Properties

Label 765.2.a.j.1.3
Level $765$
Weight $2$
Character 765.1
Self dual yes
Analytic conductor $6.109$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(1,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,2,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 765.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.11491 q^{2} +2.47283 q^{4} -1.00000 q^{5} +1.64207 q^{7} +1.00000 q^{8} -2.11491 q^{10} +4.58774 q^{11} +4.94567 q^{13} +3.47283 q^{14} -2.83076 q^{16} -1.00000 q^{17} +0.926221 q^{19} -2.47283 q^{20} +9.70265 q^{22} -2.22982 q^{23} +1.00000 q^{25} +10.4596 q^{26} +4.06058 q^{28} -5.53341 q^{29} +3.66152 q^{31} -7.98680 q^{32} -2.11491 q^{34} -1.64207 q^{35} +9.87189 q^{37} +1.95887 q^{38} -1.00000 q^{40} +2.92622 q^{41} -8.45963 q^{43} +11.3447 q^{44} -4.71585 q^{46} -0.587741 q^{47} -4.30359 q^{49} +2.11491 q^{50} +12.2298 q^{52} +3.64207 q^{53} -4.58774 q^{55} +1.64207 q^{56} -11.7026 q^{58} -7.40530 q^{59} -13.4053 q^{61} +7.74378 q^{62} -11.2298 q^{64} -4.94567 q^{65} -13.9736 q^{67} -2.47283 q^{68} -3.47283 q^{70} +5.89134 q^{71} -7.76322 q^{73} +20.8781 q^{74} +2.29039 q^{76} +7.53341 q^{77} -3.28415 q^{79} +2.83076 q^{80} +6.18869 q^{82} -8.45963 q^{83} +1.00000 q^{85} -17.8913 q^{86} +4.58774 q^{88} -4.22982 q^{89} +8.12115 q^{91} -5.51396 q^{92} -1.24302 q^{94} -0.926221 q^{95} +15.8913 q^{97} -9.10170 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{4} - 3 q^{5} + 4 q^{7} + 3 q^{8} + 2 q^{11} + 4 q^{13} + 5 q^{14} - 4 q^{16} - 3 q^{17} - 2 q^{20} + 11 q^{22} + 6 q^{23} + 3 q^{25} + 6 q^{26} - 5 q^{28} + 6 q^{29} + 2 q^{31} - 4 q^{32} - 4 q^{35}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11491 1.49547 0.747733 0.664000i \(-0.231142\pi\)
0.747733 + 0.664000i \(0.231142\pi\)
\(3\) 0 0
\(4\) 2.47283 1.23642
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.64207 0.620645 0.310323 0.950631i \(-0.399563\pi\)
0.310323 + 0.950631i \(0.399563\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.11491 −0.668792
\(11\) 4.58774 1.38326 0.691628 0.722254i \(-0.256894\pi\)
0.691628 + 0.722254i \(0.256894\pi\)
\(12\) 0 0
\(13\) 4.94567 1.37168 0.685841 0.727752i \(-0.259435\pi\)
0.685841 + 0.727752i \(0.259435\pi\)
\(14\) 3.47283 0.928154
\(15\) 0 0
\(16\) −2.83076 −0.707690
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 0.926221 0.212490 0.106245 0.994340i \(-0.466117\pi\)
0.106245 + 0.994340i \(0.466117\pi\)
\(20\) −2.47283 −0.552942
\(21\) 0 0
\(22\) 9.70265 2.06861
\(23\) −2.22982 −0.464949 −0.232474 0.972603i \(-0.574682\pi\)
−0.232474 + 0.972603i \(0.574682\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 10.4596 2.05130
\(27\) 0 0
\(28\) 4.06058 0.767377
\(29\) −5.53341 −1.02753 −0.513764 0.857931i \(-0.671749\pi\)
−0.513764 + 0.857931i \(0.671749\pi\)
\(30\) 0 0
\(31\) 3.66152 0.657629 0.328814 0.944395i \(-0.393351\pi\)
0.328814 + 0.944395i \(0.393351\pi\)
\(32\) −7.98680 −1.41188
\(33\) 0 0
\(34\) −2.11491 −0.362704
\(35\) −1.64207 −0.277561
\(36\) 0 0
\(37\) 9.87189 1.62293 0.811464 0.584402i \(-0.198671\pi\)
0.811464 + 0.584402i \(0.198671\pi\)
\(38\) 1.95887 0.317771
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 2.92622 0.456999 0.228499 0.973544i \(-0.426618\pi\)
0.228499 + 0.973544i \(0.426618\pi\)
\(42\) 0 0
\(43\) −8.45963 −1.29008 −0.645041 0.764148i \(-0.723160\pi\)
−0.645041 + 0.764148i \(0.723160\pi\)
\(44\) 11.3447 1.71028
\(45\) 0 0
\(46\) −4.71585 −0.695315
\(47\) −0.587741 −0.0857309 −0.0428655 0.999081i \(-0.513649\pi\)
−0.0428655 + 0.999081i \(0.513649\pi\)
\(48\) 0 0
\(49\) −4.30359 −0.614799
\(50\) 2.11491 0.299093
\(51\) 0 0
\(52\) 12.2298 1.69597
\(53\) 3.64207 0.500277 0.250139 0.968210i \(-0.419524\pi\)
0.250139 + 0.968210i \(0.419524\pi\)
\(54\) 0 0
\(55\) −4.58774 −0.618611
\(56\) 1.64207 0.219431
\(57\) 0 0
\(58\) −11.7026 −1.53663
\(59\) −7.40530 −0.964088 −0.482044 0.876147i \(-0.660105\pi\)
−0.482044 + 0.876147i \(0.660105\pi\)
\(60\) 0 0
\(61\) −13.4053 −1.71637 −0.858186 0.513338i \(-0.828409\pi\)
−0.858186 + 0.513338i \(0.828409\pi\)
\(62\) 7.74378 0.983461
\(63\) 0 0
\(64\) −11.2298 −1.40373
\(65\) −4.94567 −0.613435
\(66\) 0 0
\(67\) −13.9736 −1.70715 −0.853573 0.520973i \(-0.825569\pi\)
−0.853573 + 0.520973i \(0.825569\pi\)
\(68\) −2.47283 −0.299875
\(69\) 0 0
\(70\) −3.47283 −0.415083
\(71\) 5.89134 0.699173 0.349586 0.936904i \(-0.386322\pi\)
0.349586 + 0.936904i \(0.386322\pi\)
\(72\) 0 0
\(73\) −7.76322 −0.908617 −0.454308 0.890845i \(-0.650114\pi\)
−0.454308 + 0.890845i \(0.650114\pi\)
\(74\) 20.8781 2.42703
\(75\) 0 0
\(76\) 2.29039 0.262726
\(77\) 7.53341 0.858512
\(78\) 0 0
\(79\) −3.28415 −0.369495 −0.184748 0.982786i \(-0.559147\pi\)
−0.184748 + 0.982786i \(0.559147\pi\)
\(80\) 2.83076 0.316489
\(81\) 0 0
\(82\) 6.18869 0.683426
\(83\) −8.45963 −0.928565 −0.464283 0.885687i \(-0.653688\pi\)
−0.464283 + 0.885687i \(0.653688\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) −17.8913 −1.92927
\(87\) 0 0
\(88\) 4.58774 0.489055
\(89\) −4.22982 −0.448360 −0.224180 0.974548i \(-0.571970\pi\)
−0.224180 + 0.974548i \(0.571970\pi\)
\(90\) 0 0
\(91\) 8.12115 0.851328
\(92\) −5.51396 −0.574870
\(93\) 0 0
\(94\) −1.24302 −0.128208
\(95\) −0.926221 −0.0950283
\(96\) 0 0
\(97\) 15.8913 1.61352 0.806760 0.590879i \(-0.201219\pi\)
0.806760 + 0.590879i \(0.201219\pi\)
\(98\) −9.10170 −0.919411
\(99\) 0 0
\(100\) 2.47283 0.247283
\(101\) 7.89134 0.785217 0.392609 0.919706i \(-0.371573\pi\)
0.392609 + 0.919706i \(0.371573\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 4.94567 0.484963
\(105\) 0 0
\(106\) 7.70265 0.748147
\(107\) 15.0279 1.45280 0.726402 0.687270i \(-0.241191\pi\)
0.726402 + 0.687270i \(0.241191\pi\)
\(108\) 0 0
\(109\) −13.0279 −1.24785 −0.623924 0.781485i \(-0.714463\pi\)
−0.623924 + 0.781485i \(0.714463\pi\)
\(110\) −9.70265 −0.925111
\(111\) 0 0
\(112\) −4.64832 −0.439225
\(113\) −15.5140 −1.45943 −0.729715 0.683751i \(-0.760347\pi\)
−0.729715 + 0.683751i \(0.760347\pi\)
\(114\) 0 0
\(115\) 2.22982 0.207931
\(116\) −13.6832 −1.27045
\(117\) 0 0
\(118\) −15.6615 −1.44176
\(119\) −1.64207 −0.150529
\(120\) 0 0
\(121\) 10.0474 0.913397
\(122\) −28.3510 −2.56678
\(123\) 0 0
\(124\) 9.05433 0.813103
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −17.5529 −1.55756 −0.778782 0.627295i \(-0.784162\pi\)
−0.778782 + 0.627295i \(0.784162\pi\)
\(128\) −7.77643 −0.687346
\(129\) 0 0
\(130\) −10.4596 −0.917370
\(131\) 9.89134 0.864210 0.432105 0.901823i \(-0.357771\pi\)
0.432105 + 0.901823i \(0.357771\pi\)
\(132\) 0 0
\(133\) 1.52092 0.131881
\(134\) −29.5529 −2.55298
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 19.1685 1.63768 0.818839 0.574024i \(-0.194618\pi\)
0.818839 + 0.574024i \(0.194618\pi\)
\(138\) 0 0
\(139\) 13.1755 1.11753 0.558765 0.829326i \(-0.311275\pi\)
0.558765 + 0.829326i \(0.311275\pi\)
\(140\) −4.06058 −0.343181
\(141\) 0 0
\(142\) 12.4596 1.04559
\(143\) 22.6894 1.89739
\(144\) 0 0
\(145\) 5.53341 0.459525
\(146\) −16.4185 −1.35880
\(147\) 0 0
\(148\) 24.4115 2.00662
\(149\) −7.97359 −0.653222 −0.326611 0.945159i \(-0.605907\pi\)
−0.326611 + 0.945159i \(0.605907\pi\)
\(150\) 0 0
\(151\) −15.5334 −1.26409 −0.632045 0.774931i \(-0.717784\pi\)
−0.632045 + 0.774931i \(0.717784\pi\)
\(152\) 0.926221 0.0751264
\(153\) 0 0
\(154\) 15.9325 1.28387
\(155\) −3.66152 −0.294100
\(156\) 0 0
\(157\) −3.17548 −0.253431 −0.126716 0.991939i \(-0.540444\pi\)
−0.126716 + 0.991939i \(0.540444\pi\)
\(158\) −6.94567 −0.552568
\(159\) 0 0
\(160\) 7.98680 0.631412
\(161\) −3.66152 −0.288568
\(162\) 0 0
\(163\) 3.78963 0.296827 0.148413 0.988925i \(-0.452583\pi\)
0.148413 + 0.988925i \(0.452583\pi\)
\(164\) 7.23606 0.565041
\(165\) 0 0
\(166\) −17.8913 −1.38864
\(167\) 18.6072 1.43987 0.719934 0.694043i \(-0.244172\pi\)
0.719934 + 0.694043i \(0.244172\pi\)
\(168\) 0 0
\(169\) 11.4596 0.881510
\(170\) 2.11491 0.162206
\(171\) 0 0
\(172\) −20.9193 −1.59508
\(173\) −3.77018 −0.286642 −0.143321 0.989676i \(-0.545778\pi\)
−0.143321 + 0.989676i \(0.545778\pi\)
\(174\) 0 0
\(175\) 1.64207 0.124129
\(176\) −12.9868 −0.978917
\(177\) 0 0
\(178\) −8.94567 −0.670506
\(179\) 22.0947 1.65144 0.825719 0.564081i \(-0.190770\pi\)
0.825719 + 0.564081i \(0.190770\pi\)
\(180\) 0 0
\(181\) 1.40530 0.104455 0.0522275 0.998635i \(-0.483368\pi\)
0.0522275 + 0.998635i \(0.483368\pi\)
\(182\) 17.1755 1.27313
\(183\) 0 0
\(184\) −2.22982 −0.164384
\(185\) −9.87189 −0.725796
\(186\) 0 0
\(187\) −4.58774 −0.335489
\(188\) −1.45339 −0.105999
\(189\) 0 0
\(190\) −1.95887 −0.142111
\(191\) −18.7283 −1.35514 −0.677568 0.735461i \(-0.736966\pi\)
−0.677568 + 0.735461i \(0.736966\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 33.6087 2.41296
\(195\) 0 0
\(196\) −10.6421 −0.760148
\(197\) −21.0668 −1.50095 −0.750474 0.660900i \(-0.770175\pi\)
−0.750474 + 0.660900i \(0.770175\pi\)
\(198\) 0 0
\(199\) 9.17548 0.650433 0.325216 0.945640i \(-0.394563\pi\)
0.325216 + 0.945640i \(0.394563\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 16.6894 1.17427
\(203\) −9.08627 −0.637731
\(204\) 0 0
\(205\) −2.92622 −0.204376
\(206\) 16.9193 1.17882
\(207\) 0 0
\(208\) −14.0000 −0.970725
\(209\) 4.24926 0.293928
\(210\) 0 0
\(211\) −19.3230 −1.33025 −0.665127 0.746731i \(-0.731622\pi\)
−0.665127 + 0.746731i \(0.731622\pi\)
\(212\) 9.00624 0.618551
\(213\) 0 0
\(214\) 31.7827 2.17262
\(215\) 8.45963 0.576942
\(216\) 0 0
\(217\) 6.01249 0.408154
\(218\) −27.5529 −1.86611
\(219\) 0 0
\(220\) −11.3447 −0.764861
\(221\) −4.94567 −0.332682
\(222\) 0 0
\(223\) 7.74378 0.518562 0.259281 0.965802i \(-0.416514\pi\)
0.259281 + 0.965802i \(0.416514\pi\)
\(224\) −13.1149 −0.876277
\(225\) 0 0
\(226\) −32.8106 −2.18253
\(227\) 3.87885 0.257448 0.128724 0.991680i \(-0.458912\pi\)
0.128724 + 0.991680i \(0.458912\pi\)
\(228\) 0 0
\(229\) −2.84396 −0.187934 −0.0939672 0.995575i \(-0.529955\pi\)
−0.0939672 + 0.995575i \(0.529955\pi\)
\(230\) 4.71585 0.310954
\(231\) 0 0
\(232\) −5.53341 −0.363286
\(233\) 15.2966 1.00212 0.501058 0.865414i \(-0.332944\pi\)
0.501058 + 0.865414i \(0.332944\pi\)
\(234\) 0 0
\(235\) 0.587741 0.0383400
\(236\) −18.3121 −1.19201
\(237\) 0 0
\(238\) −3.47283 −0.225110
\(239\) −8.12115 −0.525314 −0.262657 0.964889i \(-0.584599\pi\)
−0.262657 + 0.964889i \(0.584599\pi\)
\(240\) 0 0
\(241\) 15.5140 0.999342 0.499671 0.866215i \(-0.333454\pi\)
0.499671 + 0.866215i \(0.333454\pi\)
\(242\) 21.2493 1.36595
\(243\) 0 0
\(244\) −33.1491 −2.12215
\(245\) 4.30359 0.274947
\(246\) 0 0
\(247\) 4.58078 0.291468
\(248\) 3.66152 0.232507
\(249\) 0 0
\(250\) −2.11491 −0.133758
\(251\) 20.3774 1.28621 0.643104 0.765779i \(-0.277646\pi\)
0.643104 + 0.765779i \(0.277646\pi\)
\(252\) 0 0
\(253\) −10.2298 −0.643143
\(254\) −37.1227 −2.32928
\(255\) 0 0
\(256\) 6.01320 0.375825
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 16.2104 1.00726
\(260\) −12.2298 −0.758461
\(261\) 0 0
\(262\) 20.9193 1.29240
\(263\) 15.9108 0.981101 0.490550 0.871413i \(-0.336796\pi\)
0.490550 + 0.871413i \(0.336796\pi\)
\(264\) 0 0
\(265\) −3.64207 −0.223731
\(266\) 3.21661 0.197223
\(267\) 0 0
\(268\) −34.5544 −2.11074
\(269\) 5.07378 0.309354 0.154677 0.987965i \(-0.450566\pi\)
0.154677 + 0.987965i \(0.450566\pi\)
\(270\) 0 0
\(271\) −2.10866 −0.128092 −0.0640461 0.997947i \(-0.520400\pi\)
−0.0640461 + 0.997947i \(0.520400\pi\)
\(272\) 2.83076 0.171640
\(273\) 0 0
\(274\) 40.5397 2.44909
\(275\) 4.58774 0.276651
\(276\) 0 0
\(277\) 17.0279 1.02311 0.511554 0.859251i \(-0.329070\pi\)
0.511554 + 0.859251i \(0.329070\pi\)
\(278\) 27.8649 1.67123
\(279\) 0 0
\(280\) −1.64207 −0.0981327
\(281\) −20.6072 −1.22932 −0.614661 0.788791i \(-0.710707\pi\)
−0.614661 + 0.788791i \(0.710707\pi\)
\(282\) 0 0
\(283\) 16.6700 0.990929 0.495464 0.868628i \(-0.334998\pi\)
0.495464 + 0.868628i \(0.334998\pi\)
\(284\) 14.5683 0.864469
\(285\) 0 0
\(286\) 47.9861 2.83748
\(287\) 4.80507 0.283634
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 11.7026 0.687203
\(291\) 0 0
\(292\) −19.1972 −1.12343
\(293\) −21.2772 −1.24303 −0.621513 0.783404i \(-0.713482\pi\)
−0.621513 + 0.783404i \(0.713482\pi\)
\(294\) 0 0
\(295\) 7.40530 0.431153
\(296\) 9.87189 0.573792
\(297\) 0 0
\(298\) −16.8634 −0.976871
\(299\) −11.0279 −0.637761
\(300\) 0 0
\(301\) −13.8913 −0.800683
\(302\) −32.8517 −1.89040
\(303\) 0 0
\(304\) −2.62191 −0.150377
\(305\) 13.4053 0.767585
\(306\) 0 0
\(307\) 22.3510 1.27564 0.637818 0.770187i \(-0.279837\pi\)
0.637818 + 0.770187i \(0.279837\pi\)
\(308\) 18.6289 1.06148
\(309\) 0 0
\(310\) −7.74378 −0.439817
\(311\) 11.4512 0.649335 0.324668 0.945828i \(-0.394748\pi\)
0.324668 + 0.945828i \(0.394748\pi\)
\(312\) 0 0
\(313\) 24.4791 1.38364 0.691820 0.722070i \(-0.256809\pi\)
0.691820 + 0.722070i \(0.256809\pi\)
\(314\) −6.71585 −0.378997
\(315\) 0 0
\(316\) −8.12115 −0.456850
\(317\) 26.5419 1.49074 0.745370 0.666651i \(-0.232273\pi\)
0.745370 + 0.666651i \(0.232273\pi\)
\(318\) 0 0
\(319\) −25.3859 −1.42133
\(320\) 11.2298 0.627766
\(321\) 0 0
\(322\) −7.74378 −0.431544
\(323\) −0.926221 −0.0515363
\(324\) 0 0
\(325\) 4.94567 0.274336
\(326\) 8.01472 0.443894
\(327\) 0 0
\(328\) 2.92622 0.161574
\(329\) −0.965115 −0.0532085
\(330\) 0 0
\(331\) −15.2383 −0.837572 −0.418786 0.908085i \(-0.637544\pi\)
−0.418786 + 0.908085i \(0.637544\pi\)
\(332\) −20.9193 −1.14809
\(333\) 0 0
\(334\) 39.3525 2.15327
\(335\) 13.9736 0.763459
\(336\) 0 0
\(337\) −22.5738 −1.22967 −0.614837 0.788654i \(-0.710778\pi\)
−0.614837 + 0.788654i \(0.710778\pi\)
\(338\) 24.2361 1.31827
\(339\) 0 0
\(340\) 2.47283 0.134108
\(341\) 16.7981 0.909669
\(342\) 0 0
\(343\) −18.5613 −1.00222
\(344\) −8.45963 −0.456113
\(345\) 0 0
\(346\) −7.97359 −0.428663
\(347\) −16.3246 −0.876348 −0.438174 0.898890i \(-0.644375\pi\)
−0.438174 + 0.898890i \(0.644375\pi\)
\(348\) 0 0
\(349\) −26.3315 −1.40949 −0.704747 0.709459i \(-0.748939\pi\)
−0.704747 + 0.709459i \(0.748939\pi\)
\(350\) 3.47283 0.185631
\(351\) 0 0
\(352\) −36.6414 −1.95299
\(353\) −29.9930 −1.59637 −0.798184 0.602413i \(-0.794206\pi\)
−0.798184 + 0.602413i \(0.794206\pi\)
\(354\) 0 0
\(355\) −5.89134 −0.312680
\(356\) −10.4596 −0.554359
\(357\) 0 0
\(358\) 46.7283 2.46967
\(359\) −25.9736 −1.37083 −0.685417 0.728151i \(-0.740380\pi\)
−0.685417 + 0.728151i \(0.740380\pi\)
\(360\) 0 0
\(361\) −18.1421 −0.954848
\(362\) 2.97208 0.156209
\(363\) 0 0
\(364\) 20.0823 1.05260
\(365\) 7.76322 0.406346
\(366\) 0 0
\(367\) 24.9193 1.30077 0.650387 0.759603i \(-0.274607\pi\)
0.650387 + 0.759603i \(0.274607\pi\)
\(368\) 6.31207 0.329039
\(369\) 0 0
\(370\) −20.8781 −1.08540
\(371\) 5.98055 0.310495
\(372\) 0 0
\(373\) −2.25622 −0.116823 −0.0584114 0.998293i \(-0.518604\pi\)
−0.0584114 + 0.998293i \(0.518604\pi\)
\(374\) −9.70265 −0.501712
\(375\) 0 0
\(376\) −0.587741 −0.0303105
\(377\) −27.3664 −1.40944
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −2.29039 −0.117495
\(381\) 0 0
\(382\) −39.6087 −2.02656
\(383\) 13.9666 0.713662 0.356831 0.934169i \(-0.383857\pi\)
0.356831 + 0.934169i \(0.383857\pi\)
\(384\) 0 0
\(385\) −7.53341 −0.383938
\(386\) 4.22982 0.215292
\(387\) 0 0
\(388\) 39.2966 1.99498
\(389\) 4.09474 0.207612 0.103806 0.994598i \(-0.466898\pi\)
0.103806 + 0.994598i \(0.466898\pi\)
\(390\) 0 0
\(391\) 2.22982 0.112767
\(392\) −4.30359 −0.217364
\(393\) 0 0
\(394\) −44.5544 −2.24462
\(395\) 3.28415 0.165243
\(396\) 0 0
\(397\) 19.4681 0.977076 0.488538 0.872543i \(-0.337530\pi\)
0.488538 + 0.872543i \(0.337530\pi\)
\(398\) 19.4053 0.972700
\(399\) 0 0
\(400\) −2.83076 −0.141538
\(401\) −34.8734 −1.74149 −0.870747 0.491731i \(-0.836364\pi\)
−0.870747 + 0.491731i \(0.836364\pi\)
\(402\) 0 0
\(403\) 18.1087 0.902057
\(404\) 19.5140 0.970856
\(405\) 0 0
\(406\) −19.2166 −0.953704
\(407\) 45.2897 2.24493
\(408\) 0 0
\(409\) −29.9108 −1.47899 −0.739497 0.673160i \(-0.764936\pi\)
−0.739497 + 0.673160i \(0.764936\pi\)
\(410\) −6.18869 −0.305637
\(411\) 0 0
\(412\) 19.7827 0.974622
\(413\) −12.1600 −0.598357
\(414\) 0 0
\(415\) 8.45963 0.415267
\(416\) −39.5000 −1.93665
\(417\) 0 0
\(418\) 8.98680 0.439559
\(419\) −9.04737 −0.441993 −0.220997 0.975275i \(-0.570931\pi\)
−0.220997 + 0.975275i \(0.570931\pi\)
\(420\) 0 0
\(421\) −26.0753 −1.27083 −0.635416 0.772170i \(-0.719171\pi\)
−0.635416 + 0.772170i \(0.719171\pi\)
\(422\) −40.8664 −1.98935
\(423\) 0 0
\(424\) 3.64207 0.176875
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −22.0125 −1.06526
\(428\) 37.1616 1.79627
\(429\) 0 0
\(430\) 17.8913 0.862797
\(431\) 1.76322 0.0849315 0.0424658 0.999098i \(-0.486479\pi\)
0.0424658 + 0.999098i \(0.486479\pi\)
\(432\) 0 0
\(433\) 21.1057 1.01428 0.507138 0.861865i \(-0.330703\pi\)
0.507138 + 0.861865i \(0.330703\pi\)
\(434\) 12.7159 0.610380
\(435\) 0 0
\(436\) −32.2159 −1.54286
\(437\) −2.06530 −0.0987968
\(438\) 0 0
\(439\) −33.7174 −1.60924 −0.804621 0.593789i \(-0.797632\pi\)
−0.804621 + 0.593789i \(0.797632\pi\)
\(440\) −4.58774 −0.218712
\(441\) 0 0
\(442\) −10.4596 −0.497514
\(443\) 40.7019 1.93381 0.966904 0.255142i \(-0.0821223\pi\)
0.966904 + 0.255142i \(0.0821223\pi\)
\(444\) 0 0
\(445\) 4.22982 0.200512
\(446\) 16.3774 0.775491
\(447\) 0 0
\(448\) −18.4402 −0.871217
\(449\) −20.1087 −0.948987 −0.474493 0.880259i \(-0.657369\pi\)
−0.474493 + 0.880259i \(0.657369\pi\)
\(450\) 0 0
\(451\) 13.4247 0.632147
\(452\) −38.3635 −1.80447
\(453\) 0 0
\(454\) 8.20341 0.385005
\(455\) −8.12115 −0.380725
\(456\) 0 0
\(457\) 29.1491 1.36354 0.681768 0.731568i \(-0.261211\pi\)
0.681768 + 0.731568i \(0.261211\pi\)
\(458\) −6.01472 −0.281049
\(459\) 0 0
\(460\) 5.51396 0.257090
\(461\) 15.0932 0.702962 0.351481 0.936195i \(-0.385678\pi\)
0.351481 + 0.936195i \(0.385678\pi\)
\(462\) 0 0
\(463\) 37.6351 1.74905 0.874526 0.484979i \(-0.161173\pi\)
0.874526 + 0.484979i \(0.161173\pi\)
\(464\) 15.6638 0.727172
\(465\) 0 0
\(466\) 32.3510 1.49863
\(467\) 9.72433 0.449988 0.224994 0.974360i \(-0.427764\pi\)
0.224994 + 0.974360i \(0.427764\pi\)
\(468\) 0 0
\(469\) −22.9457 −1.05953
\(470\) 1.24302 0.0573362
\(471\) 0 0
\(472\) −7.40530 −0.340856
\(473\) −38.8106 −1.78451
\(474\) 0 0
\(475\) 0.926221 0.0424979
\(476\) −4.06058 −0.186116
\(477\) 0 0
\(478\) −17.1755 −0.785588
\(479\) 13.1366 0.600226 0.300113 0.953904i \(-0.402976\pi\)
0.300113 + 0.953904i \(0.402976\pi\)
\(480\) 0 0
\(481\) 48.8231 2.22614
\(482\) 32.8106 1.49448
\(483\) 0 0
\(484\) 24.8455 1.12934
\(485\) −15.8913 −0.721588
\(486\) 0 0
\(487\) 1.43171 0.0648768 0.0324384 0.999474i \(-0.489673\pi\)
0.0324384 + 0.999474i \(0.489673\pi\)
\(488\) −13.4053 −0.606829
\(489\) 0 0
\(490\) 9.10170 0.411173
\(491\) 30.0947 1.35816 0.679078 0.734066i \(-0.262380\pi\)
0.679078 + 0.734066i \(0.262380\pi\)
\(492\) 0 0
\(493\) 5.53341 0.249212
\(494\) 9.68793 0.435880
\(495\) 0 0
\(496\) −10.3649 −0.465397
\(497\) 9.67401 0.433939
\(498\) 0 0
\(499\) 3.62263 0.162171 0.0810855 0.996707i \(-0.474161\pi\)
0.0810855 + 0.996707i \(0.474161\pi\)
\(500\) −2.47283 −0.110588
\(501\) 0 0
\(502\) 43.0963 1.92348
\(503\) −22.5544 −1.00565 −0.502825 0.864388i \(-0.667706\pi\)
−0.502825 + 0.864388i \(0.667706\pi\)
\(504\) 0 0
\(505\) −7.89134 −0.351160
\(506\) −21.6351 −0.961798
\(507\) 0 0
\(508\) −43.4053 −1.92580
\(509\) −16.7283 −0.741471 −0.370735 0.928739i \(-0.620894\pi\)
−0.370735 + 0.928739i \(0.620894\pi\)
\(510\) 0 0
\(511\) −12.7478 −0.563929
\(512\) 28.2702 1.24938
\(513\) 0 0
\(514\) −4.22982 −0.186569
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) −2.69641 −0.118588
\(518\) 34.2834 1.50633
\(519\) 0 0
\(520\) −4.94567 −0.216882
\(521\) −26.8734 −1.17735 −0.588673 0.808372i \(-0.700349\pi\)
−0.588673 + 0.808372i \(0.700349\pi\)
\(522\) 0 0
\(523\) 41.7996 1.82777 0.913885 0.405973i \(-0.133067\pi\)
0.913885 + 0.405973i \(0.133067\pi\)
\(524\) 24.4596 1.06852
\(525\) 0 0
\(526\) 33.6498 1.46720
\(527\) −3.66152 −0.159498
\(528\) 0 0
\(529\) −18.0279 −0.783823
\(530\) −7.70265 −0.334582
\(531\) 0 0
\(532\) 3.76099 0.163060
\(533\) 14.4721 0.626857
\(534\) 0 0
\(535\) −15.0279 −0.649714
\(536\) −13.9736 −0.603567
\(537\) 0 0
\(538\) 10.7306 0.462628
\(539\) −19.7438 −0.850425
\(540\) 0 0
\(541\) 29.1102 1.25154 0.625772 0.780006i \(-0.284784\pi\)
0.625772 + 0.780006i \(0.284784\pi\)
\(542\) −4.45963 −0.191558
\(543\) 0 0
\(544\) 7.98680 0.342431
\(545\) 13.0279 0.558055
\(546\) 0 0
\(547\) 13.8844 0.593653 0.296827 0.954931i \(-0.404072\pi\)
0.296827 + 0.954931i \(0.404072\pi\)
\(548\) 47.4006 2.02485
\(549\) 0 0
\(550\) 9.70265 0.413722
\(551\) −5.12516 −0.218339
\(552\) 0 0
\(553\) −5.39281 −0.229326
\(554\) 36.0125 1.53002
\(555\) 0 0
\(556\) 32.5808 1.38173
\(557\) −0.108664 −0.00460426 −0.00230213 0.999997i \(-0.500733\pi\)
−0.00230213 + 0.999997i \(0.500733\pi\)
\(558\) 0 0
\(559\) −41.8385 −1.76958
\(560\) 4.64832 0.196427
\(561\) 0 0
\(562\) −43.5823 −1.83841
\(563\) 8.54885 0.360291 0.180145 0.983640i \(-0.442343\pi\)
0.180145 + 0.983640i \(0.442343\pi\)
\(564\) 0 0
\(565\) 15.5140 0.652677
\(566\) 35.2555 1.48190
\(567\) 0 0
\(568\) 5.89134 0.247195
\(569\) 21.0668 0.883167 0.441583 0.897220i \(-0.354417\pi\)
0.441583 + 0.897220i \(0.354417\pi\)
\(570\) 0 0
\(571\) −9.25774 −0.387424 −0.193712 0.981058i \(-0.562053\pi\)
−0.193712 + 0.981058i \(0.562053\pi\)
\(572\) 56.1072 2.34596
\(573\) 0 0
\(574\) 10.1623 0.424165
\(575\) −2.22982 −0.0929897
\(576\) 0 0
\(577\) −21.2313 −0.883872 −0.441936 0.897047i \(-0.645708\pi\)
−0.441936 + 0.897047i \(0.645708\pi\)
\(578\) 2.11491 0.0879686
\(579\) 0 0
\(580\) 13.6832 0.568164
\(581\) −13.8913 −0.576310
\(582\) 0 0
\(583\) 16.7089 0.692012
\(584\) −7.76322 −0.321245
\(585\) 0 0
\(586\) −44.9993 −1.85890
\(587\) 14.2617 0.588645 0.294323 0.955706i \(-0.404906\pi\)
0.294323 + 0.955706i \(0.404906\pi\)
\(588\) 0 0
\(589\) 3.39138 0.139739
\(590\) 15.6615 0.644775
\(591\) 0 0
\(592\) −27.9450 −1.14853
\(593\) 42.4138 1.74173 0.870863 0.491527i \(-0.163561\pi\)
0.870863 + 0.491527i \(0.163561\pi\)
\(594\) 0 0
\(595\) 1.64207 0.0673185
\(596\) −19.7174 −0.807655
\(597\) 0 0
\(598\) −23.3230 −0.953750
\(599\) −8.93318 −0.365000 −0.182500 0.983206i \(-0.558419\pi\)
−0.182500 + 0.983206i \(0.558419\pi\)
\(600\) 0 0
\(601\) 9.62263 0.392515 0.196258 0.980552i \(-0.437121\pi\)
0.196258 + 0.980552i \(0.437121\pi\)
\(602\) −29.3789 −1.19739
\(603\) 0 0
\(604\) −38.4115 −1.56294
\(605\) −10.0474 −0.408484
\(606\) 0 0
\(607\) −30.7647 −1.24870 −0.624351 0.781144i \(-0.714637\pi\)
−0.624351 + 0.781144i \(0.714637\pi\)
\(608\) −7.39754 −0.300010
\(609\) 0 0
\(610\) 28.3510 1.14790
\(611\) −2.90677 −0.117595
\(612\) 0 0
\(613\) −0.147558 −0.00595982 −0.00297991 0.999996i \(-0.500949\pi\)
−0.00297991 + 0.999996i \(0.500949\pi\)
\(614\) 47.2702 1.90767
\(615\) 0 0
\(616\) 7.53341 0.303530
\(617\) −25.6226 −1.03153 −0.515764 0.856731i \(-0.672492\pi\)
−0.515764 + 0.856731i \(0.672492\pi\)
\(618\) 0 0
\(619\) −18.5544 −0.745763 −0.372882 0.927879i \(-0.621630\pi\)
−0.372882 + 0.927879i \(0.621630\pi\)
\(620\) −9.05433 −0.363631
\(621\) 0 0
\(622\) 24.2181 0.971058
\(623\) −6.94567 −0.278272
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 51.7710 2.06918
\(627\) 0 0
\(628\) −7.85244 −0.313347
\(629\) −9.87189 −0.393618
\(630\) 0 0
\(631\) 41.6282 1.65719 0.828595 0.559848i \(-0.189141\pi\)
0.828595 + 0.559848i \(0.189141\pi\)
\(632\) −3.28415 −0.130636
\(633\) 0 0
\(634\) 56.1336 2.22935
\(635\) 17.5529 0.696564
\(636\) 0 0
\(637\) −21.2841 −0.843309
\(638\) −53.6887 −2.12556
\(639\) 0 0
\(640\) 7.77643 0.307390
\(641\) −13.3300 −0.526503 −0.263252 0.964727i \(-0.584795\pi\)
−0.263252 + 0.964727i \(0.584795\pi\)
\(642\) 0 0
\(643\) −25.1685 −0.992550 −0.496275 0.868165i \(-0.665299\pi\)
−0.496275 + 0.868165i \(0.665299\pi\)
\(644\) −9.05433 −0.356791
\(645\) 0 0
\(646\) −1.95887 −0.0770708
\(647\) −6.40378 −0.251759 −0.125879 0.992046i \(-0.540175\pi\)
−0.125879 + 0.992046i \(0.540175\pi\)
\(648\) 0 0
\(649\) −33.9736 −1.33358
\(650\) 10.4596 0.410260
\(651\) 0 0
\(652\) 9.37113 0.367002
\(653\) 48.8884 1.91315 0.956575 0.291486i \(-0.0941496\pi\)
0.956575 + 0.291486i \(0.0941496\pi\)
\(654\) 0 0
\(655\) −9.89134 −0.386486
\(656\) −8.28343 −0.323414
\(657\) 0 0
\(658\) −2.04113 −0.0795715
\(659\) −14.6072 −0.569015 −0.284508 0.958674i \(-0.591830\pi\)
−0.284508 + 0.958674i \(0.591830\pi\)
\(660\) 0 0
\(661\) 0.774193 0.0301126 0.0150563 0.999887i \(-0.495207\pi\)
0.0150563 + 0.999887i \(0.495207\pi\)
\(662\) −32.2276 −1.25256
\(663\) 0 0
\(664\) −8.45963 −0.328297
\(665\) −1.52092 −0.0589789
\(666\) 0 0
\(667\) 12.3385 0.477748
\(668\) 46.0125 1.78028
\(669\) 0 0
\(670\) 29.5529 1.14173
\(671\) −61.5000 −2.37418
\(672\) 0 0
\(673\) −19.2144 −0.740660 −0.370330 0.928900i \(-0.620755\pi\)
−0.370330 + 0.928900i \(0.620755\pi\)
\(674\) −47.7415 −1.83894
\(675\) 0 0
\(676\) 28.3378 1.08991
\(677\) −27.2144 −1.04593 −0.522967 0.852353i \(-0.675175\pi\)
−0.522967 + 0.852353i \(0.675175\pi\)
\(678\) 0 0
\(679\) 26.0947 1.00142
\(680\) 1.00000 0.0383482
\(681\) 0 0
\(682\) 35.5264 1.36038
\(683\) −23.2702 −0.890410 −0.445205 0.895429i \(-0.646869\pi\)
−0.445205 + 0.895429i \(0.646869\pi\)
\(684\) 0 0
\(685\) −19.1685 −0.732392
\(686\) −39.2555 −1.49878
\(687\) 0 0
\(688\) 23.9472 0.912978
\(689\) 18.0125 0.686221
\(690\) 0 0
\(691\) 29.6740 1.12885 0.564426 0.825484i \(-0.309097\pi\)
0.564426 + 0.825484i \(0.309097\pi\)
\(692\) −9.32304 −0.354409
\(693\) 0 0
\(694\) −34.5249 −1.31055
\(695\) −13.1755 −0.499775
\(696\) 0 0
\(697\) −2.92622 −0.110839
\(698\) −55.6887 −2.10785
\(699\) 0 0
\(700\) 4.06058 0.153475
\(701\) 23.7702 0.897787 0.448894 0.893585i \(-0.351818\pi\)
0.448894 + 0.893585i \(0.351818\pi\)
\(702\) 0 0
\(703\) 9.14355 0.344856
\(704\) −51.5195 −1.94171
\(705\) 0 0
\(706\) −63.4325 −2.38731
\(707\) 12.9582 0.487342
\(708\) 0 0
\(709\) −42.2423 −1.58644 −0.793221 0.608933i \(-0.791598\pi\)
−0.793221 + 0.608933i \(0.791598\pi\)
\(710\) −12.4596 −0.467602
\(711\) 0 0
\(712\) −4.22982 −0.158519
\(713\) −8.16451 −0.305763
\(714\) 0 0
\(715\) −22.6894 −0.848537
\(716\) 54.6366 2.04187
\(717\) 0 0
\(718\) −54.9317 −2.05003
\(719\) −12.1281 −0.452302 −0.226151 0.974092i \(-0.572614\pi\)
−0.226151 + 0.974092i \(0.572614\pi\)
\(720\) 0 0
\(721\) 13.1366 0.489232
\(722\) −38.3689 −1.42794
\(723\) 0 0
\(724\) 3.47507 0.129150
\(725\) −5.53341 −0.205506
\(726\) 0 0
\(727\) −7.57926 −0.281099 −0.140550 0.990074i \(-0.544887\pi\)
−0.140550 + 0.990074i \(0.544887\pi\)
\(728\) 8.12115 0.300990
\(729\) 0 0
\(730\) 16.4185 0.607676
\(731\) 8.45963 0.312891
\(732\) 0 0
\(733\) −33.1102 −1.22295 −0.611476 0.791263i \(-0.709424\pi\)
−0.611476 + 0.791263i \(0.709424\pi\)
\(734\) 52.7019 1.94526
\(735\) 0 0
\(736\) 17.8091 0.656451
\(737\) −64.1072 −2.36142
\(738\) 0 0
\(739\) 22.8634 0.841044 0.420522 0.907282i \(-0.361847\pi\)
0.420522 + 0.907282i \(0.361847\pi\)
\(740\) −24.4115 −0.897386
\(741\) 0 0
\(742\) 12.6483 0.464334
\(743\) −47.7438 −1.75155 −0.875775 0.482720i \(-0.839649\pi\)
−0.875775 + 0.482720i \(0.839649\pi\)
\(744\) 0 0
\(745\) 7.97359 0.292130
\(746\) −4.77170 −0.174704
\(747\) 0 0
\(748\) −11.3447 −0.414804
\(749\) 24.6770 0.901676
\(750\) 0 0
\(751\) 7.36640 0.268804 0.134402 0.990927i \(-0.457089\pi\)
0.134402 + 0.990927i \(0.457089\pi\)
\(752\) 1.66376 0.0606709
\(753\) 0 0
\(754\) −57.8774 −2.10777
\(755\) 15.5334 0.565319
\(756\) 0 0
\(757\) −2.25622 −0.0820038 −0.0410019 0.999159i \(-0.513055\pi\)
−0.0410019 + 0.999159i \(0.513055\pi\)
\(758\) 59.2174 2.15087
\(759\) 0 0
\(760\) −0.926221 −0.0335976
\(761\) −8.02641 −0.290957 −0.145479 0.989361i \(-0.546472\pi\)
−0.145479 + 0.989361i \(0.546472\pi\)
\(762\) 0 0
\(763\) −21.3928 −0.774472
\(764\) −46.3121 −1.67551
\(765\) 0 0
\(766\) 29.5381 1.06726
\(767\) −36.6241 −1.32242
\(768\) 0 0
\(769\) 37.1810 1.34078 0.670391 0.742008i \(-0.266127\pi\)
0.670391 + 0.742008i \(0.266127\pi\)
\(770\) −15.9325 −0.574166
\(771\) 0 0
\(772\) 4.94567 0.177998
\(773\) −17.4806 −0.628733 −0.314367 0.949302i \(-0.601792\pi\)
−0.314367 + 0.949302i \(0.601792\pi\)
\(774\) 0 0
\(775\) 3.66152 0.131526
\(776\) 15.8913 0.570466
\(777\) 0 0
\(778\) 8.66000 0.310476
\(779\) 2.71033 0.0971075
\(780\) 0 0
\(781\) 27.0279 0.967135
\(782\) 4.71585 0.168639
\(783\) 0 0
\(784\) 12.1824 0.435087
\(785\) 3.17548 0.113338
\(786\) 0 0
\(787\) 26.7787 0.954556 0.477278 0.878752i \(-0.341623\pi\)
0.477278 + 0.878752i \(0.341623\pi\)
\(788\) −52.0947 −1.85580
\(789\) 0 0
\(790\) 6.94567 0.247116
\(791\) −25.4751 −0.905789
\(792\) 0 0
\(793\) −66.2982 −2.35432
\(794\) 41.1732 1.46118
\(795\) 0 0
\(796\) 22.6894 0.804206
\(797\) 29.5723 1.04750 0.523752 0.851871i \(-0.324532\pi\)
0.523752 + 0.851871i \(0.324532\pi\)
\(798\) 0 0
\(799\) 0.587741 0.0207928
\(800\) −7.98680 −0.282376
\(801\) 0 0
\(802\) −73.7540 −2.60435
\(803\) −35.6157 −1.25685
\(804\) 0 0
\(805\) 3.66152 0.129052
\(806\) 38.2982 1.34899
\(807\) 0 0
\(808\) 7.89134 0.277616
\(809\) −18.0778 −0.635581 −0.317791 0.948161i \(-0.602941\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(810\) 0 0
\(811\) 16.0823 0.564724 0.282362 0.959308i \(-0.408882\pi\)
0.282362 + 0.959308i \(0.408882\pi\)
\(812\) −22.4688 −0.788501
\(813\) 0 0
\(814\) 95.7835 3.35721
\(815\) −3.78963 −0.132745
\(816\) 0 0
\(817\) −7.83549 −0.274129
\(818\) −63.2585 −2.21178
\(819\) 0 0
\(820\) −7.23606 −0.252694
\(821\) 30.4596 1.06305 0.531524 0.847043i \(-0.321619\pi\)
0.531524 + 0.847043i \(0.321619\pi\)
\(822\) 0 0
\(823\) 5.68097 0.198026 0.0990130 0.995086i \(-0.468431\pi\)
0.0990130 + 0.995086i \(0.468431\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −25.7174 −0.894822
\(827\) 20.3774 0.708591 0.354295 0.935134i \(-0.384721\pi\)
0.354295 + 0.935134i \(0.384721\pi\)
\(828\) 0 0
\(829\) −52.9387 −1.83864 −0.919319 0.393514i \(-0.871259\pi\)
−0.919319 + 0.393514i \(0.871259\pi\)
\(830\) 17.8913 0.621017
\(831\) 0 0
\(832\) −55.5389 −1.92547
\(833\) 4.30359 0.149111
\(834\) 0 0
\(835\) −18.6072 −0.643928
\(836\) 10.5077 0.363417
\(837\) 0 0
\(838\) −19.1344 −0.660985
\(839\) −9.10019 −0.314173 −0.157087 0.987585i \(-0.550210\pi\)
−0.157087 + 0.987585i \(0.550210\pi\)
\(840\) 0 0
\(841\) 1.61862 0.0558144
\(842\) −55.1468 −1.90049
\(843\) 0 0
\(844\) −47.7827 −1.64475
\(845\) −11.4596 −0.394223
\(846\) 0 0
\(847\) 16.4985 0.566896
\(848\) −10.3098 −0.354041
\(849\) 0 0
\(850\) −2.11491 −0.0725407
\(851\) −22.0125 −0.754578
\(852\) 0 0
\(853\) 11.2144 0.383973 0.191986 0.981398i \(-0.438507\pi\)
0.191986 + 0.981398i \(0.438507\pi\)
\(854\) −46.5544 −1.59306
\(855\) 0 0
\(856\) 15.0279 0.513644
\(857\) −30.2812 −1.03439 −0.517193 0.855869i \(-0.673023\pi\)
−0.517193 + 0.855869i \(0.673023\pi\)
\(858\) 0 0
\(859\) 13.2074 0.450631 0.225316 0.974286i \(-0.427659\pi\)
0.225316 + 0.974286i \(0.427659\pi\)
\(860\) 20.9193 0.713341
\(861\) 0 0
\(862\) 3.72906 0.127012
\(863\) −4.62664 −0.157492 −0.0787462 0.996895i \(-0.525092\pi\)
−0.0787462 + 0.996895i \(0.525092\pi\)
\(864\) 0 0
\(865\) 3.77018 0.128190
\(866\) 44.6366 1.51681
\(867\) 0 0
\(868\) 14.8679 0.504649
\(869\) −15.0668 −0.511107
\(870\) 0 0
\(871\) −69.1087 −2.34166
\(872\) −13.0279 −0.441181
\(873\) 0 0
\(874\) −4.36792 −0.147747
\(875\) −1.64207 −0.0555122
\(876\) 0 0
\(877\) −28.8609 −0.974564 −0.487282 0.873245i \(-0.662012\pi\)
−0.487282 + 0.873245i \(0.662012\pi\)
\(878\) −71.3091 −2.40657
\(879\) 0 0
\(880\) 12.9868 0.437785
\(881\) 45.5195 1.53359 0.766795 0.641892i \(-0.221850\pi\)
0.766795 + 0.641892i \(0.221850\pi\)
\(882\) 0 0
\(883\) −4.54189 −0.152847 −0.0764233 0.997075i \(-0.524350\pi\)
−0.0764233 + 0.997075i \(0.524350\pi\)
\(884\) −12.2298 −0.411333
\(885\) 0 0
\(886\) 86.0808 2.89194
\(887\) 5.64903 0.189676 0.0948380 0.995493i \(-0.469767\pi\)
0.0948380 + 0.995493i \(0.469767\pi\)
\(888\) 0 0
\(889\) −28.8231 −0.966695
\(890\) 8.94567 0.299859
\(891\) 0 0
\(892\) 19.1491 0.641158
\(893\) −0.544378 −0.0182169
\(894\) 0 0
\(895\) −22.0947 −0.738546
\(896\) −12.7695 −0.426598
\(897\) 0 0
\(898\) −42.5280 −1.41918
\(899\) −20.2607 −0.675732
\(900\) 0 0
\(901\) −3.64207 −0.121335
\(902\) 28.3921 0.945353
\(903\) 0 0
\(904\) −15.5140 −0.515987
\(905\) −1.40530 −0.0467137
\(906\) 0 0
\(907\) 20.2882 0.673657 0.336829 0.941566i \(-0.390646\pi\)
0.336829 + 0.941566i \(0.390646\pi\)
\(908\) 9.59175 0.318313
\(909\) 0 0
\(910\) −17.1755 −0.569362
\(911\) −4.38433 −0.145259 −0.0726297 0.997359i \(-0.523139\pi\)
−0.0726297 + 0.997359i \(0.523139\pi\)
\(912\) 0 0
\(913\) −38.8106 −1.28444
\(914\) 61.6476 2.03912
\(915\) 0 0
\(916\) −7.03265 −0.232365
\(917\) 16.2423 0.536368
\(918\) 0 0
\(919\) 52.8984 1.74496 0.872478 0.488653i \(-0.162512\pi\)
0.872478 + 0.488653i \(0.162512\pi\)
\(920\) 2.22982 0.0735148
\(921\) 0 0
\(922\) 31.9208 1.05125
\(923\) 29.1366 0.959043
\(924\) 0 0
\(925\) 9.87189 0.324586
\(926\) 79.5948 2.61565
\(927\) 0 0
\(928\) 44.1942 1.45075
\(929\) 2.76171 0.0906087 0.0453043 0.998973i \(-0.485574\pi\)
0.0453043 + 0.998973i \(0.485574\pi\)
\(930\) 0 0
\(931\) −3.98608 −0.130638
\(932\) 37.8260 1.23903
\(933\) 0 0
\(934\) 20.5661 0.672942
\(935\) 4.58774 0.150035
\(936\) 0 0
\(937\) −13.7871 −0.450406 −0.225203 0.974312i \(-0.572305\pi\)
−0.225203 + 0.974312i \(0.572305\pi\)
\(938\) −48.5280 −1.58449
\(939\) 0 0
\(940\) 1.45339 0.0474043
\(941\) 43.1616 1.40703 0.703513 0.710682i \(-0.251614\pi\)
0.703513 + 0.710682i \(0.251614\pi\)
\(942\) 0 0
\(943\) −6.52493 −0.212481
\(944\) 20.9626 0.682275
\(945\) 0 0
\(946\) −82.0808 −2.66868
\(947\) 3.83549 0.124637 0.0623183 0.998056i \(-0.480151\pi\)
0.0623183 + 0.998056i \(0.480151\pi\)
\(948\) 0 0
\(949\) −38.3943 −1.24633
\(950\) 1.95887 0.0635542
\(951\) 0 0
\(952\) −1.64207 −0.0532199
\(953\) 32.8176 1.06306 0.531532 0.847038i \(-0.321616\pi\)
0.531532 + 0.847038i \(0.321616\pi\)
\(954\) 0 0
\(955\) 18.7283 0.606035
\(956\) −20.0823 −0.649507
\(957\) 0 0
\(958\) 27.7827 0.897617
\(959\) 31.4761 1.01642
\(960\) 0 0
\(961\) −17.5933 −0.567525
\(962\) 103.256 3.32912
\(963\) 0 0
\(964\) 38.3635 1.23560
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) 10.2159 0.328521 0.164261 0.986417i \(-0.447476\pi\)
0.164261 + 0.986417i \(0.447476\pi\)
\(968\) 10.0474 0.322935
\(969\) 0 0
\(970\) −33.6087 −1.07911
\(971\) 45.2966 1.45364 0.726819 0.686829i \(-0.240998\pi\)
0.726819 + 0.686829i \(0.240998\pi\)
\(972\) 0 0
\(973\) 21.6351 0.693590
\(974\) 3.02792 0.0970210
\(975\) 0 0
\(976\) 37.9472 1.21466
\(977\) −38.4596 −1.23043 −0.615216 0.788358i \(-0.710931\pi\)
−0.615216 + 0.788358i \(0.710931\pi\)
\(978\) 0 0
\(979\) −19.4053 −0.620196
\(980\) 10.6421 0.339949
\(981\) 0 0
\(982\) 63.6476 2.03108
\(983\) 12.4163 0.396017 0.198009 0.980200i \(-0.436553\pi\)
0.198009 + 0.980200i \(0.436553\pi\)
\(984\) 0 0
\(985\) 21.0668 0.671245
\(986\) 11.7026 0.372688
\(987\) 0 0
\(988\) 11.3275 0.360376
\(989\) 18.8634 0.599822
\(990\) 0 0
\(991\) −28.8231 −0.915595 −0.457798 0.889056i \(-0.651362\pi\)
−0.457798 + 0.889056i \(0.651362\pi\)
\(992\) −29.2438 −0.928492
\(993\) 0 0
\(994\) 20.4596 0.648940
\(995\) −9.17548 −0.290882
\(996\) 0 0
\(997\) −30.6266 −0.969955 −0.484978 0.874527i \(-0.661172\pi\)
−0.484978 + 0.874527i \(0.661172\pi\)
\(998\) 7.66152 0.242521
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.a.j.1.3 3
3.2 odd 2 255.2.a.c.1.1 3
5.4 even 2 3825.2.a.bb.1.1 3
12.11 even 2 4080.2.a.br.1.2 3
15.2 even 4 1275.2.b.i.1174.1 6
15.8 even 4 1275.2.b.i.1174.6 6
15.14 odd 2 1275.2.a.p.1.3 3
51.50 odd 2 4335.2.a.s.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.c.1.1 3 3.2 odd 2
765.2.a.j.1.3 3 1.1 even 1 trivial
1275.2.a.p.1.3 3 15.14 odd 2
1275.2.b.i.1174.1 6 15.2 even 4
1275.2.b.i.1174.6 6 15.8 even 4
3825.2.a.bb.1.1 3 5.4 even 2
4080.2.a.br.1.2 3 12.11 even 2
4335.2.a.s.1.1 3 51.50 odd 2