\(902\) 8.22064 8.22064i 0.273717 0.273717i
\(903\) 0 0
\(904\) 6.51110i 0.216556i
\(905\) −3.74506 4.28684i −0.124490 0.142499i
\(906\) 0 0
\(907\) 1.74394 + 1.74394i 0.0579066 + 0.0579066i 0.735467 0.677560i \(-0.236963\pi\)
−0.677560 + 0.735467i \(0.736963\pi\)
\(908\) 5.98783 + 5.98783i 0.198713 + 0.198713i
\(909\) 0 0
\(910\) −34.4657 2.32485i −1.14253 0.0770680i
\(911\) 6.81654i 0.225842i −0.993604 0.112921i \(-0.963979\pi\)
0.993604 0.112921i \(-0.0360207\pi\)
\(912\) 0 0
\(913\) 75.3603 75.3603i 2.49406 2.49406i
\(914\) 29.7539 0.984171
\(915\) 0 0
\(916\) 22.3208 0.737499
\(917\) 37.2438 37.2438i 1.22990 1.22990i
\(918\) 0 0
\(919\) 22.8968i 0.755296i −0.925949 0.377648i \(-0.876733\pi\)
0.925949 0.377648i \(-0.123267\pi\)
\(920\) −1.99996 + 1.74720i −0.0659369 + 0.0576036i
\(921\) 0 0
\(922\) 13.1976 + 13.1976i 0.434640 + 0.434640i
\(923\) −3.43776 3.43776i −0.113155 0.113155i
\(924\) 0 0
\(925\) 28.5291 21.7192i 0.938031 0.714123i
\(926\) 26.2951i 0.864110i
\(927\) 0 0
\(928\) −10.6137 + 10.6137i −0.348410 + 0.348410i
\(929\) 25.7176 0.843767 0.421883 0.906650i \(-0.361369\pi\)
0.421883 + 0.906650i \(0.361369\pi\)
\(930\) 0 0
\(931\) 35.2234 1.15440
\(932\) −13.7014 + 13.7014i −0.448804 + 0.448804i
\(933\) 0 0
\(934\) 0.819717i 0.0268220i
\(935\) 0.896808 13.2951i 0.0293288 0.434797i
\(936\) 0 0
\(937\) −22.2367 22.2367i −0.726443 0.726443i 0.243466 0.969909i \(-0.421715\pi\)
−0.969909 + 0.243466i \(0.921715\pi\)
\(938\) −39.5187 39.5187i −1.29033 1.29033i
\(939\) 0 0
\(940\) 0.918257 13.6131i 0.0299502 0.444011i
\(941\) 40.0183i 1.30456i 0.757978 + 0.652280i \(0.226187\pi\)
−0.757978 + 0.652280i \(0.773813\pi\)
\(942\) 0 0
\(943\) 1.22959 1.22959i 0.0400411 0.0400411i
\(944\) −17.5542 −0.571341
\(945\) 0 0
\(946\) 92.2920 3.00067
\(947\) −24.3013 + 24.3013i −0.789686 + 0.789686i −0.981443 0.191756i \(-0.938582\pi\)
0.191756 + 0.981443i \(0.438582\pi\)
\(948\) 0 0
\(949\) 19.7721i 0.641831i
\(950\) 29.5323 22.4829i 0.958153 0.729442i
\(951\) 0 0
\(952\) −1.97988 1.97988i −0.0641681 0.0641681i
\(953\) −4.96771 4.96771i −0.160920 0.160920i 0.622054 0.782974i \(-0.286298\pi\)
−0.782974 + 0.622054i \(0.786298\pi\)
\(954\) 0 0
\(955\) 37.9751 33.1757i 1.22885 1.07354i
\(956\) 11.7142i 0.378864i
\(957\) 0 0
\(958\) 48.5595 48.5595i 1.56889 1.56889i
\(959\) 0.439191 0.0141822
\(960\) 0 0
\(961\) 68.6106 2.21325
\(962\) −19.5569 + 19.5569i −0.630538 + 0.630538i
\(963\) 0 0
\(964\) 0.885598i 0.0285232i
\(965\) 4.87223 + 0.328651i 0.156843 + 0.0105796i
\(966\) 0 0
\(967\) −4.88064 4.88064i −0.156951 0.156951i 0.624263 0.781214i \(-0.285399\pi\)
−0.781214 + 0.624263i \(0.785399\pi\)
\(968\) −12.1163 12.1163i −0.389433 0.389433i
\(969\) 0 0
\(970\) −48.0036 54.9481i −1.54130 1.76428i
\(971\) 1.08498i 0.0348186i 0.999848 + 0.0174093i \(0.00554184\pi\)
−0.999848 + 0.0174093i \(0.994458\pi\)
\(972\) 0 0
\(973\) −53.5619 + 53.5619i −1.71712 + 1.71712i
\(974\) −1.05897 −0.0339316
\(975\) 0 0
\(976\) −3.69400 −0.118242
\(977\) −19.2257 + 19.2257i −0.615085 + 0.615085i −0.944267 0.329181i \(-0.893227\pi\)
0.329181 + 0.944267i \(0.393227\pi\)
\(978\) 0 0
\(979\) 26.7013i 0.853377i
\(980\) −21.7319 24.8757i −0.694199 0.794626i
\(981\) 0 0
\(982\) −16.8628 16.8628i −0.538112 0.538112i
\(983\) −10.2136 10.2136i −0.325764 0.325764i 0.525209 0.850973i \(-0.323987\pi\)
−0.850973 + 0.525209i \(0.823987\pi\)
\(984\) 0 0
\(985\) −4.20536 0.283668i −0.133994 0.00903840i
\(986\) 3.88305i 0.123662i
\(987\) 0 0
\(988\) −9.10057 + 9.10057i −0.289528 + 0.289528i
\(989\) 13.8045 0.438957
\(990\) 0 0
\(991\) −5.55365 −0.176418 −0.0882088 0.996102i \(-0.528114\pi\)
−0.0882088 + 0.996102i \(0.528114\pi\)
\(992\) 51.9989 51.9989i 1.65097 1.65097i
\(993\) 0 0
\(994\) 18.3453i 0.581878i
\(995\) −28.7393 + 25.1071i −0.911097 + 0.795950i
\(996\) 0 0
\(997\) 34.3812 + 34.3812i 1.08886 + 1.08886i 0.995646 + 0.0932188i \(0.0297156\pi\)
0.0932188 + 0.995646i \(0.470284\pi\)
\(998\) 17.8489 + 17.8489i 0.564996 + 0.564996i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.n.e.647.10 yes 24
3.2 odd 2 inner 765.2.n.e.647.3 yes 24
5.3 odd 4 inner 765.2.n.e.188.3 24
15.8 even 4 inner 765.2.n.e.188.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.n.e.188.3 24 5.3 odd 4 inner
765.2.n.e.188.10 yes 24 15.8 even 4 inner
765.2.n.e.647.3 yes 24 3.2 odd 2 inner
765.2.n.e.647.10 yes 24 1.1 even 1 trivial