Newspace parameters
| Level: | \( N \) | \(=\) | \( 765 = 3^{2} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 765.be (of order \(8\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.10855575463\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(8\) over \(\Q(\zeta_{8})\) |
| Twist minimal: | no (minimal twist has level 255) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 406.1 | −1.81449 | − | 1.81449i | 0 | 4.58477i | 0.923880 | − | 0.382683i | 0 | 2.79106 | + | 1.15609i | 4.69005 | − | 4.69005i | 0 | −2.37075 | − | 0.981997i | ||||||||
| 406.2 | −1.37042 | − | 1.37042i | 0 | 1.75608i | −0.923880 | + | 0.382683i | 0 | 0.108602 | + | 0.0449843i | −0.334278 | + | 0.334278i | 0 | 1.79053 | + | 0.741663i | ||||||||
| 406.3 | −0.470313 | − | 0.470313i | 0 | − | 1.55761i | 0.923880 | − | 0.382683i | 0 | −1.36091 | − | 0.563709i | −1.67319 | + | 1.67319i | 0 | −0.614493 | − | 0.254531i | |||||||
| 406.4 | −0.245139 | − | 0.245139i | 0 | − | 1.87981i | −0.923880 | + | 0.382683i | 0 | 0.860352 | + | 0.356370i | −0.951095 | + | 0.951095i | 0 | 0.320290 | + | 0.132669i | |||||||
| 406.5 | 1.06986 | + | 1.06986i | 0 | 0.289222i | −0.923880 | + | 0.382683i | 0 | −4.38000 | − | 1.81426i | 1.83030 | − | 1.83030i | 0 | −1.39785 | − | 0.579007i | ||||||||
| 406.6 | 1.07263 | + | 1.07263i | 0 | 0.301074i | 0.923880 | − | 0.382683i | 0 | −1.95554 | − | 0.810011i | 1.82232 | − | 1.82232i | 0 | 1.40146 | + | 0.580504i | ||||||||
| 406.7 | 1.25280 | + | 1.25280i | 0 | 1.13900i | −0.923880 | + | 0.382683i | 0 | 3.81159 | + | 1.57881i | 1.07866 | − | 1.07866i | 0 | −1.63686 | − | 0.678009i | ||||||||
| 406.8 | 1.91928 | + | 1.91928i | 0 | 5.36729i | 0.923880 | − | 0.382683i | 0 | 3.53907 | + | 1.46593i | −6.46277 | + | 6.46277i | 0 | 2.50766 | + | 1.03871i | ||||||||
| 451.1 | −1.78971 | + | 1.78971i | 0 | − | 4.40611i | −0.382683 | + | 0.923880i | 0 | 0.211600 | + | 0.510848i | 4.30624 | + | 4.30624i | 0 | −0.968583 | − | 2.33837i | |||||||
| 451.2 | −1.73834 | + | 1.73834i | 0 | − | 4.04366i | 0.382683 | − | 0.923880i | 0 | −0.920704 | − | 2.22278i | 3.55258 | + | 3.55258i | 0 | 0.940784 | + | 2.27125i | |||||||
| 451.3 | −0.876678 | + | 0.876678i | 0 | 0.462871i | 0.382683 | − | 0.923880i | 0 | 0.999316 | + | 2.41256i | −2.15915 | − | 2.15915i | 0 | 0.474455 | + | 1.14544i | ||||||||
| 451.4 | −0.689027 | + | 0.689027i | 0 | 1.05048i | −0.382683 | + | 0.923880i | 0 | 1.50637 | + | 3.63669i | −2.10187 | − | 2.10187i | 0 | −0.372899 | − | 0.900257i | ||||||||
| 451.5 | 0.0443119 | − | 0.0443119i | 0 | 1.99607i | 0.382683 | − | 0.923880i | 0 | −0.295776 | − | 0.714067i | 0.177073 | + | 0.177073i | 0 | −0.0239814 | − | 0.0578963i | ||||||||
| 451.6 | 0.392111 | − | 0.392111i | 0 | 1.69250i | −0.382683 | + | 0.923880i | 0 | −2.00796 | − | 4.84764i | 1.44787 | + | 1.44787i | 0 | 0.212209 | + | 0.512318i | ||||||||
| 451.7 | 1.37952 | − | 1.37952i | 0 | − | 1.80613i | −0.382683 | + | 0.923880i | 0 | 1.12408 | + | 2.71378i | 0.267441 | + | 0.267441i | 0 | 0.746589 | + | 1.80243i | |||||||
| 451.8 | 1.86360 | − | 1.86360i | 0 | − | 4.94602i | 0.382683 | − | 0.923880i | 0 | −0.0311391 | − | 0.0751765i | −5.49020 | − | 5.49020i | 0 | −1.00857 | − | 2.43491i | |||||||
| 586.1 | −1.81449 | + | 1.81449i | 0 | − | 4.58477i | 0.923880 | + | 0.382683i | 0 | 2.79106 | − | 1.15609i | 4.69005 | + | 4.69005i | 0 | −2.37075 | + | 0.981997i | |||||||
| 586.2 | −1.37042 | + | 1.37042i | 0 | − | 1.75608i | −0.923880 | − | 0.382683i | 0 | 0.108602 | − | 0.0449843i | −0.334278 | − | 0.334278i | 0 | 1.79053 | − | 0.741663i | |||||||
| 586.3 | −0.470313 | + | 0.470313i | 0 | 1.55761i | 0.923880 | + | 0.382683i | 0 | −1.36091 | + | 0.563709i | −1.67319 | − | 1.67319i | 0 | −0.614493 | + | 0.254531i | ||||||||
| 586.4 | −0.245139 | + | 0.245139i | 0 | 1.87981i | −0.923880 | − | 0.382683i | 0 | 0.860352 | − | 0.356370i | −0.951095 | − | 0.951095i | 0 | 0.320290 | − | 0.132669i | ||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 17.d | even | 8 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 765.2.be.c | 32 | |
| 3.b | odd | 2 | 1 | 255.2.w.b | ✓ | 32 | |
| 17.d | even | 8 | 1 | inner | 765.2.be.c | 32 | |
| 51.g | odd | 8 | 1 | 255.2.w.b | ✓ | 32 | |
| 51.i | even | 16 | 1 | 4335.2.a.bl | 16 | ||
| 51.i | even | 16 | 1 | 4335.2.a.bm | 16 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 255.2.w.b | ✓ | 32 | 3.b | odd | 2 | 1 | |
| 255.2.w.b | ✓ | 32 | 51.g | odd | 8 | 1 | |
| 765.2.be.c | 32 | 1.a | even | 1 | 1 | trivial | |
| 765.2.be.c | 32 | 17.d | even | 8 | 1 | inner | |
| 4335.2.a.bl | 16 | 51.i | even | 16 | 1 | ||
| 4335.2.a.bm | 16 | 51.i | even | 16 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{32} + 138 T_{2}^{28} - 24 T_{2}^{25} + 6837 T_{2}^{24} - 320 T_{2}^{23} - 296 T_{2}^{21} + \cdots + 289 \)
acting on \(S_{2}^{\mathrm{new}}(765, [\chi])\).