Properties

Label 765.2.be
Level $765$
Weight $2$
Character orbit 765.be
Rep. character $\chi_{765}(406,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $120$
Newform subspaces $4$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.be (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 4 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(765, [\chi])\).

Total New Old
Modular forms 464 120 344
Cusp forms 400 120 280
Eisenstein series 64 0 64

Trace form

\( 120 q + 8 q^{11} - 120 q^{16} - 8 q^{17} + 24 q^{19} + 64 q^{22} + 32 q^{23} + 16 q^{26} - 48 q^{28} - 8 q^{29} + 32 q^{34} + 32 q^{35} - 40 q^{37} - 16 q^{40} - 32 q^{41} + 40 q^{43} - 48 q^{44} - 56 q^{46}+ \cdots - 104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(765, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
765.2.be.a 765.be 17.d $16$ $6.109$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 255.2.w.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-\beta _{7}-\beta _{10}-\beta _{11}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\)
765.2.be.b 765.be 17.d $24$ $6.109$ None 85.2.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
765.2.be.c 765.be 17.d $32$ $6.109$ None 255.2.w.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{8}]$
765.2.be.d 765.be 17.d $48$ $6.109$ None 765.2.be.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(765, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(765, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)