Properties

Label 765.2.n.e.188.1
Level $765$
Weight $2$
Character 765.188
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(188,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 188.1
Character \(\chi\) \(=\) 765.188
Dual form 765.2.n.e.647.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73886 - 1.73886i) q^{2} +4.04726i q^{4} +(-2.10859 - 0.744208i) q^{5} +(-0.649310 + 0.649310i) q^{7} +(3.55991 - 3.55991i) q^{8} +(2.37247 + 4.96062i) q^{10} -3.82089i q^{11} +(-3.86577 - 3.86577i) q^{13} +2.25812 q^{14} -4.28582 q^{16} +(-0.707107 - 0.707107i) q^{17} +0.869466i q^{19} +(3.01201 - 8.53402i) q^{20} +(-6.64399 + 6.64399i) q^{22} +(-4.26701 + 4.26701i) q^{23} +(3.89231 + 3.13846i) q^{25} +13.4441i q^{26} +(-2.62793 - 2.62793i) q^{28} +2.62630 q^{29} +5.98261 q^{31} +(0.332630 + 0.332630i) q^{32} +2.45912i q^{34} +(1.85235 - 0.885907i) q^{35} +(-3.97330 + 3.97330i) q^{37} +(1.51188 - 1.51188i) q^{38} +(-10.1557 + 4.85707i) q^{40} +8.63126i q^{41} +(0.316622 + 0.316622i) q^{43} +15.4642 q^{44} +14.8395 q^{46} +(8.13256 + 8.13256i) q^{47} +6.15679i q^{49} +(-1.31084 - 12.2255i) q^{50} +(15.6458 - 15.6458i) q^{52} +(-3.07625 + 3.07625i) q^{53} +(-2.84354 + 8.05670i) q^{55} +4.62296i q^{56} +(-4.56676 - 4.56676i) q^{58} -9.94824 q^{59} -4.43292 q^{61} +(-10.4029 - 10.4029i) q^{62} +7.41485i q^{64} +(5.27439 + 11.0283i) q^{65} +(6.18239 - 6.18239i) q^{67} +(2.86185 - 2.86185i) q^{68} +(-4.76144 - 1.68051i) q^{70} +8.53402i q^{71} +(-4.00931 - 4.00931i) q^{73} +13.8180 q^{74} -3.51896 q^{76} +(2.48094 + 2.48094i) q^{77} -3.15768i q^{79} +(9.03704 + 3.18954i) q^{80} +(15.0086 - 15.0086i) q^{82} +(-1.06001 + 1.06001i) q^{83} +(0.964764 + 2.01723i) q^{85} -1.10112i q^{86} +(-13.6020 - 13.6020i) q^{88} +11.1735 q^{89} +5.02016 q^{91} +(-17.2697 - 17.2697i) q^{92} -28.2827i q^{94} +(0.647063 - 1.83335i) q^{95} +(9.02016 - 9.02016i) q^{97} +(10.7058 - 10.7058i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{7} - 20 q^{10} - 20 q^{13} - 8 q^{16} - 40 q^{22} - 24 q^{28} + 72 q^{31} + 16 q^{37} - 88 q^{40} + 36 q^{43} + 56 q^{46} + 32 q^{52} - 88 q^{55} - 80 q^{58} - 8 q^{61} + 104 q^{67} - 136 q^{70}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73886 1.73886i −1.22956 1.22956i −0.964130 0.265429i \(-0.914486\pi\)
−0.265429 0.964130i \(-0.585514\pi\)
\(3\) 0 0
\(4\) 4.04726i 2.02363i
\(5\) −2.10859 0.744208i −0.942990 0.332820i
\(6\) 0 0
\(7\) −0.649310 + 0.649310i −0.245416 + 0.245416i −0.819086 0.573670i \(-0.805519\pi\)
0.573670 + 0.819086i \(0.305519\pi\)
\(8\) 3.55991 3.55991i 1.25862 1.25862i
\(9\) 0 0
\(10\) 2.37247 + 4.96062i 0.750241 + 1.56868i
\(11\) 3.82089i 1.15204i −0.817435 0.576021i \(-0.804605\pi\)
0.817435 0.576021i \(-0.195395\pi\)
\(12\) 0 0
\(13\) −3.86577 3.86577i −1.07217 1.07217i −0.997185 0.0749867i \(-0.976109\pi\)
−0.0749867 0.997185i \(-0.523891\pi\)
\(14\) 2.25812 0.603507
\(15\) 0 0
\(16\) −4.28582 −1.07146
\(17\) −0.707107 0.707107i −0.171499 0.171499i
\(18\) 0 0
\(19\) 0.869466i 0.199469i 0.995014 + 0.0997346i \(0.0317994\pi\)
−0.995014 + 0.0997346i \(0.968201\pi\)
\(20\) 3.01201 8.53402i 0.673505 1.90827i
\(21\) 0 0
\(22\) −6.64399 + 6.64399i −1.41650 + 1.41650i
\(23\) −4.26701 + 4.26701i −0.889734 + 0.889734i −0.994497 0.104764i \(-0.966591\pi\)
0.104764 + 0.994497i \(0.466591\pi\)
\(24\) 0 0
\(25\) 3.89231 + 3.13846i 0.778462 + 0.627692i
\(26\) 13.4441i 2.63660i
\(27\) 0 0
\(28\) −2.62793 2.62793i −0.496632 0.496632i
\(29\) 2.62630 0.487691 0.243846 0.969814i \(-0.421591\pi\)
0.243846 + 0.969814i \(0.421591\pi\)
\(30\) 0 0
\(31\) 5.98261 1.07451 0.537254 0.843420i \(-0.319462\pi\)
0.537254 + 0.843420i \(0.319462\pi\)
\(32\) 0.332630 + 0.332630i 0.0588012 + 0.0588012i
\(33\) 0 0
\(34\) 2.45912i 0.421735i
\(35\) 1.85235 0.885907i 0.313104 0.149746i
\(36\) 0 0
\(37\) −3.97330 + 3.97330i −0.653207 + 0.653207i −0.953764 0.300557i \(-0.902827\pi\)
0.300557 + 0.953764i \(0.402827\pi\)
\(38\) 1.51188 1.51188i 0.245259 0.245259i
\(39\) 0 0
\(40\) −10.1557 + 4.85707i −1.60576 + 0.767971i
\(41\) 8.63126i 1.34798i 0.738742 + 0.673988i \(0.235420\pi\)
−0.738742 + 0.673988i \(0.764580\pi\)
\(42\) 0 0
\(43\) 0.316622 + 0.316622i 0.0482844 + 0.0482844i 0.730837 0.682552i \(-0.239130\pi\)
−0.682552 + 0.730837i \(0.739130\pi\)
\(44\) 15.4642 2.33131
\(45\) 0 0
\(46\) 14.8395 2.18796
\(47\) 8.13256 + 8.13256i 1.18626 + 1.18626i 0.978095 + 0.208161i \(0.0667476\pi\)
0.208161 + 0.978095i \(0.433252\pi\)
\(48\) 0 0
\(49\) 6.15679i 0.879542i
\(50\) −1.31084 12.2255i −0.185381 1.72895i
\(51\) 0 0
\(52\) 15.6458 15.6458i 2.16968 2.16968i
\(53\) −3.07625 + 3.07625i −0.422556 + 0.422556i −0.886083 0.463527i \(-0.846584\pi\)
0.463527 + 0.886083i \(0.346584\pi\)
\(54\) 0 0
\(55\) −2.84354 + 8.05670i −0.383423 + 1.08636i
\(56\) 4.62296i 0.617769i
\(57\) 0 0
\(58\) −4.56676 4.56676i −0.599646 0.599646i
\(59\) −9.94824 −1.29515 −0.647575 0.762002i \(-0.724217\pi\)
−0.647575 + 0.762002i \(0.724217\pi\)
\(60\) 0 0
\(61\) −4.43292 −0.567577 −0.283788 0.958887i \(-0.591591\pi\)
−0.283788 + 0.958887i \(0.591591\pi\)
\(62\) −10.4029 10.4029i −1.32117 1.32117i
\(63\) 0 0
\(64\) 7.41485i 0.926856i
\(65\) 5.27439 + 11.0283i 0.654207 + 1.36789i
\(66\) 0 0
\(67\) 6.18239 6.18239i 0.755299 0.755299i −0.220164 0.975463i \(-0.570659\pi\)
0.975463 + 0.220164i \(0.0706592\pi\)
\(68\) 2.86185 2.86185i 0.347050 0.347050i
\(69\) 0 0
\(70\) −4.76144 1.68051i −0.569101 0.200859i
\(71\) 8.53402i 1.01280i 0.862298 + 0.506401i \(0.169024\pi\)
−0.862298 + 0.506401i \(0.830976\pi\)
\(72\) 0 0
\(73\) −4.00931 4.00931i −0.469254 0.469254i 0.432419 0.901673i \(-0.357660\pi\)
−0.901673 + 0.432419i \(0.857660\pi\)
\(74\) 13.8180 1.60631
\(75\) 0 0
\(76\) −3.51896 −0.403652
\(77\) 2.48094 + 2.48094i 0.282730 + 0.282730i
\(78\) 0 0
\(79\) 3.15768i 0.355266i −0.984097 0.177633i \(-0.943156\pi\)
0.984097 0.177633i \(-0.0568441\pi\)
\(80\) 9.03704 + 3.18954i 1.01037 + 0.356602i
\(81\) 0 0
\(82\) 15.0086 15.0086i 1.65742 1.65742i
\(83\) −1.06001 + 1.06001i −0.116351 + 0.116351i −0.762885 0.646534i \(-0.776218\pi\)
0.646534 + 0.762885i \(0.276218\pi\)
\(84\) 0 0
\(85\) 0.964764 + 2.01723i 0.104643 + 0.218800i
\(86\) 1.10112i 0.118737i
\(87\) 0 0
\(88\) −13.6020 13.6020i −1.44998 1.44998i
\(89\) 11.1735 1.18439 0.592194 0.805796i \(-0.298262\pi\)
0.592194 + 0.805796i \(0.298262\pi\)
\(90\) 0 0
\(91\) 5.02016 0.526256
\(92\) −17.2697 17.2697i −1.80049 1.80049i
\(93\) 0 0
\(94\) 28.2827i 2.91714i
\(95\) 0.647063 1.83335i 0.0663873 0.188098i
\(96\) 0 0
\(97\) 9.02016 9.02016i 0.915859 0.915859i −0.0808663 0.996725i \(-0.525769\pi\)
0.996725 + 0.0808663i \(0.0257687\pi\)
\(98\) 10.7058 10.7058i 1.08145 1.08145i
\(99\) 0 0
\(100\) −12.7022 + 15.7532i −1.27022 + 1.57532i
\(101\) 10.2972i 1.02461i −0.858803 0.512306i \(-0.828792\pi\)
0.858803 0.512306i \(-0.171208\pi\)
\(102\) 0 0
\(103\) 8.57226 + 8.57226i 0.844649 + 0.844649i 0.989459 0.144810i \(-0.0462571\pi\)
−0.144810 + 0.989459i \(0.546257\pi\)
\(104\) −27.5235 −2.69891
\(105\) 0 0
\(106\) 10.6983 1.03911
\(107\) −8.96698 8.96698i −0.866871 0.866871i 0.125254 0.992125i \(-0.460025\pi\)
−0.992125 + 0.125254i \(0.960025\pi\)
\(108\) 0 0
\(109\) 15.0983i 1.44615i 0.690767 + 0.723077i \(0.257273\pi\)
−0.690767 + 0.723077i \(0.742727\pi\)
\(110\) 18.9540 9.06495i 1.80719 0.864309i
\(111\) 0 0
\(112\) 2.78283 2.78283i 0.262952 0.262952i
\(113\) −8.42372 + 8.42372i −0.792437 + 0.792437i −0.981890 0.189453i \(-0.939328\pi\)
0.189453 + 0.981890i \(0.439328\pi\)
\(114\) 0 0
\(115\) 12.1729 5.82184i 1.13513 0.542889i
\(116\) 10.6293i 0.986908i
\(117\) 0 0
\(118\) 17.2986 + 17.2986i 1.59246 + 1.59246i
\(119\) 0.918263 0.0841770
\(120\) 0 0
\(121\) −3.59921 −0.327201
\(122\) 7.70822 + 7.70822i 0.697870 + 0.697870i
\(123\) 0 0
\(124\) 24.2132i 2.17441i
\(125\) −5.87162 9.51441i −0.525174 0.850995i
\(126\) 0 0
\(127\) −1.10864 + 1.10864i −0.0983755 + 0.0983755i −0.754582 0.656206i \(-0.772160\pi\)
0.656206 + 0.754582i \(0.272160\pi\)
\(128\) 13.5586 13.5586i 1.19843 1.19843i
\(129\) 0 0
\(130\) 10.0052 28.3480i 0.877512 2.48629i
\(131\) 18.4831i 1.61488i 0.589951 + 0.807439i \(0.299147\pi\)
−0.589951 + 0.807439i \(0.700853\pi\)
\(132\) 0 0
\(133\) −0.564553 0.564553i −0.0489529 0.0489529i
\(134\) −21.5006 −1.85737
\(135\) 0 0
\(136\) −5.03447 −0.431702
\(137\) −7.14067 7.14067i −0.610068 0.610068i 0.332896 0.942964i \(-0.391974\pi\)
−0.942964 + 0.332896i \(0.891974\pi\)
\(138\) 0 0
\(139\) 10.4884i 0.889617i −0.895626 0.444808i \(-0.853272\pi\)
0.895626 0.444808i \(-0.146728\pi\)
\(140\) 3.58550 + 7.49695i 0.303030 + 0.633608i
\(141\) 0 0
\(142\) 14.8395 14.8395i 1.24530 1.24530i
\(143\) −14.7707 + 14.7707i −1.23519 + 1.23519i
\(144\) 0 0
\(145\) −5.53779 1.95451i −0.459888 0.162313i
\(146\) 13.9432i 1.15395i
\(147\) 0 0
\(148\) −16.0810 16.0810i −1.32185 1.32185i
\(149\) 13.5851 1.11293 0.556467 0.830870i \(-0.312157\pi\)
0.556467 + 0.830870i \(0.312157\pi\)
\(150\) 0 0
\(151\) −19.9261 −1.62156 −0.810782 0.585348i \(-0.800958\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(152\) 3.09522 + 3.09522i 0.251055 + 0.251055i
\(153\) 0 0
\(154\) 8.62802i 0.695266i
\(155\) −12.6149 4.45231i −1.01325 0.357618i
\(156\) 0 0
\(157\) −12.1028 + 12.1028i −0.965908 + 0.965908i −0.999438 0.0335302i \(-0.989325\pi\)
0.0335302 + 0.999438i \(0.489325\pi\)
\(158\) −5.49076 + 5.49076i −0.436821 + 0.436821i
\(159\) 0 0
\(160\) −0.453835 0.948927i −0.0358788 0.0750192i
\(161\) 5.54122i 0.436710i
\(162\) 0 0
\(163\) 4.85496 + 4.85496i 0.380270 + 0.380270i 0.871199 0.490929i \(-0.163343\pi\)
−0.490929 + 0.871199i \(0.663343\pi\)
\(164\) −34.9330 −2.72781
\(165\) 0 0
\(166\) 3.68641 0.286121
\(167\) 14.6455 + 14.6455i 1.13330 + 1.13330i 0.989624 + 0.143678i \(0.0458929\pi\)
0.143678 + 0.989624i \(0.454107\pi\)
\(168\) 0 0
\(169\) 16.8883i 1.29910i
\(170\) 1.83010 5.18527i 0.140362 0.397692i
\(171\) 0 0
\(172\) −1.28145 + 1.28145i −0.0977098 + 0.0977098i
\(173\) −9.00560 + 9.00560i −0.684683 + 0.684683i −0.961052 0.276368i \(-0.910869\pi\)
0.276368 + 0.961052i \(0.410869\pi\)
\(174\) 0 0
\(175\) −4.56515 + 0.489482i −0.345093 + 0.0370013i
\(176\) 16.3757i 1.23436i
\(177\) 0 0
\(178\) −19.4291 19.4291i −1.45627 1.45627i
\(179\) −8.25053 −0.616674 −0.308337 0.951277i \(-0.599772\pi\)
−0.308337 + 0.951277i \(0.599772\pi\)
\(180\) 0 0
\(181\) −11.0128 −0.818572 −0.409286 0.912406i \(-0.634222\pi\)
−0.409286 + 0.912406i \(0.634222\pi\)
\(182\) −8.72936 8.72936i −0.647063 0.647063i
\(183\) 0 0
\(184\) 30.3803i 2.23967i
\(185\) 11.3350 5.42111i 0.833368 0.398568i
\(186\) 0 0
\(187\) −2.70178 + 2.70178i −0.197574 + 0.197574i
\(188\) −32.9146 + 32.9146i −2.40054 + 2.40054i
\(189\) 0 0
\(190\) −4.31309 + 2.06278i −0.312904 + 0.149650i
\(191\) 6.32126i 0.457390i −0.973498 0.228695i \(-0.926554\pi\)
0.973498 0.228695i \(-0.0734459\pi\)
\(192\) 0 0
\(193\) −4.71723 4.71723i −0.339554 0.339554i 0.516646 0.856199i \(-0.327180\pi\)
−0.856199 + 0.516646i \(0.827180\pi\)
\(194\) −31.3696 −2.25221
\(195\) 0 0
\(196\) −24.9182 −1.77987
\(197\) 1.78118 + 1.78118i 0.126904 + 0.126904i 0.767706 0.640802i \(-0.221398\pi\)
−0.640802 + 0.767706i \(0.721398\pi\)
\(198\) 0 0
\(199\) 4.54605i 0.322261i −0.986933 0.161130i \(-0.948486\pi\)
0.986933 0.161130i \(-0.0515139\pi\)
\(200\) 25.0289 2.68363i 1.76981 0.189762i
\(201\) 0 0
\(202\) −17.9054 + 17.9054i −1.25982 + 1.25982i
\(203\) −1.70528 + 1.70528i −0.119687 + 0.119687i
\(204\) 0 0
\(205\) 6.42345 18.1998i 0.448633 1.27113i
\(206\) 29.8119i 2.07709i
\(207\) 0 0
\(208\) 16.5680 + 16.5680i 1.14878 + 1.14878i
\(209\) 3.32214 0.229797
\(210\) 0 0
\(211\) −17.3827 −1.19668 −0.598339 0.801243i \(-0.704172\pi\)
−0.598339 + 0.801243i \(0.704172\pi\)
\(212\) −12.4504 12.4504i −0.855097 0.855097i
\(213\) 0 0
\(214\) 31.1846i 2.13174i
\(215\) −0.431993 0.903258i −0.0294617 0.0616017i
\(216\) 0 0
\(217\) −3.88457 + 3.88457i −0.263702 + 0.263702i
\(218\) 26.2538 26.2538i 1.77813 1.77813i
\(219\) 0 0
\(220\) −32.6076 11.5086i −2.19840 0.775906i
\(221\) 5.46702i 0.367752i
\(222\) 0 0
\(223\) −11.6803 11.6803i −0.782169 0.782169i 0.198027 0.980197i \(-0.436547\pi\)
−0.980197 + 0.198027i \(0.936547\pi\)
\(224\) −0.431960 −0.0288615
\(225\) 0 0
\(226\) 29.2953 1.94870
\(227\) 10.4038 + 10.4038i 0.690528 + 0.690528i 0.962348 0.271820i \(-0.0876256\pi\)
−0.271820 + 0.962348i \(0.587626\pi\)
\(228\) 0 0
\(229\) 26.4574i 1.74836i 0.485605 + 0.874178i \(0.338599\pi\)
−0.485605 + 0.874178i \(0.661401\pi\)
\(230\) −31.2904 11.0436i −2.06323 0.728197i
\(231\) 0 0
\(232\) 9.34937 9.34937i 0.613816 0.613816i
\(233\) 3.76032 3.76032i 0.246347 0.246347i −0.573123 0.819470i \(-0.694268\pi\)
0.819470 + 0.573123i \(0.194268\pi\)
\(234\) 0 0
\(235\) −11.0959 23.2005i −0.723818 1.51344i
\(236\) 40.2632i 2.62091i
\(237\) 0 0
\(238\) −1.59673 1.59673i −0.103501 0.103501i
\(239\) 2.48981 0.161052 0.0805262 0.996752i \(-0.474340\pi\)
0.0805262 + 0.996752i \(0.474340\pi\)
\(240\) 0 0
\(241\) 22.6242 1.45735 0.728676 0.684859i \(-0.240136\pi\)
0.728676 + 0.684859i \(0.240136\pi\)
\(242\) 6.25853 + 6.25853i 0.402313 + 0.402313i
\(243\) 0 0
\(244\) 17.9412i 1.14857i
\(245\) 4.58193 12.9822i 0.292729 0.829400i
\(246\) 0 0
\(247\) 3.36115 3.36115i 0.213865 0.213865i
\(248\) 21.2975 21.2975i 1.35239 1.35239i
\(249\) 0 0
\(250\) −6.33431 + 26.7542i −0.400617 + 1.69208i
\(251\) 17.9719i 1.13438i −0.823588 0.567188i \(-0.808031\pi\)
0.823588 0.567188i \(-0.191969\pi\)
\(252\) 0 0
\(253\) 16.3038 + 16.3038i 1.02501 + 1.02501i
\(254\) 3.85552 0.241917
\(255\) 0 0
\(256\) −32.3234 −2.02022
\(257\) 19.4055 + 19.4055i 1.21048 + 1.21048i 0.970869 + 0.239611i \(0.0770200\pi\)
0.239611 + 0.970869i \(0.422980\pi\)
\(258\) 0 0
\(259\) 5.15981i 0.320615i
\(260\) −44.6343 + 21.3468i −2.76810 + 1.32387i
\(261\) 0 0
\(262\) 32.1396 32.1396i 1.98559 1.98559i
\(263\) −17.4147 + 17.4147i −1.07384 + 1.07384i −0.0767876 + 0.997047i \(0.524466\pi\)
−0.997047 + 0.0767876i \(0.975534\pi\)
\(264\) 0 0
\(265\) 8.77592 4.19718i 0.539101 0.257831i
\(266\) 1.96336i 0.120381i
\(267\) 0 0
\(268\) 25.0218 + 25.0218i 1.52845 + 1.52845i
\(269\) −6.09852 −0.371833 −0.185917 0.982566i \(-0.559525\pi\)
−0.185917 + 0.982566i \(0.559525\pi\)
\(270\) 0 0
\(271\) −19.8536 −1.20602 −0.603009 0.797735i \(-0.706032\pi\)
−0.603009 + 0.797735i \(0.706032\pi\)
\(272\) 3.03053 + 3.03053i 0.183753 + 0.183753i
\(273\) 0 0
\(274\) 24.8332i 1.50023i
\(275\) 11.9917 14.8721i 0.723128 0.896821i
\(276\) 0 0
\(277\) −8.92288 + 8.92288i −0.536124 + 0.536124i −0.922388 0.386264i \(-0.873765\pi\)
0.386264 + 0.922388i \(0.373765\pi\)
\(278\) −18.2379 + 18.2379i −1.09384 + 1.09384i
\(279\) 0 0
\(280\) 3.44044 9.74793i 0.205606 0.582550i
\(281\) 25.7707i 1.53735i −0.639639 0.768676i \(-0.720916\pi\)
0.639639 0.768676i \(-0.279084\pi\)
\(282\) 0 0
\(283\) −6.45731 6.45731i −0.383847 0.383847i 0.488639 0.872486i \(-0.337494\pi\)
−0.872486 + 0.488639i \(0.837494\pi\)
\(284\) −34.5395 −2.04954
\(285\) 0 0
\(286\) 51.3683 3.03747
\(287\) −5.60436 5.60436i −0.330815 0.330815i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 6.23081 + 13.0281i 0.365886 + 0.765034i
\(291\) 0 0
\(292\) 16.2267 16.2267i 0.949597 0.949597i
\(293\) 1.85274 1.85274i 0.108238 0.108238i −0.650914 0.759152i \(-0.725614\pi\)
0.759152 + 0.650914i \(0.225614\pi\)
\(294\) 0 0
\(295\) 20.9768 + 7.40356i 1.22131 + 0.431052i
\(296\) 28.2892i 1.64427i
\(297\) 0 0
\(298\) −23.6226 23.6226i −1.36842 1.36842i
\(299\) 32.9906 1.90789
\(300\) 0 0
\(301\) −0.411171 −0.0236995
\(302\) 34.6487 + 34.6487i 1.99381 + 1.99381i
\(303\) 0 0
\(304\) 3.72638i 0.213722i
\(305\) 9.34721 + 3.29901i 0.535220 + 0.188901i
\(306\) 0 0
\(307\) 14.9517 14.9517i 0.853339 0.853339i −0.137204 0.990543i \(-0.543811\pi\)
0.990543 + 0.137204i \(0.0438115\pi\)
\(308\) −10.0410 + 10.0410i −0.572141 + 0.572141i
\(309\) 0 0
\(310\) 14.1936 + 29.6774i 0.806140 + 1.68556i
\(311\) 15.0297i 0.852257i −0.904663 0.426128i \(-0.859877\pi\)
0.904663 0.426128i \(-0.140123\pi\)
\(312\) 0 0
\(313\) −1.02361 1.02361i −0.0578580 0.0578580i 0.677586 0.735444i \(-0.263026\pi\)
−0.735444 + 0.677586i \(0.763026\pi\)
\(314\) 42.0901 2.37528
\(315\) 0 0
\(316\) 12.7800 0.718928
\(317\) 22.7909 + 22.7909i 1.28006 + 1.28006i 0.940630 + 0.339434i \(0.110236\pi\)
0.339434 + 0.940630i \(0.389764\pi\)
\(318\) 0 0
\(319\) 10.0348i 0.561841i
\(320\) 5.51819 15.6349i 0.308476 0.874016i
\(321\) 0 0
\(322\) −9.63541 + 9.63541i −0.536960 + 0.536960i
\(323\) 0.614805 0.614805i 0.0342087 0.0342087i
\(324\) 0 0
\(325\) −2.91421 27.1793i −0.161651 1.50764i
\(326\) 16.8842i 0.935129i
\(327\) 0 0
\(328\) 30.7265 + 30.7265i 1.69659 + 1.69659i
\(329\) −10.5611 −0.582252
\(330\) 0 0
\(331\) −18.6624 −1.02578 −0.512889 0.858455i \(-0.671425\pi\)
−0.512889 + 0.858455i \(0.671425\pi\)
\(332\) −4.29014 4.29014i −0.235452 0.235452i
\(333\) 0 0
\(334\) 50.9329i 2.78693i
\(335\) −17.6371 + 8.43515i −0.963618 + 0.460861i
\(336\) 0 0
\(337\) −25.3545 + 25.3545i −1.38115 + 1.38115i −0.538562 + 0.842586i \(0.681032\pi\)
−0.842586 + 0.538562i \(0.818968\pi\)
\(338\) 29.3664 29.3664i 1.59732 1.59732i
\(339\) 0 0
\(340\) −8.16428 + 3.90466i −0.442770 + 0.211760i
\(341\) 22.8589i 1.23788i
\(342\) 0 0
\(343\) −8.54283 8.54283i −0.461270 0.461270i
\(344\) 2.25429 0.121543
\(345\) 0 0
\(346\) 31.3190 1.68372
\(347\) −17.8363 17.8363i −0.957505 0.957505i 0.0416278 0.999133i \(-0.486746\pi\)
−0.999133 + 0.0416278i \(0.986746\pi\)
\(348\) 0 0
\(349\) 18.2426i 0.976504i −0.872703 0.488252i \(-0.837635\pi\)
0.872703 0.488252i \(-0.162365\pi\)
\(350\) 8.78929 + 7.08701i 0.469807 + 0.378816i
\(351\) 0 0
\(352\) 1.27094 1.27094i 0.0677415 0.0677415i
\(353\) 16.1617 16.1617i 0.860201 0.860201i −0.131160 0.991361i \(-0.541870\pi\)
0.991361 + 0.131160i \(0.0418702\pi\)
\(354\) 0 0
\(355\) 6.35109 17.9948i 0.337081 0.955063i
\(356\) 45.2221i 2.39676i
\(357\) 0 0
\(358\) 14.3465 + 14.3465i 0.758237 + 0.758237i
\(359\) −13.0285 −0.687618 −0.343809 0.939040i \(-0.611717\pi\)
−0.343809 + 0.939040i \(0.611717\pi\)
\(360\) 0 0
\(361\) 18.2440 0.960212
\(362\) 19.1497 + 19.1497i 1.00648 + 1.00648i
\(363\) 0 0
\(364\) 20.3179i 1.06495i
\(365\) 5.47023 + 11.4377i 0.286325 + 0.598679i
\(366\) 0 0
\(367\) −12.0293 + 12.0293i −0.627923 + 0.627923i −0.947545 0.319622i \(-0.896444\pi\)
0.319622 + 0.947545i \(0.396444\pi\)
\(368\) 18.2877 18.2877i 0.953310 0.953310i
\(369\) 0 0
\(370\) −29.1366 10.2835i −1.51474 0.534613i
\(371\) 3.99488i 0.207404i
\(372\) 0 0
\(373\) −14.9740 14.9740i −0.775324 0.775324i 0.203708 0.979032i \(-0.434701\pi\)
−0.979032 + 0.203708i \(0.934701\pi\)
\(374\) 9.39603 0.485857
\(375\) 0 0
\(376\) 57.9023 2.98608
\(377\) −10.1527 10.1527i −0.522889 0.522889i
\(378\) 0 0
\(379\) 25.3462i 1.30195i −0.759101 0.650973i \(-0.774361\pi\)
0.759101 0.650973i \(-0.225639\pi\)
\(380\) 7.42004 + 2.61884i 0.380640 + 0.134343i
\(381\) 0 0
\(382\) −10.9918 + 10.9918i −0.562388 + 0.562388i
\(383\) 14.7252 14.7252i 0.752421 0.752421i −0.222510 0.974930i \(-0.571425\pi\)
0.974930 + 0.222510i \(0.0714249\pi\)
\(384\) 0 0
\(385\) −3.38495 7.07763i −0.172513 0.360709i
\(386\) 16.4052i 0.835003i
\(387\) 0 0
\(388\) 36.5070 + 36.5070i 1.85336 + 1.85336i
\(389\) 30.1854 1.53046 0.765231 0.643756i \(-0.222625\pi\)
0.765231 + 0.643756i \(0.222625\pi\)
\(390\) 0 0
\(391\) 6.03447 0.305176
\(392\) 21.9176 + 21.9176i 1.10701 + 1.10701i
\(393\) 0 0
\(394\) 6.19446i 0.312072i
\(395\) −2.34997 + 6.65825i −0.118240 + 0.335013i
\(396\) 0 0
\(397\) 2.81796 2.81796i 0.141429 0.141429i −0.632847 0.774277i \(-0.718114\pi\)
0.774277 + 0.632847i \(0.218114\pi\)
\(398\) −7.90494 + 7.90494i −0.396239 + 0.396239i
\(399\) 0 0
\(400\) −16.6817 13.4509i −0.834087 0.672544i
\(401\) 24.7881i 1.23786i 0.785447 + 0.618929i \(0.212433\pi\)
−0.785447 + 0.618929i \(0.787567\pi\)
\(402\) 0 0
\(403\) −23.1274 23.1274i −1.15206 1.15206i
\(404\) 41.6755 2.07344
\(405\) 0 0
\(406\) 5.93049 0.294325
\(407\) 15.1816 + 15.1816i 0.752522 + 0.752522i
\(408\) 0 0
\(409\) 19.8164i 0.979858i 0.871762 + 0.489929i \(0.162977\pi\)
−0.871762 + 0.489929i \(0.837023\pi\)
\(410\) −42.8164 + 20.4774i −2.11455 + 1.01131i
\(411\) 0 0
\(412\) −34.6942 + 34.6942i −1.70926 + 1.70926i
\(413\) 6.45949 6.45949i 0.317851 0.317851i
\(414\) 0 0
\(415\) 3.02399 1.44626i 0.148442 0.0709940i
\(416\) 2.57174i 0.126090i
\(417\) 0 0
\(418\) −5.77673 5.77673i −0.282549 0.282549i
\(419\) −12.8373 −0.627143 −0.313571 0.949565i \(-0.601526\pi\)
−0.313571 + 0.949565i \(0.601526\pi\)
\(420\) 0 0
\(421\) −8.68896 −0.423474 −0.211737 0.977327i \(-0.567912\pi\)
−0.211737 + 0.977327i \(0.567912\pi\)
\(422\) 30.2261 + 30.2261i 1.47139 + 1.47139i
\(423\) 0 0
\(424\) 21.9023i 1.06367i
\(425\) −0.533052 4.97150i −0.0258568 0.241153i
\(426\) 0 0
\(427\) 2.87834 2.87834i 0.139292 0.139292i
\(428\) 36.2917 36.2917i 1.75423 1.75423i
\(429\) 0 0
\(430\) −0.819463 + 2.32181i −0.0395180 + 0.111968i
\(431\) 12.2638i 0.590726i −0.955385 0.295363i \(-0.904559\pi\)
0.955385 0.295363i \(-0.0954405\pi\)
\(432\) 0 0
\(433\) −8.19584 8.19584i −0.393867 0.393867i 0.482196 0.876063i \(-0.339839\pi\)
−0.876063 + 0.482196i \(0.839839\pi\)
\(434\) 13.5094 0.648473
\(435\) 0 0
\(436\) −61.1068 −2.92648
\(437\) −3.71002 3.71002i −0.177474 0.177474i
\(438\) 0 0
\(439\) 17.6171i 0.840818i 0.907335 + 0.420409i \(0.138113\pi\)
−0.907335 + 0.420409i \(0.861887\pi\)
\(440\) 18.5584 + 38.8038i 0.884735 + 1.84990i
\(441\) 0 0
\(442\) 9.50638 9.50638i 0.452173 0.452173i
\(443\) −15.6306 + 15.6306i −0.742630 + 0.742630i −0.973083 0.230453i \(-0.925979\pi\)
0.230453 + 0.973083i \(0.425979\pi\)
\(444\) 0 0
\(445\) −23.5603 8.31540i −1.11687 0.394188i
\(446\) 40.6207i 1.92345i
\(447\) 0 0
\(448\) −4.81453 4.81453i −0.227465 0.227465i
\(449\) −7.72558 −0.364593 −0.182296 0.983244i \(-0.558353\pi\)
−0.182296 + 0.983244i \(0.558353\pi\)
\(450\) 0 0
\(451\) 32.9791 1.55293
\(452\) −34.0930 34.0930i −1.60360 1.60360i
\(453\) 0 0
\(454\) 36.1817i 1.69809i
\(455\) −10.5855 3.73604i −0.496254 0.175148i
\(456\) 0 0
\(457\) 10.6218 10.6218i 0.496866 0.496866i −0.413595 0.910461i \(-0.635727\pi\)
0.910461 + 0.413595i \(0.135727\pi\)
\(458\) 46.0058 46.0058i 2.14971 2.14971i
\(459\) 0 0
\(460\) 23.5625 + 49.2671i 1.09861 + 2.29709i
\(461\) 28.3479i 1.32029i 0.751136 + 0.660147i \(0.229506\pi\)
−0.751136 + 0.660147i \(0.770494\pi\)
\(462\) 0 0
\(463\) 7.59415 + 7.59415i 0.352930 + 0.352930i 0.861199 0.508268i \(-0.169714\pi\)
−0.508268 + 0.861199i \(0.669714\pi\)
\(464\) −11.2558 −0.522540
\(465\) 0 0
\(466\) −13.0773 −0.605796
\(467\) 2.36748 + 2.36748i 0.109554 + 0.109554i 0.759759 0.650205i \(-0.225317\pi\)
−0.650205 + 0.759759i \(0.725317\pi\)
\(468\) 0 0
\(469\) 8.02857i 0.370725i
\(470\) −21.0482 + 59.6367i −0.970883 + 2.75084i
\(471\) 0 0
\(472\) −35.4148 + 35.4148i −1.63010 + 1.63010i
\(473\) 1.20978 1.20978i 0.0556256 0.0556256i
\(474\) 0 0
\(475\) −2.72878 + 3.38423i −0.125205 + 0.155279i
\(476\) 3.71645i 0.170343i
\(477\) 0 0
\(478\) −4.32943 4.32943i −0.198023 0.198023i
\(479\) −19.8593 −0.907395 −0.453698 0.891156i \(-0.649895\pi\)
−0.453698 + 0.891156i \(0.649895\pi\)
\(480\) 0 0
\(481\) 30.7197 1.40070
\(482\) −39.3403 39.3403i −1.79190 1.79190i
\(483\) 0 0
\(484\) 14.5670i 0.662135i
\(485\) −25.7327 + 12.3070i −1.16846 + 0.558830i
\(486\) 0 0
\(487\) −14.7455 + 14.7455i −0.668184 + 0.668184i −0.957295 0.289112i \(-0.906640\pi\)
0.289112 + 0.957295i \(0.406640\pi\)
\(488\) −15.7808 + 15.7808i −0.714362 + 0.714362i
\(489\) 0 0
\(490\) −30.5415 + 14.6068i −1.37972 + 0.659868i
\(491\) 12.7947i 0.577418i −0.957417 0.288709i \(-0.906774\pi\)
0.957417 0.288709i \(-0.0932259\pi\)
\(492\) 0 0
\(493\) −1.85707 1.85707i −0.0836384 0.0836384i
\(494\) −11.6891 −0.525920
\(495\) 0 0
\(496\) −25.6404 −1.15129
\(497\) −5.54122 5.54122i −0.248558 0.248558i
\(498\) 0 0
\(499\) 22.3197i 0.999167i 0.866266 + 0.499584i \(0.166514\pi\)
−0.866266 + 0.499584i \(0.833486\pi\)
\(500\) 38.5074 23.7640i 1.72210 1.06276i
\(501\) 0 0
\(502\) −31.2506 + 31.2506i −1.39478 + 1.39478i
\(503\) −9.77428 + 9.77428i −0.435814 + 0.435814i −0.890600 0.454787i \(-0.849715\pi\)
0.454787 + 0.890600i \(0.349715\pi\)
\(504\) 0 0
\(505\) −7.66327 + 21.7126i −0.341011 + 0.966198i
\(506\) 56.7000i 2.52062i
\(507\) 0 0
\(508\) −4.48694 4.48694i −0.199076 0.199076i
\(509\) −25.9268 −1.14919 −0.574593 0.818440i \(-0.694839\pi\)
−0.574593 + 0.818440i \(0.694839\pi\)
\(510\) 0 0
\(511\) 5.20656 0.230325
\(512\) 29.0886 + 29.0886i 1.28555 + 1.28555i
\(513\) 0 0
\(514\) 67.4868i 2.97671i
\(515\) −11.6958 24.4549i −0.515380 1.07761i
\(516\) 0 0
\(517\) 31.0736 31.0736i 1.36662 1.36662i
\(518\) −8.97218 + 8.97218i −0.394215 + 0.394215i
\(519\) 0 0
\(520\) 58.0359 + 20.4832i 2.54504 + 0.898249i
\(521\) 22.4666i 0.984281i −0.870516 0.492140i \(-0.836215\pi\)
0.870516 0.492140i \(-0.163785\pi\)
\(522\) 0 0
\(523\) 29.3834 + 29.3834i 1.28485 + 1.28485i 0.937876 + 0.346970i \(0.112790\pi\)
0.346970 + 0.937876i \(0.387210\pi\)
\(524\) −74.8061 −3.26792
\(525\) 0 0
\(526\) 60.5634 2.64069
\(527\) −4.23034 4.23034i −0.184277 0.184277i
\(528\) 0 0
\(529\) 13.4148i 0.583252i
\(530\) −22.5584 7.96179i −0.979875 0.345838i
\(531\) 0 0
\(532\) 2.28489 2.28489i 0.0990627 0.0990627i
\(533\) 33.3665 33.3665i 1.44526 1.44526i
\(534\) 0 0
\(535\) 12.2344 + 25.5810i 0.528939 + 1.10596i
\(536\) 44.0174i 1.90126i
\(537\) 0 0
\(538\) 10.6045 + 10.6045i 0.457191 + 0.457191i
\(539\) 23.5244 1.01327
\(540\) 0 0
\(541\) −27.1753 −1.16836 −0.584178 0.811625i \(-0.698583\pi\)
−0.584178 + 0.811625i \(0.698583\pi\)
\(542\) 34.5225 + 34.5225i 1.48287 + 1.48287i
\(543\) 0 0
\(544\) 0.470410i 0.0201687i
\(545\) 11.2363 31.8361i 0.481309 1.36371i
\(546\) 0 0
\(547\) −26.9649 + 26.9649i −1.15294 + 1.15294i −0.166976 + 0.985961i \(0.553400\pi\)
−0.985961 + 0.166976i \(0.946600\pi\)
\(548\) 28.9002 28.9002i 1.23455 1.23455i
\(549\) 0 0
\(550\) −46.7124 + 5.00857i −1.99182 + 0.213566i
\(551\) 2.28348i 0.0972794i
\(552\) 0 0
\(553\) 2.05031 + 2.05031i 0.0871880 + 0.0871880i
\(554\) 31.0313 1.31839
\(555\) 0 0
\(556\) 42.4494 1.80026
\(557\) 6.37426 + 6.37426i 0.270086 + 0.270086i 0.829135 0.559049i \(-0.188834\pi\)
−0.559049 + 0.829135i \(0.688834\pi\)
\(558\) 0 0
\(559\) 2.44797i 0.103538i
\(560\) −7.93884 + 3.79684i −0.335477 + 0.160446i
\(561\) 0 0
\(562\) −44.8116 + 44.8116i −1.89026 + 1.89026i
\(563\) 18.9785 18.9785i 0.799850 0.799850i −0.183221 0.983072i \(-0.558653\pi\)
0.983072 + 0.183221i \(0.0586525\pi\)
\(564\) 0 0
\(565\) 24.0312 11.4932i 1.01100 0.483521i
\(566\) 22.4567i 0.943925i
\(567\) 0 0
\(568\) 30.3803 + 30.3803i 1.27473 + 1.27473i
\(569\) 31.3158 1.31283 0.656414 0.754401i \(-0.272072\pi\)
0.656414 + 0.754401i \(0.272072\pi\)
\(570\) 0 0
\(571\) −30.5581 −1.27882 −0.639408 0.768868i \(-0.720820\pi\)
−0.639408 + 0.768868i \(0.720820\pi\)
\(572\) −59.7809 59.7809i −2.49956 2.49956i
\(573\) 0 0
\(574\) 19.4904i 0.813513i
\(575\) −30.0004 + 3.21669i −1.25110 + 0.134145i
\(576\) 0 0
\(577\) 11.4463 11.4463i 0.476516 0.476516i −0.427500 0.904015i \(-0.640606\pi\)
0.904015 + 0.427500i \(0.140606\pi\)
\(578\) 1.73886 1.73886i 0.0723270 0.0723270i
\(579\) 0 0
\(580\) 7.91043 22.4129i 0.328463 0.930645i
\(581\) 1.37655i 0.0571088i
\(582\) 0 0
\(583\) 11.7540 + 11.7540i 0.486802 + 0.486802i
\(584\) −28.5455 −1.18122
\(585\) 0 0
\(586\) −6.44329 −0.266170
\(587\) −13.3744 13.3744i −0.552021 0.552021i 0.375003 0.927024i \(-0.377642\pi\)
−0.927024 + 0.375003i \(0.877642\pi\)
\(588\) 0 0
\(589\) 5.20168i 0.214331i
\(590\) −23.6019 49.3494i −0.971675 2.03168i
\(591\) 0 0
\(592\) 17.0289 17.0289i 0.699882 0.699882i
\(593\) −18.9208 + 18.9208i −0.776983 + 0.776983i −0.979317 0.202333i \(-0.935148\pi\)
0.202333 + 0.979317i \(0.435148\pi\)
\(594\) 0 0
\(595\) −1.93624 0.683378i −0.0793781 0.0280158i
\(596\) 54.9825i 2.25217i
\(597\) 0 0
\(598\) −57.3660 57.3660i −2.34587 2.34587i
\(599\) 4.34968 0.177723 0.0888615 0.996044i \(-0.471677\pi\)
0.0888615 + 0.996044i \(0.471677\pi\)
\(600\) 0 0
\(601\) −12.5964 −0.513820 −0.256910 0.966435i \(-0.582704\pi\)
−0.256910 + 0.966435i \(0.582704\pi\)
\(602\) 0.714969 + 0.714969i 0.0291400 + 0.0291400i
\(603\) 0 0
\(604\) 80.6463i 3.28145i
\(605\) 7.58927 + 2.67856i 0.308548 + 0.108899i
\(606\) 0 0
\(607\) 17.6710 17.6710i 0.717242 0.717242i −0.250797 0.968040i \(-0.580693\pi\)
0.968040 + 0.250797i \(0.0806928\pi\)
\(608\) −0.289211 + 0.289211i −0.0117290 + 0.0117290i
\(609\) 0 0
\(610\) −10.5170 21.9900i −0.425819 0.890349i
\(611\) 62.8772i 2.54374i
\(612\) 0 0
\(613\) 18.1592 + 18.1592i 0.733444 + 0.733444i 0.971300 0.237856i \(-0.0764448\pi\)
−0.237856 + 0.971300i \(0.576445\pi\)
\(614\) −51.9978 −2.09846
\(615\) 0 0
\(616\) 17.6638 0.711696
\(617\) 25.7870 + 25.7870i 1.03814 + 1.03814i 0.999243 + 0.0389017i \(0.0123859\pi\)
0.0389017 + 0.999243i \(0.487614\pi\)
\(618\) 0 0
\(619\) 9.63641i 0.387320i 0.981069 + 0.193660i \(0.0620359\pi\)
−0.981069 + 0.193660i \(0.937964\pi\)
\(620\) 18.0197 51.0557i 0.723687 2.05045i
\(621\) 0 0
\(622\) −26.1346 + 26.1346i −1.04790 + 1.04790i
\(623\) −7.25505 + 7.25505i −0.290668 + 0.290668i
\(624\) 0 0
\(625\) 5.30014 + 24.4317i 0.212006 + 0.977268i
\(626\) 3.55984i 0.142280i
\(627\) 0 0
\(628\) −48.9832 48.9832i −1.95464 1.95464i
\(629\) 5.61910 0.224048
\(630\) 0 0
\(631\) −7.17134 −0.285487 −0.142743 0.989760i \(-0.545592\pi\)
−0.142743 + 0.989760i \(0.545592\pi\)
\(632\) −11.2410 11.2410i −0.447144 0.447144i
\(633\) 0 0
\(634\) 79.2603i 3.14783i
\(635\) 3.16271 1.51260i 0.125508 0.0600258i
\(636\) 0 0
\(637\) 23.8007 23.8007i 0.943020 0.943020i
\(638\) −17.4491 + 17.4491i −0.690817 + 0.690817i
\(639\) 0 0
\(640\) −38.6801 + 18.4992i −1.52896 + 0.731244i
\(641\) 20.3820i 0.805042i 0.915411 + 0.402521i \(0.131866\pi\)
−0.915411 + 0.402521i \(0.868134\pi\)
\(642\) 0 0
\(643\) −3.34518 3.34518i −0.131921 0.131921i 0.638063 0.769984i \(-0.279736\pi\)
−0.769984 + 0.638063i \(0.779736\pi\)
\(644\) 22.4268 0.883740
\(645\) 0 0
\(646\) −2.13812 −0.0841232
\(647\) −28.1923 28.1923i −1.10835 1.10835i −0.993367 0.114987i \(-0.963317\pi\)
−0.114987 0.993367i \(-0.536683\pi\)
\(648\) 0 0
\(649\) 38.0111i 1.49207i
\(650\) −42.1936 + 52.3284i −1.65497 + 2.05249i
\(651\) 0 0
\(652\) −19.6493 + 19.6493i −0.769527 + 0.769527i
\(653\) −18.4412 + 18.4412i −0.721661 + 0.721661i −0.968943 0.247282i \(-0.920462\pi\)
0.247282 + 0.968943i \(0.420462\pi\)
\(654\) 0 0
\(655\) 13.7553 38.9734i 0.537464 1.52281i
\(656\) 36.9920i 1.44430i
\(657\) 0 0
\(658\) 18.3643 + 18.3643i 0.715913 + 0.715913i
\(659\) −16.9294 −0.659476 −0.329738 0.944073i \(-0.606960\pi\)
−0.329738 + 0.944073i \(0.606960\pi\)
\(660\) 0 0
\(661\) 41.6509 1.62003 0.810016 0.586408i \(-0.199458\pi\)
0.810016 + 0.586408i \(0.199458\pi\)
\(662\) 32.4513 + 32.4513i 1.26126 + 1.26126i
\(663\) 0 0
\(664\) 7.54706i 0.292883i
\(665\) 0.770266 + 1.61055i 0.0298696 + 0.0624546i
\(666\) 0 0
\(667\) −11.2064 + 11.2064i −0.433915 + 0.433915i
\(668\) −59.2742 + 59.2742i −2.29339 + 2.29339i
\(669\) 0 0
\(670\) 45.3360 + 16.0009i 1.75148 + 0.618170i
\(671\) 16.9377i 0.653873i
\(672\) 0 0
\(673\) 2.35245 + 2.35245i 0.0906803 + 0.0906803i 0.750992 0.660311i \(-0.229576\pi\)
−0.660311 + 0.750992i \(0.729576\pi\)
\(674\) 88.1758 3.39641
\(675\) 0 0
\(676\) −68.3515 −2.62891
\(677\) 10.2959 + 10.2959i 0.395703 + 0.395703i 0.876714 0.481012i \(-0.159730\pi\)
−0.481012 + 0.876714i \(0.659730\pi\)
\(678\) 0 0
\(679\) 11.7138i 0.449533i
\(680\) 10.6156 + 3.74669i 0.407091 + 0.143679i
\(681\) 0 0
\(682\) −39.7484 + 39.7484i −1.52205 + 1.52205i
\(683\) −36.5150 + 36.5150i −1.39721 + 1.39721i −0.589280 + 0.807929i \(0.700589\pi\)
−0.807929 + 0.589280i \(0.799411\pi\)
\(684\) 0 0
\(685\) 9.74260 + 20.3709i 0.372246 + 0.778331i
\(686\) 29.7096i 1.13432i
\(687\) 0 0
\(688\) −1.35698 1.35698i −0.0517345 0.0517345i
\(689\) 23.7841 0.906104
\(690\) 0 0
\(691\) 12.7061 0.483363 0.241681 0.970356i \(-0.422301\pi\)
0.241681 + 0.970356i \(0.422301\pi\)
\(692\) −36.4481 36.4481i −1.38555 1.38555i
\(693\) 0 0
\(694\) 62.0298i 2.35462i
\(695\) −7.80557 + 22.1158i −0.296082 + 0.838900i
\(696\) 0 0
\(697\) 6.10322 6.10322i 0.231176 0.231176i
\(698\) −31.7213 + 31.7213i −1.20067 + 1.20067i
\(699\) 0 0
\(700\) −1.98106 18.4764i −0.0748771 0.698341i
\(701\) 25.0952i 0.947832i −0.880570 0.473916i \(-0.842840\pi\)
0.880570 0.473916i \(-0.157160\pi\)
\(702\) 0 0
\(703\) −3.45465 3.45465i −0.130295 0.130295i
\(704\) 28.3313 1.06778
\(705\) 0 0
\(706\) −56.2059 −2.11534
\(707\) 6.68608 + 6.68608i 0.251456 + 0.251456i
\(708\) 0 0
\(709\) 32.3991i 1.21677i 0.793641 + 0.608387i \(0.208183\pi\)
−0.793641 + 0.608387i \(0.791817\pi\)
\(710\) −42.3340 + 20.2467i −1.58877 + 0.759846i
\(711\) 0 0
\(712\) 39.7766 39.7766i 1.49069 1.49069i
\(713\) −25.5279 + 25.5279i −0.956026 + 0.956026i
\(714\) 0 0
\(715\) 42.1378 20.1529i 1.57586 0.753674i
\(716\) 33.3921i 1.24792i
\(717\) 0 0
\(718\) 22.6547 + 22.6547i 0.845468 + 0.845468i
\(719\) −22.6788 −0.845776 −0.422888 0.906182i \(-0.638984\pi\)
−0.422888 + 0.906182i \(0.638984\pi\)
\(720\) 0 0
\(721\) −11.1321 −0.414581
\(722\) −31.7238 31.7238i −1.18064 1.18064i
\(723\) 0 0
\(724\) 44.5716i 1.65649i
\(725\) 10.2224 + 8.24253i 0.379649 + 0.306120i
\(726\) 0 0
\(727\) 7.69574 7.69574i 0.285419 0.285419i −0.549847 0.835266i \(-0.685314\pi\)
0.835266 + 0.549847i \(0.185314\pi\)
\(728\) 17.8713 17.8713i 0.662354 0.662354i
\(729\) 0 0
\(730\) 10.3767 29.4006i 0.384058 1.08816i
\(731\) 0.447771i 0.0165614i
\(732\) 0 0
\(733\) 25.9797 + 25.9797i 0.959583 + 0.959583i 0.999214 0.0396309i \(-0.0126182\pi\)
−0.0396309 + 0.999214i \(0.512618\pi\)
\(734\) 41.8344 1.54414
\(735\) 0 0
\(736\) −2.83867 −0.104635
\(737\) −23.6222 23.6222i −0.870137 0.870137i
\(738\) 0 0
\(739\) 33.2853i 1.22442i −0.790696 0.612210i \(-0.790281\pi\)
0.790696 0.612210i \(-0.209719\pi\)
\(740\) 21.9406 + 45.8759i 0.806554 + 1.68643i
\(741\) 0 0
\(742\) −6.94653 + 6.94653i −0.255015 + 0.255015i
\(743\) −22.9941 + 22.9941i −0.843573 + 0.843573i −0.989322 0.145748i \(-0.953441\pi\)
0.145748 + 0.989322i \(0.453441\pi\)
\(744\) 0 0
\(745\) −28.6454 10.1101i −1.04949 0.370407i
\(746\) 52.0753i 1.90661i
\(747\) 0 0
\(748\) −10.9348 10.9348i −0.399816 0.399816i
\(749\) 11.6447 0.425488
\(750\) 0 0
\(751\) −24.7035 −0.901443 −0.450722 0.892665i \(-0.648833\pi\)
−0.450722 + 0.892665i \(0.648833\pi\)
\(752\) −34.8547 34.8547i −1.27102 1.27102i
\(753\) 0 0
\(754\) 35.3081i 1.28585i
\(755\) 42.0160 + 14.8292i 1.52912 + 0.539689i
\(756\) 0 0
\(757\) −12.7581 + 12.7581i −0.463700 + 0.463700i −0.899866 0.436166i \(-0.856336\pi\)
0.436166 + 0.899866i \(0.356336\pi\)
\(758\) −44.0735 + 44.0735i −1.60082 + 1.60082i
\(759\) 0 0
\(760\) −4.22306 8.83003i −0.153186 0.320299i
\(761\) 20.0598i 0.727167i −0.931562 0.363583i \(-0.881553\pi\)
0.931562 0.363583i \(-0.118447\pi\)
\(762\) 0 0
\(763\) −9.80347 9.80347i −0.354909 0.354909i
\(764\) 25.5838 0.925590
\(765\) 0 0
\(766\) −51.2100 −1.85029
\(767\) 38.4576 + 38.4576i 1.38862 + 1.38862i
\(768\) 0 0
\(769\) 10.1042i 0.364366i −0.983265 0.182183i \(-0.941684\pi\)
0.983265 0.182183i \(-0.0583164\pi\)
\(770\) −6.42104 + 18.1930i −0.231398 + 0.655629i
\(771\) 0 0
\(772\) 19.0919 19.0919i 0.687132 0.687132i
\(773\) 14.3793 14.3793i 0.517186 0.517186i −0.399533 0.916719i \(-0.630828\pi\)
0.916719 + 0.399533i \(0.130828\pi\)
\(774\) 0 0
\(775\) 23.2862 + 18.7762i 0.836464 + 0.674460i
\(776\) 64.2218i 2.30543i
\(777\) 0 0
\(778\) −52.4882 52.4882i −1.88179 1.88179i
\(779\) −7.50459 −0.268880
\(780\) 0 0
\(781\) 32.6076 1.16679
\(782\) −10.4931 10.4931i −0.375232 0.375232i
\(783\) 0 0
\(784\) 26.3869i 0.942390i
\(785\) 34.5268 16.5128i 1.23231 0.589368i
\(786\) 0 0
\(787\) −0.250641 + 0.250641i −0.00893439 + 0.00893439i −0.711560 0.702625i \(-0.752011\pi\)
0.702625 + 0.711560i \(0.252011\pi\)
\(788\) −7.20892 + 7.20892i −0.256807 + 0.256807i
\(789\) 0 0
\(790\) 15.6640 7.49149i 0.557301 0.266535i
\(791\) 10.9392i 0.388953i
\(792\) 0 0
\(793\) 17.1366 + 17.1366i 0.608540 + 0.608540i
\(794\) −9.80007 −0.347792
\(795\) 0 0
\(796\) 18.3991 0.652137
\(797\) 16.2653 + 16.2653i 0.576146 + 0.576146i 0.933839 0.357693i \(-0.116437\pi\)
−0.357693 + 0.933839i \(0.616437\pi\)
\(798\) 0 0
\(799\) 11.5012i 0.406882i
\(800\) 0.250753 + 2.33865i 0.00886546 + 0.0826836i
\(801\) 0 0
\(802\) 43.1030 43.1030i 1.52202 1.52202i
\(803\) −15.3191 + 15.3191i −0.540600 + 0.540600i
\(804\) 0 0
\(805\) −4.12382 + 11.6842i −0.145346 + 0.411813i
\(806\) 80.4305i 2.83305i
\(807\) 0 0
\(808\) −36.6571 36.6571i −1.28959 1.28959i
\(809\) −17.4790 −0.614530 −0.307265 0.951624i \(-0.599414\pi\)
−0.307265 + 0.951624i \(0.599414\pi\)
\(810\) 0 0
\(811\) 16.8640 0.592175 0.296088 0.955161i \(-0.404318\pi\)
0.296088 + 0.955161i \(0.404318\pi\)
\(812\) −6.90172 6.90172i −0.242203 0.242203i
\(813\) 0 0
\(814\) 52.7972i 1.85054i
\(815\) −6.62403 13.8502i −0.232030 0.485152i
\(816\) 0 0
\(817\) −0.275292 + 0.275292i −0.00963124 + 0.00963124i
\(818\) 34.4579 34.4579i 1.20479 1.20479i
\(819\) 0 0
\(820\) 73.6594 + 25.9974i 2.57230 + 0.907869i
\(821\) 23.8629i 0.832822i −0.909177 0.416411i \(-0.863288\pi\)
0.909177 0.416411i \(-0.136712\pi\)
\(822\) 0 0
\(823\) −24.6480 24.6480i −0.859177 0.859177i 0.132065 0.991241i \(-0.457839\pi\)
−0.991241 + 0.132065i \(0.957839\pi\)
\(824\) 61.0328 2.12618
\(825\) 0 0
\(826\) −22.4643 −0.781632
\(827\) −22.2053 22.2053i −0.772154 0.772154i 0.206329 0.978483i \(-0.433848\pi\)
−0.978483 + 0.206329i \(0.933848\pi\)
\(828\) 0 0
\(829\) 4.82239i 0.167488i 0.996487 + 0.0837442i \(0.0266879\pi\)
−0.996487 + 0.0837442i \(0.973312\pi\)
\(830\) −7.77313 2.74346i −0.269809 0.0952268i
\(831\) 0 0
\(832\) 28.6641 28.6641i 0.993748 0.993748i
\(833\) 4.35351 4.35351i 0.150840 0.150840i
\(834\) 0 0
\(835\) −19.9821 41.7806i −0.691508 1.44588i
\(836\) 13.4456i 0.465024i
\(837\) 0 0
\(838\) 22.3223 + 22.3223i 0.771109 + 0.771109i
\(839\) −55.8825 −1.92928 −0.964639 0.263575i \(-0.915098\pi\)
−0.964639 + 0.263575i \(0.915098\pi\)
\(840\) 0 0
\(841\) −22.1026 −0.762157
\(842\) 15.1089 + 15.1089i 0.520687 + 0.520687i
\(843\) 0 0
\(844\) 70.3525i 2.42163i
\(845\) 12.5684 35.6106i 0.432367 1.22504i
\(846\) 0 0
\(847\) 2.33700 2.33700i 0.0803004 0.0803004i
\(848\) 13.1843 13.1843i 0.452749 0.452749i
\(849\) 0 0
\(850\) −7.71784 + 9.57165i −0.264720 + 0.328305i
\(851\) 33.9083i 1.16236i
\(852\) 0 0
\(853\) 16.5828 + 16.5828i 0.567786 + 0.567786i 0.931508 0.363722i \(-0.118494\pi\)
−0.363722 + 0.931508i \(0.618494\pi\)
\(854\) −10.0100 −0.342537
\(855\) 0 0
\(856\) −63.8432 −2.18212
\(857\) 20.5138 + 20.5138i 0.700740 + 0.700740i 0.964569 0.263830i \(-0.0849857\pi\)
−0.263830 + 0.964569i \(0.584986\pi\)
\(858\) 0 0
\(859\) 47.7868i 1.63046i 0.579135 + 0.815232i \(0.303390\pi\)
−0.579135 + 0.815232i \(0.696610\pi\)
\(860\) 3.65572 1.74839i 0.124659 0.0596196i
\(861\) 0 0
\(862\) −21.3250 + 21.3250i −0.726332 + 0.726332i
\(863\) −9.97081 + 9.97081i −0.339410 + 0.339410i −0.856145 0.516735i \(-0.827147\pi\)
0.516735 + 0.856145i \(0.327147\pi\)
\(864\) 0 0
\(865\) 25.6912 12.2871i 0.873526 0.417774i
\(866\) 28.5028i 0.968566i
\(867\) 0 0
\(868\) −15.7219 15.7219i −0.533635 0.533635i
\(869\) −12.0651 −0.409282
\(870\) 0 0
\(871\) −47.7994 −1.61962
\(872\) 53.7485 + 53.7485i 1.82015 + 1.82015i
\(873\) 0 0
\(874\) 12.9024i 0.436431i
\(875\) 9.99030 + 2.36530i 0.337734 + 0.0799618i
\(876\) 0 0
\(877\) 12.9484 12.9484i 0.437237 0.437237i −0.453844 0.891081i \(-0.649948\pi\)
0.891081 + 0.453844i \(0.149948\pi\)
\(878\) 30.6337 30.6337i 1.03384 1.03384i
\(879\) 0 0
\(880\) 12.1869 34.5296i 0.410820 1.16399i
\(881\) 7.07785i 0.238459i 0.992867 + 0.119229i \(0.0380424\pi\)
−0.992867 + 0.119229i \(0.961958\pi\)
\(882\) 0 0
\(883\) 34.9669 + 34.9669i 1.17673 + 1.17673i 0.980573 + 0.196157i \(0.0628461\pi\)
0.196157 + 0.980573i \(0.437154\pi\)
\(884\) −22.1265 −0.744194
\(885\) 0 0
\(886\) 54.3587 1.82622
\(887\) 1.54998 + 1.54998i 0.0520432 + 0.0520432i 0.732649 0.680606i \(-0.238284\pi\)
−0.680606 + 0.732649i \(0.738284\pi\)
\(888\) 0 0
\(889\) 1.43970i 0.0482858i
\(890\) 26.5088 + 55.4274i 0.888576 + 1.85793i
\(891\) 0 0
\(892\) 47.2732 47.2732i 1.58282 1.58282i
\(893\) −7.07098 + 7.07098i −0.236621 + 0.236621i
\(894\) 0 0
\(895\) 17.3970 + 6.14011i 0.581517 + 0.205241i
\(896\) 17.6075i 0.588226i
\(897\) 0 0
\(898\) 13.4337 + 13.4337i 0.448288 + 0.448288i
\(899\) 15.7121 0.524029
\(900\) 0 0
\(901\) 4.35048 0.144935
\(902\) −57.3461 57.3461i −1.90941 1.90941i
\(903\) 0 0
\(904\) 59.9753i 1.99475i
\(905\) 23.2214 + 8.19579i 0.771906 + 0.272437i
\(906\) 0 0
\(907\) 34.2824 34.2824i 1.13833 1.13833i 0.149578 0.988750i \(-0.452209\pi\)
0.988750 0.149578i \(-0.0477914\pi\)
\(908\) −42.1071 + 42.1071i −1.39737 + 1.39737i
\(909\) 0 0
\(910\) 11.9102 + 24.9031i 0.394819 + 0.825529i
\(911\) 0.903005i 0.0299179i 0.999888 + 0.0149590i \(0.00476176\pi\)
−0.999888 + 0.0149590i \(0.995238\pi\)
\(912\) 0 0
\(913\) 4.05018 + 4.05018i 0.134041 + 0.134041i
\(914\) −36.9396 −1.22185
\(915\) 0 0
\(916\) −107.080 −3.53803
\(917\) −12.0013 12.0013i −0.396317 0.396317i
\(918\) 0 0
\(919\) 19.4879i 0.642847i −0.946936 0.321424i \(-0.895839\pi\)
0.946936 0.321424i \(-0.104161\pi\)
\(920\) 22.6093 64.0597i 0.745406 2.11198i
\(921\) 0 0
\(922\) 49.2931 49.2931i 1.62338 1.62338i
\(923\) 32.9906 32.9906i 1.08590 1.08590i
\(924\) 0 0
\(925\) −27.9354 + 2.99527i −0.918509 + 0.0984840i
\(926\) 26.4103i 0.867897i
\(927\) 0 0
\(928\) 0.873586 + 0.873586i 0.0286769 + 0.0286769i
\(929\) −44.4641 −1.45882 −0.729409 0.684077i \(-0.760205\pi\)
−0.729409 + 0.684077i \(0.760205\pi\)
\(930\) 0 0
\(931\) −5.35312 −0.175442
\(932\) 15.2190 + 15.2190i 0.498515 + 0.498515i
\(933\) 0 0
\(934\) 8.23342i 0.269406i
\(935\) 7.70763 3.68626i 0.252066 0.120554i
\(936\) 0 0
\(937\) 8.49121 8.49121i 0.277396 0.277396i −0.554673 0.832069i \(-0.687157\pi\)
0.832069 + 0.554673i \(0.187157\pi\)
\(938\) 13.9606 13.9606i 0.455828 0.455828i
\(939\) 0 0
\(940\) 93.8987 44.9081i 3.06264 1.46474i
\(941\) 6.55693i 0.213750i −0.994272 0.106875i \(-0.965916\pi\)
0.994272 0.106875i \(-0.0340845\pi\)
\(942\) 0 0
\(943\) −36.8297 36.8297i −1.19934 1.19934i
\(944\) 42.6364 1.38770
\(945\) 0 0
\(946\) −4.20727 −0.136790
\(947\) −19.5533 19.5533i −0.635397 0.635397i 0.314019 0.949417i \(-0.398324\pi\)
−0.949417 + 0.314019i \(0.898324\pi\)
\(948\) 0 0
\(949\) 30.9981i 1.00624i
\(950\) 10.6297 1.13973i 0.344872 0.0369777i
\(951\) 0 0
\(952\) 3.26893 3.26893i 0.105947 0.105947i
\(953\) 39.5904 39.5904i 1.28246 1.28246i 0.343192 0.939265i \(-0.388492\pi\)
0.939265 0.343192i \(-0.111508\pi\)
\(954\) 0 0
\(955\) −4.70433 + 13.3289i −0.152229 + 0.431315i
\(956\) 10.0769i 0.325911i
\(957\) 0 0
\(958\) 34.5325 + 34.5325i 1.11570 + 1.11570i
\(959\) 9.27301 0.299441
\(960\) 0 0
\(961\) 4.79163 0.154569
\(962\) −53.4173 53.4173i −1.72224 1.72224i
\(963\) 0 0
\(964\) 91.5660i 2.94914i
\(965\) 6.43611 + 13.4573i 0.207186 + 0.433206i
\(966\) 0 0
\(967\) 24.4789 24.4789i 0.787187 0.787187i −0.193845 0.981032i \(-0.562096\pi\)
0.981032 + 0.193845i \(0.0620959\pi\)
\(968\) −12.8129 + 12.8129i −0.411821 + 0.411821i
\(969\) 0 0
\(970\) 66.1456 + 23.3455i 2.12381 + 0.749579i
\(971\) 50.6753i 1.62625i 0.582091 + 0.813124i \(0.302235\pi\)
−0.582091 + 0.813124i \(0.697765\pi\)
\(972\) 0 0
\(973\) 6.81024 + 6.81024i 0.218326 + 0.218326i
\(974\) 51.2808 1.64314
\(975\) 0 0
\(976\) 18.9987 0.608133
\(977\) −1.08217 1.08217i −0.0346216 0.0346216i 0.689584 0.724206i \(-0.257793\pi\)
−0.724206 + 0.689584i \(0.757793\pi\)
\(978\) 0 0
\(979\) 42.6927i 1.36446i
\(980\) 52.5422 + 18.5443i 1.67840 + 0.592376i
\(981\) 0 0
\(982\) −22.2482 + 22.2482i −0.709969 + 0.709969i
\(983\) −21.0209 + 21.0209i −0.670462 + 0.670462i −0.957822 0.287361i \(-0.907222\pi\)
0.287361 + 0.957822i \(0.407222\pi\)
\(984\) 0 0
\(985\) −2.43022 5.08136i −0.0774332 0.161906i
\(986\) 6.45838i 0.205677i
\(987\) 0 0
\(988\) 13.6035 + 13.6035i 0.432784 + 0.432784i
\(989\) −2.70206 −0.0859204
\(990\) 0 0
\(991\) 22.6540 0.719628 0.359814 0.933024i \(-0.382840\pi\)
0.359814 + 0.933024i \(0.382840\pi\)
\(992\) 1.99000 + 1.99000i 0.0631824 + 0.0631824i
\(993\) 0 0
\(994\) 19.2708i 0.611233i
\(995\) −3.38320 + 9.58575i −0.107255 + 0.303889i
\(996\) 0 0
\(997\) −24.1235 + 24.1235i −0.763999 + 0.763999i −0.977043 0.213044i \(-0.931662\pi\)
0.213044 + 0.977043i \(0.431662\pi\)
\(998\) 38.8108 38.8108i 1.22854 1.22854i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.n.e.188.1 24
3.2 odd 2 inner 765.2.n.e.188.12 yes 24
5.2 odd 4 inner 765.2.n.e.647.12 yes 24
15.2 even 4 inner 765.2.n.e.647.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.n.e.188.1 24 1.1 even 1 trivial
765.2.n.e.188.12 yes 24 3.2 odd 2 inner
765.2.n.e.647.1 yes 24 15.2 even 4 inner
765.2.n.e.647.12 yes 24 5.2 odd 4 inner