Newspace parameters
| Level: | \( N \) | \(=\) | \( 765 = 3^{2} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 765.n (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.10855575463\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 188.1 | −1.73886 | − | 1.73886i | 0 | 4.04726i | −2.10859 | − | 0.744208i | 0 | −0.649310 | + | 0.649310i | 3.55991 | − | 3.55991i | 0 | 2.37247 | + | 4.96062i | ||||||||
| 188.2 | −1.63882 | − | 1.63882i | 0 | 3.37143i | −0.913805 | − | 2.04082i | 0 | −2.58679 | + | 2.58679i | 2.24752 | − | 2.24752i | 0 | −1.84698 | + | 4.84209i | ||||||||
| 188.3 | −1.34783 | − | 1.34783i | 0 | 1.63327i | 1.47114 | − | 1.68397i | 0 | 2.83235 | − | 2.83235i | −0.494282 | + | 0.494282i | 0 | −4.25254 | + | 0.286850i | ||||||||
| 188.4 | −1.16413 | − | 1.16413i | 0 | 0.710382i | 2.23590 | − | 0.0275136i | 0 | 2.04131 | − | 2.04131i | −1.50128 | + | 1.50128i | 0 | −2.63490 | − | 2.57084i | ||||||||
| 188.5 | −0.281958 | − | 0.281958i | 0 | − | 1.84100i | −0.408357 | + | 2.19846i | 0 | −0.380936 | + | 0.380936i | −1.08300 | + | 1.08300i | 0 | 0.735014 | − | 0.504734i | |||||||
| 188.6 | −0.198302 | − | 0.198302i | 0 | − | 1.92135i | −1.54549 | + | 1.61600i | 0 | 0.743380 | − | 0.743380i | −0.777612 | + | 0.777612i | 0 | 0.626930 | − | 0.0139813i | |||||||
| 188.7 | 0.198302 | + | 0.198302i | 0 | − | 1.92135i | 1.54549 | − | 1.61600i | 0 | 0.743380 | − | 0.743380i | 0.777612 | − | 0.777612i | 0 | 0.626930 | − | 0.0139813i | |||||||
| 188.8 | 0.281958 | + | 0.281958i | 0 | − | 1.84100i | 0.408357 | − | 2.19846i | 0 | −0.380936 | + | 0.380936i | 1.08300 | − | 1.08300i | 0 | 0.735014 | − | 0.504734i | |||||||
| 188.9 | 1.16413 | + | 1.16413i | 0 | 0.710382i | −2.23590 | + | 0.0275136i | 0 | 2.04131 | − | 2.04131i | 1.50128 | − | 1.50128i | 0 | −2.63490 | − | 2.57084i | ||||||||
| 188.10 | 1.34783 | + | 1.34783i | 0 | 1.63327i | −1.47114 | + | 1.68397i | 0 | 2.83235 | − | 2.83235i | 0.494282 | − | 0.494282i | 0 | −4.25254 | + | 0.286850i | ||||||||
| 188.11 | 1.63882 | + | 1.63882i | 0 | 3.37143i | 0.913805 | + | 2.04082i | 0 | −2.58679 | + | 2.58679i | −2.24752 | + | 2.24752i | 0 | −1.84698 | + | 4.84209i | ||||||||
| 188.12 | 1.73886 | + | 1.73886i | 0 | 4.04726i | 2.10859 | + | 0.744208i | 0 | −0.649310 | + | 0.649310i | −3.55991 | + | 3.55991i | 0 | 2.37247 | + | 4.96062i | ||||||||
| 647.1 | −1.73886 | + | 1.73886i | 0 | − | 4.04726i | −2.10859 | + | 0.744208i | 0 | −0.649310 | − | 0.649310i | 3.55991 | + | 3.55991i | 0 | 2.37247 | − | 4.96062i | |||||||
| 647.2 | −1.63882 | + | 1.63882i | 0 | − | 3.37143i | −0.913805 | + | 2.04082i | 0 | −2.58679 | − | 2.58679i | 2.24752 | + | 2.24752i | 0 | −1.84698 | − | 4.84209i | |||||||
| 647.3 | −1.34783 | + | 1.34783i | 0 | − | 1.63327i | 1.47114 | + | 1.68397i | 0 | 2.83235 | + | 2.83235i | −0.494282 | − | 0.494282i | 0 | −4.25254 | − | 0.286850i | |||||||
| 647.4 | −1.16413 | + | 1.16413i | 0 | − | 0.710382i | 2.23590 | + | 0.0275136i | 0 | 2.04131 | + | 2.04131i | −1.50128 | − | 1.50128i | 0 | −2.63490 | + | 2.57084i | |||||||
| 647.5 | −0.281958 | + | 0.281958i | 0 | 1.84100i | −0.408357 | − | 2.19846i | 0 | −0.380936 | − | 0.380936i | −1.08300 | − | 1.08300i | 0 | 0.735014 | + | 0.504734i | ||||||||
| 647.6 | −0.198302 | + | 0.198302i | 0 | 1.92135i | −1.54549 | − | 1.61600i | 0 | 0.743380 | + | 0.743380i | −0.777612 | − | 0.777612i | 0 | 0.626930 | + | 0.0139813i | ||||||||
| 647.7 | 0.198302 | − | 0.198302i | 0 | 1.92135i | 1.54549 | + | 1.61600i | 0 | 0.743380 | + | 0.743380i | 0.777612 | + | 0.777612i | 0 | 0.626930 | + | 0.0139813i | ||||||||
| 647.8 | 0.281958 | − | 0.281958i | 0 | 1.84100i | 0.408357 | + | 2.19846i | 0 | −0.380936 | − | 0.380936i | 1.08300 | + | 1.08300i | 0 | 0.735014 | + | 0.504734i | ||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 5.c | odd | 4 | 1 | inner |
| 15.e | even | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 765.2.n.e | ✓ | 24 |
| 3.b | odd | 2 | 1 | inner | 765.2.n.e | ✓ | 24 |
| 5.c | odd | 4 | 1 | inner | 765.2.n.e | ✓ | 24 |
| 15.e | even | 4 | 1 | inner | 765.2.n.e | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 765.2.n.e | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 765.2.n.e | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
| 765.2.n.e | ✓ | 24 | 5.c | odd | 4 | 1 | inner |
| 765.2.n.e | ✓ | 24 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} + 86T_{2}^{20} + 2499T_{2}^{16} + 28102T_{2}^{12} + 103201T_{2}^{8} + 3224T_{2}^{4} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(765, [\chi])\).