Defining parameters
Level: | \( N \) | \(=\) | \( 765 = 3^{2} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 765.be (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(765, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 464 | 120 | 344 |
Cusp forms | 400 | 120 | 280 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(765, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
765.2.be.a | $16$ | $6.109$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(-\beta _{7}-\beta _{10}-\beta _{11}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\) |
765.2.be.b | $24$ | $6.109$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
765.2.be.c | $32$ | $6.109$ | None | \(0\) | \(0\) | \(0\) | \(8\) | ||
765.2.be.d | $48$ | $6.109$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(765, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(765, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)