Newspace parameters
| Level: | \( N \) | \(=\) | \( 765 = 3^{2} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 765.be (of order \(8\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.10855575463\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{8})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 406.1 | −1.86027 | − | 1.86027i | 0 | 4.92123i | −0.923880 | + | 0.382683i | 0 | 1.64664 | + | 0.682062i | 5.43427 | − | 5.43427i | 0 | 2.43056 | + | 1.00677i | ||||||||
| 406.2 | −1.84029 | − | 1.84029i | 0 | 4.77335i | 0.923880 | − | 0.382683i | 0 | −2.71531 | − | 1.12472i | 5.10378 | − | 5.10378i | 0 | −2.40446 | − | 0.995959i | ||||||||
| 406.3 | −1.19537 | − | 1.19537i | 0 | 0.857805i | −0.923880 | + | 0.382683i | 0 | −3.10354 | − | 1.28553i | −1.36534 | + | 1.36534i | 0 | 1.56182 | + | 0.646928i | ||||||||
| 406.4 | −1.03636 | − | 1.03636i | 0 | 0.148087i | 0.923880 | − | 0.382683i | 0 | 0.191998 | + | 0.0795280i | −1.91925 | + | 1.91925i | 0 | −1.35407 | − | 0.560874i | ||||||||
| 406.5 | −0.562729 | − | 0.562729i | 0 | − | 1.36667i | −0.923880 | + | 0.382683i | 0 | 4.16587 | + | 1.72556i | −1.89452 | + | 1.89452i | 0 | 0.735241 | + | 0.304547i | |||||||
| 406.6 | −0.200519 | − | 0.200519i | 0 | − | 1.91958i | 0.923880 | − | 0.382683i | 0 | −0.185664 | − | 0.0769047i | −0.785951 | + | 0.785951i | 0 | −0.261991 | − | 0.108520i | |||||||
| 406.7 | 0.200519 | + | 0.200519i | 0 | − | 1.91958i | −0.923880 | + | 0.382683i | 0 | −0.185664 | − | 0.0769047i | 0.785951 | − | 0.785951i | 0 | −0.261991 | − | 0.108520i | |||||||
| 406.8 | 0.562729 | + | 0.562729i | 0 | − | 1.36667i | 0.923880 | − | 0.382683i | 0 | 4.16587 | + | 1.72556i | 1.89452 | − | 1.89452i | 0 | 0.735241 | + | 0.304547i | |||||||
| 406.9 | 1.03636 | + | 1.03636i | 0 | 0.148087i | −0.923880 | + | 0.382683i | 0 | 0.191998 | + | 0.0795280i | 1.91925 | − | 1.91925i | 0 | −1.35407 | − | 0.560874i | ||||||||
| 406.10 | 1.19537 | + | 1.19537i | 0 | 0.857805i | 0.923880 | − | 0.382683i | 0 | −3.10354 | − | 1.28553i | 1.36534 | − | 1.36534i | 0 | 1.56182 | + | 0.646928i | ||||||||
| 406.11 | 1.84029 | + | 1.84029i | 0 | 4.77335i | −0.923880 | + | 0.382683i | 0 | −2.71531 | − | 1.12472i | −5.10378 | + | 5.10378i | 0 | −2.40446 | − | 0.995959i | ||||||||
| 406.12 | 1.86027 | + | 1.86027i | 0 | 4.92123i | 0.923880 | − | 0.382683i | 0 | 1.64664 | + | 0.682062i | −5.43427 | + | 5.43427i | 0 | 2.43056 | + | 1.00677i | ||||||||
| 451.1 | −1.72972 | + | 1.72972i | 0 | − | 3.98383i | −0.382683 | + | 0.923880i | 0 | −1.92605 | − | 4.64990i | 3.43147 | + | 3.43147i | 0 | −0.936116 | − | 2.25998i | |||||||
| 451.2 | −1.42794 | + | 1.42794i | 0 | − | 2.07804i | 0.382683 | − | 0.923880i | 0 | 0.0474368 | + | 0.114522i | 0.111436 | + | 0.111436i | 0 | 0.772797 | + | 1.86570i | |||||||
| 451.3 | −1.41983 | + | 1.41983i | 0 | − | 2.03181i | −0.382683 | + | 0.923880i | 0 | 0.941276 | + | 2.27244i | 0.0451599 | + | 0.0451599i | 0 | −0.768404 | − | 1.85509i | |||||||
| 451.4 | −1.01031 | + | 1.01031i | 0 | − | 0.0414414i | 0.382683 | − | 0.923880i | 0 | 0.371080 | + | 0.895867i | −1.97875 | − | 1.97875i | 0 | 0.546774 | + | 1.32003i | |||||||
| 451.5 | −0.452810 | + | 0.452810i | 0 | 1.58993i | −0.382683 | + | 0.923880i | 0 | −1.12434 | − | 2.71439i | −1.62555 | − | 1.62555i | 0 | −0.245059 | − | 0.591625i | ||||||||
| 451.6 | −0.142462 | + | 0.142462i | 0 | 1.95941i | −0.382683 | + | 0.923880i | 0 | 1.69059 | + | 4.08146i | −0.564064 | − | 0.564064i | 0 | −0.0770997 | − | 0.186135i | ||||||||
| 451.7 | 0.142462 | − | 0.142462i | 0 | 1.95941i | 0.382683 | − | 0.923880i | 0 | 1.69059 | + | 4.08146i | 0.564064 | + | 0.564064i | 0 | −0.0770997 | − | 0.186135i | ||||||||
| 451.8 | 0.452810 | − | 0.452810i | 0 | 1.58993i | 0.382683 | − | 0.923880i | 0 | −1.12434 | − | 2.71439i | 1.62555 | + | 1.62555i | 0 | −0.245059 | − | 0.591625i | ||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 17.d | even | 8 | 1 | inner |
| 51.g | odd | 8 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 765.2.be.d | ✓ | 48 |
| 3.b | odd | 2 | 1 | inner | 765.2.be.d | ✓ | 48 |
| 17.d | even | 8 | 1 | inner | 765.2.be.d | ✓ | 48 |
| 51.g | odd | 8 | 1 | inner | 765.2.be.d | ✓ | 48 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 765.2.be.d | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 765.2.be.d | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
| 765.2.be.d | ✓ | 48 | 17.d | even | 8 | 1 | inner |
| 765.2.be.d | ✓ | 48 | 51.g | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} + 180 T_{2}^{44} + 13036 T_{2}^{40} + 489816 T_{2}^{36} + 10336296 T_{2}^{32} + 124976100 T_{2}^{28} + \cdots + 2401 \)
acting on \(S_{2}^{\mathrm{new}}(765, [\chi])\).