Properties

Label 1275.2.b.i.1174.6
Level $1275$
Weight $2$
Character 1275.1174
Analytic conductor $10.181$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(1174,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.1174"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-4,0,0,0,0,-6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1174.6
Root \(2.11491i\) of defining polynomial
Character \(\chi\) \(=\) 1275.1174
Dual form 1275.2.b.i.1174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.11491i q^{2} +1.00000i q^{3} -2.47283 q^{4} -2.11491 q^{6} -1.64207i q^{7} -1.00000i q^{8} -1.00000 q^{9} -4.58774 q^{11} -2.47283i q^{12} +4.94567i q^{13} +3.47283 q^{14} -2.83076 q^{16} -1.00000i q^{17} -2.11491i q^{18} -0.926221 q^{19} +1.64207 q^{21} -9.70265i q^{22} +2.22982i q^{23} +1.00000 q^{24} -10.4596 q^{26} -1.00000i q^{27} +4.06058i q^{28} -5.53341 q^{29} +3.66152 q^{31} -7.98680i q^{32} -4.58774i q^{33} +2.11491 q^{34} +2.47283 q^{36} -9.87189i q^{37} -1.95887i q^{38} -4.94567 q^{39} -2.92622 q^{41} +3.47283i q^{42} -8.45963i q^{43} +11.3447 q^{44} -4.71585 q^{46} -0.587741i q^{47} -2.83076i q^{48} +4.30359 q^{49} +1.00000 q^{51} -12.2298i q^{52} -3.64207i q^{53} +2.11491 q^{54} -1.64207 q^{56} -0.926221i q^{57} -11.7026i q^{58} -7.40530 q^{59} -13.4053 q^{61} +7.74378i q^{62} +1.64207i q^{63} +11.2298 q^{64} +9.70265 q^{66} +13.9736i q^{67} +2.47283i q^{68} -2.22982 q^{69} -5.89134 q^{71} +1.00000i q^{72} -7.76322i q^{73} +20.8781 q^{74} +2.29039 q^{76} +7.53341i q^{77} -10.4596i q^{78} +3.28415 q^{79} +1.00000 q^{81} -6.18869i q^{82} +8.45963i q^{83} -4.06058 q^{84} +17.8913 q^{86} -5.53341i q^{87} +4.58774i q^{88} -4.22982 q^{89} +8.12115 q^{91} -5.51396i q^{92} +3.66152i q^{93} +1.24302 q^{94} +7.98680 q^{96} -15.8913i q^{97} +9.10170i q^{98} +4.58774 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{4} - 6 q^{9} - 4 q^{11} + 10 q^{14} - 8 q^{16} + 8 q^{21} + 6 q^{24} - 12 q^{26} + 12 q^{29} + 4 q^{31} + 4 q^{36} - 8 q^{39} - 12 q^{41} + 30 q^{44} - 32 q^{46} + 6 q^{49} + 6 q^{51} - 8 q^{56}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11491i 1.49547i 0.664000 + 0.747733i \(0.268858\pi\)
−0.664000 + 0.747733i \(0.731142\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −2.47283 −1.23642
\(5\) 0 0
\(6\) −2.11491 −0.863407
\(7\) − 1.64207i − 0.620645i −0.950631 0.310323i \(-0.899563\pi\)
0.950631 0.310323i \(-0.100437\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.58774 −1.38326 −0.691628 0.722254i \(-0.743106\pi\)
−0.691628 + 0.722254i \(0.743106\pi\)
\(12\) − 2.47283i − 0.713846i
\(13\) 4.94567i 1.37168i 0.727752 + 0.685841i \(0.240565\pi\)
−0.727752 + 0.685841i \(0.759435\pi\)
\(14\) 3.47283 0.928154
\(15\) 0 0
\(16\) −2.83076 −0.707690
\(17\) − 1.00000i − 0.242536i
\(18\) − 2.11491i − 0.498488i
\(19\) −0.926221 −0.212490 −0.106245 0.994340i \(-0.533883\pi\)
−0.106245 + 0.994340i \(0.533883\pi\)
\(20\) 0 0
\(21\) 1.64207 0.358330
\(22\) − 9.70265i − 2.06861i
\(23\) 2.22982i 0.464949i 0.972603 + 0.232474i \(0.0746822\pi\)
−0.972603 + 0.232474i \(0.925318\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −10.4596 −2.05130
\(27\) − 1.00000i − 0.192450i
\(28\) 4.06058i 0.767377i
\(29\) −5.53341 −1.02753 −0.513764 0.857931i \(-0.671749\pi\)
−0.513764 + 0.857931i \(0.671749\pi\)
\(30\) 0 0
\(31\) 3.66152 0.657629 0.328814 0.944395i \(-0.393351\pi\)
0.328814 + 0.944395i \(0.393351\pi\)
\(32\) − 7.98680i − 1.41188i
\(33\) − 4.58774i − 0.798623i
\(34\) 2.11491 0.362704
\(35\) 0 0
\(36\) 2.47283 0.412139
\(37\) − 9.87189i − 1.62293i −0.584402 0.811464i \(-0.698671\pi\)
0.584402 0.811464i \(-0.301329\pi\)
\(38\) − 1.95887i − 0.317771i
\(39\) −4.94567 −0.791941
\(40\) 0 0
\(41\) −2.92622 −0.456999 −0.228499 0.973544i \(-0.573382\pi\)
−0.228499 + 0.973544i \(0.573382\pi\)
\(42\) 3.47283i 0.535870i
\(43\) − 8.45963i − 1.29008i −0.764148 0.645041i \(-0.776840\pi\)
0.764148 0.645041i \(-0.223160\pi\)
\(44\) 11.3447 1.71028
\(45\) 0 0
\(46\) −4.71585 −0.695315
\(47\) − 0.587741i − 0.0857309i −0.999081 0.0428655i \(-0.986351\pi\)
0.999081 0.0428655i \(-0.0136487\pi\)
\(48\) − 2.83076i − 0.408585i
\(49\) 4.30359 0.614799
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) − 12.2298i − 1.69597i
\(53\) − 3.64207i − 0.500277i −0.968210 0.250139i \(-0.919524\pi\)
0.968210 0.250139i \(-0.0804762\pi\)
\(54\) 2.11491 0.287802
\(55\) 0 0
\(56\) −1.64207 −0.219431
\(57\) − 0.926221i − 0.122681i
\(58\) − 11.7026i − 1.53663i
\(59\) −7.40530 −0.964088 −0.482044 0.876147i \(-0.660105\pi\)
−0.482044 + 0.876147i \(0.660105\pi\)
\(60\) 0 0
\(61\) −13.4053 −1.71637 −0.858186 0.513338i \(-0.828409\pi\)
−0.858186 + 0.513338i \(0.828409\pi\)
\(62\) 7.74378i 0.983461i
\(63\) 1.64207i 0.206882i
\(64\) 11.2298 1.40373
\(65\) 0 0
\(66\) 9.70265 1.19431
\(67\) 13.9736i 1.70715i 0.520973 + 0.853573i \(0.325569\pi\)
−0.520973 + 0.853573i \(0.674431\pi\)
\(68\) 2.47283i 0.299875i
\(69\) −2.22982 −0.268438
\(70\) 0 0
\(71\) −5.89134 −0.699173 −0.349586 0.936904i \(-0.613678\pi\)
−0.349586 + 0.936904i \(0.613678\pi\)
\(72\) 1.00000i 0.117851i
\(73\) − 7.76322i − 0.908617i −0.890845 0.454308i \(-0.849886\pi\)
0.890845 0.454308i \(-0.150114\pi\)
\(74\) 20.8781 2.42703
\(75\) 0 0
\(76\) 2.29039 0.262726
\(77\) 7.53341i 0.858512i
\(78\) − 10.4596i − 1.18432i
\(79\) 3.28415 0.369495 0.184748 0.982786i \(-0.440853\pi\)
0.184748 + 0.982786i \(0.440853\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 6.18869i − 0.683426i
\(83\) 8.45963i 0.928565i 0.885687 + 0.464283i \(0.153688\pi\)
−0.885687 + 0.464283i \(0.846312\pi\)
\(84\) −4.06058 −0.443045
\(85\) 0 0
\(86\) 17.8913 1.92927
\(87\) − 5.53341i − 0.593244i
\(88\) 4.58774i 0.489055i
\(89\) −4.22982 −0.448360 −0.224180 0.974548i \(-0.571970\pi\)
−0.224180 + 0.974548i \(0.571970\pi\)
\(90\) 0 0
\(91\) 8.12115 0.851328
\(92\) − 5.51396i − 0.574870i
\(93\) 3.66152i 0.379682i
\(94\) 1.24302 0.128208
\(95\) 0 0
\(96\) 7.98680 0.815149
\(97\) − 15.8913i − 1.61352i −0.590879 0.806760i \(-0.701219\pi\)
0.590879 0.806760i \(-0.298781\pi\)
\(98\) 9.10170i 0.919411i
\(99\) 4.58774 0.461085
\(100\) 0 0
\(101\) −7.89134 −0.785217 −0.392609 0.919706i \(-0.628427\pi\)
−0.392609 + 0.919706i \(0.628427\pi\)
\(102\) 2.11491i 0.209407i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 4.94567 0.484963
\(105\) 0 0
\(106\) 7.70265 0.748147
\(107\) 15.0279i 1.45280i 0.687270 + 0.726402i \(0.258809\pi\)
−0.687270 + 0.726402i \(0.741191\pi\)
\(108\) 2.47283i 0.237949i
\(109\) 13.0279 1.24785 0.623924 0.781485i \(-0.285537\pi\)
0.623924 + 0.781485i \(0.285537\pi\)
\(110\) 0 0
\(111\) 9.87189 0.936998
\(112\) 4.64832i 0.439225i
\(113\) 15.5140i 1.45943i 0.683751 + 0.729715i \(0.260347\pi\)
−0.683751 + 0.729715i \(0.739653\pi\)
\(114\) 1.95887 0.183465
\(115\) 0 0
\(116\) 13.6832 1.27045
\(117\) − 4.94567i − 0.457227i
\(118\) − 15.6615i − 1.44176i
\(119\) −1.64207 −0.150529
\(120\) 0 0
\(121\) 10.0474 0.913397
\(122\) − 28.3510i − 2.56678i
\(123\) − 2.92622i − 0.263848i
\(124\) −9.05433 −0.813103
\(125\) 0 0
\(126\) −3.47283 −0.309385
\(127\) 17.5529i 1.55756i 0.627295 + 0.778782i \(0.284162\pi\)
−0.627295 + 0.778782i \(0.715838\pi\)
\(128\) 7.77643i 0.687346i
\(129\) 8.45963 0.744829
\(130\) 0 0
\(131\) −9.89134 −0.864210 −0.432105 0.901823i \(-0.642229\pi\)
−0.432105 + 0.901823i \(0.642229\pi\)
\(132\) 11.3447i 0.987431i
\(133\) 1.52092i 0.131881i
\(134\) −29.5529 −2.55298
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 19.1685i 1.63768i 0.574024 + 0.818839i \(0.305382\pi\)
−0.574024 + 0.818839i \(0.694618\pi\)
\(138\) − 4.71585i − 0.401440i
\(139\) −13.1755 −1.11753 −0.558765 0.829326i \(-0.688725\pi\)
−0.558765 + 0.829326i \(0.688725\pi\)
\(140\) 0 0
\(141\) 0.587741 0.0494968
\(142\) − 12.4596i − 1.04559i
\(143\) − 22.6894i − 1.89739i
\(144\) 2.83076 0.235897
\(145\) 0 0
\(146\) 16.4185 1.35880
\(147\) 4.30359i 0.354954i
\(148\) 24.4115i 2.00662i
\(149\) −7.97359 −0.653222 −0.326611 0.945159i \(-0.605907\pi\)
−0.326611 + 0.945159i \(0.605907\pi\)
\(150\) 0 0
\(151\) −15.5334 −1.26409 −0.632045 0.774931i \(-0.717784\pi\)
−0.632045 + 0.774931i \(0.717784\pi\)
\(152\) 0.926221i 0.0751264i
\(153\) 1.00000i 0.0808452i
\(154\) −15.9325 −1.28387
\(155\) 0 0
\(156\) 12.2298 0.979169
\(157\) 3.17548i 0.253431i 0.991939 + 0.126716i \(0.0404435\pi\)
−0.991939 + 0.126716i \(0.959556\pi\)
\(158\) 6.94567i 0.552568i
\(159\) 3.64207 0.288835
\(160\) 0 0
\(161\) 3.66152 0.288568
\(162\) 2.11491i 0.166163i
\(163\) 3.78963i 0.296827i 0.988925 + 0.148413i \(0.0474166\pi\)
−0.988925 + 0.148413i \(0.952583\pi\)
\(164\) 7.23606 0.565041
\(165\) 0 0
\(166\) −17.8913 −1.38864
\(167\) 18.6072i 1.43987i 0.694043 + 0.719934i \(0.255828\pi\)
−0.694043 + 0.719934i \(0.744172\pi\)
\(168\) − 1.64207i − 0.126689i
\(169\) −11.4596 −0.881510
\(170\) 0 0
\(171\) 0.926221 0.0708299
\(172\) 20.9193i 1.59508i
\(173\) 3.77018i 0.286642i 0.989676 + 0.143321i \(0.0457781\pi\)
−0.989676 + 0.143321i \(0.954222\pi\)
\(174\) 11.7026 0.887176
\(175\) 0 0
\(176\) 12.9868 0.978917
\(177\) − 7.40530i − 0.556616i
\(178\) − 8.94567i − 0.670506i
\(179\) 22.0947 1.65144 0.825719 0.564081i \(-0.190770\pi\)
0.825719 + 0.564081i \(0.190770\pi\)
\(180\) 0 0
\(181\) 1.40530 0.104455 0.0522275 0.998635i \(-0.483368\pi\)
0.0522275 + 0.998635i \(0.483368\pi\)
\(182\) 17.1755i 1.27313i
\(183\) − 13.4053i − 0.990948i
\(184\) 2.22982 0.164384
\(185\) 0 0
\(186\) −7.74378 −0.567801
\(187\) 4.58774i 0.335489i
\(188\) 1.45339i 0.105999i
\(189\) −1.64207 −0.119443
\(190\) 0 0
\(191\) 18.7283 1.35514 0.677568 0.735461i \(-0.263034\pi\)
0.677568 + 0.735461i \(0.263034\pi\)
\(192\) 11.2298i 0.810442i
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) 33.6087 2.41296
\(195\) 0 0
\(196\) −10.6421 −0.760148
\(197\) − 21.0668i − 1.50095i −0.660900 0.750474i \(-0.729825\pi\)
0.660900 0.750474i \(-0.270175\pi\)
\(198\) 9.70265i 0.689537i
\(199\) −9.17548 −0.650433 −0.325216 0.945640i \(-0.605437\pi\)
−0.325216 + 0.945640i \(0.605437\pi\)
\(200\) 0 0
\(201\) −13.9736 −0.985621
\(202\) − 16.6894i − 1.17427i
\(203\) 9.08627i 0.637731i
\(204\) −2.47283 −0.173133
\(205\) 0 0
\(206\) −16.9193 −1.17882
\(207\) − 2.22982i − 0.154983i
\(208\) − 14.0000i − 0.970725i
\(209\) 4.24926 0.293928
\(210\) 0 0
\(211\) −19.3230 −1.33025 −0.665127 0.746731i \(-0.731622\pi\)
−0.665127 + 0.746731i \(0.731622\pi\)
\(212\) 9.00624i 0.618551i
\(213\) − 5.89134i − 0.403668i
\(214\) −31.7827 −2.17262
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 6.01249i − 0.408154i
\(218\) 27.5529i 1.86611i
\(219\) 7.76322 0.524590
\(220\) 0 0
\(221\) 4.94567 0.332682
\(222\) 20.8781i 1.40125i
\(223\) 7.74378i 0.518562i 0.965802 + 0.259281i \(0.0834855\pi\)
−0.965802 + 0.259281i \(0.916514\pi\)
\(224\) −13.1149 −0.876277
\(225\) 0 0
\(226\) −32.8106 −2.18253
\(227\) 3.87885i 0.257448i 0.991680 + 0.128724i \(0.0410882\pi\)
−0.991680 + 0.128724i \(0.958912\pi\)
\(228\) 2.29039i 0.151685i
\(229\) 2.84396 0.187934 0.0939672 0.995575i \(-0.470045\pi\)
0.0939672 + 0.995575i \(0.470045\pi\)
\(230\) 0 0
\(231\) −7.53341 −0.495662
\(232\) 5.53341i 0.363286i
\(233\) − 15.2966i − 1.00212i −0.865414 0.501058i \(-0.832944\pi\)
0.865414 0.501058i \(-0.167056\pi\)
\(234\) 10.4596 0.683767
\(235\) 0 0
\(236\) 18.3121 1.19201
\(237\) 3.28415i 0.213328i
\(238\) − 3.47283i − 0.225110i
\(239\) −8.12115 −0.525314 −0.262657 0.964889i \(-0.584599\pi\)
−0.262657 + 0.964889i \(0.584599\pi\)
\(240\) 0 0
\(241\) 15.5140 0.999342 0.499671 0.866215i \(-0.333454\pi\)
0.499671 + 0.866215i \(0.333454\pi\)
\(242\) 21.2493i 1.36595i
\(243\) 1.00000i 0.0641500i
\(244\) 33.1491 2.12215
\(245\) 0 0
\(246\) 6.18869 0.394576
\(247\) − 4.58078i − 0.291468i
\(248\) − 3.66152i − 0.232507i
\(249\) −8.45963 −0.536107
\(250\) 0 0
\(251\) −20.3774 −1.28621 −0.643104 0.765779i \(-0.722354\pi\)
−0.643104 + 0.765779i \(0.722354\pi\)
\(252\) − 4.06058i − 0.255792i
\(253\) − 10.2298i − 0.643143i
\(254\) −37.1227 −2.32928
\(255\) 0 0
\(256\) 6.01320 0.375825
\(257\) − 2.00000i − 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) 17.8913i 1.11387i
\(259\) −16.2104 −1.00726
\(260\) 0 0
\(261\) 5.53341 0.342509
\(262\) − 20.9193i − 1.29240i
\(263\) − 15.9108i − 0.981101i −0.871413 0.490550i \(-0.836796\pi\)
0.871413 0.490550i \(-0.163204\pi\)
\(264\) −4.58774 −0.282356
\(265\) 0 0
\(266\) −3.21661 −0.197223
\(267\) − 4.22982i − 0.258860i
\(268\) − 34.5544i − 2.11074i
\(269\) 5.07378 0.309354 0.154677 0.987965i \(-0.450566\pi\)
0.154677 + 0.987965i \(0.450566\pi\)
\(270\) 0 0
\(271\) −2.10866 −0.128092 −0.0640461 0.997947i \(-0.520400\pi\)
−0.0640461 + 0.997947i \(0.520400\pi\)
\(272\) 2.83076i 0.171640i
\(273\) 8.12115i 0.491514i
\(274\) −40.5397 −2.44909
\(275\) 0 0
\(276\) 5.51396 0.331902
\(277\) − 17.0279i − 1.02311i −0.859251 0.511554i \(-0.829070\pi\)
0.859251 0.511554i \(-0.170930\pi\)
\(278\) − 27.8649i − 1.67123i
\(279\) −3.66152 −0.219210
\(280\) 0 0
\(281\) 20.6072 1.22932 0.614661 0.788791i \(-0.289293\pi\)
0.614661 + 0.788791i \(0.289293\pi\)
\(282\) 1.24302i 0.0740207i
\(283\) 16.6700i 0.990929i 0.868628 + 0.495464i \(0.165002\pi\)
−0.868628 + 0.495464i \(0.834998\pi\)
\(284\) 14.5683 0.864469
\(285\) 0 0
\(286\) 47.9861 2.83748
\(287\) 4.80507i 0.283634i
\(288\) 7.98680i 0.470626i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 15.8913 0.931567
\(292\) 19.1972i 1.12343i
\(293\) 21.2772i 1.24303i 0.783404 + 0.621513i \(0.213482\pi\)
−0.783404 + 0.621513i \(0.786518\pi\)
\(294\) −9.10170 −0.530822
\(295\) 0 0
\(296\) −9.87189 −0.573792
\(297\) 4.58774i 0.266208i
\(298\) − 16.8634i − 0.976871i
\(299\) −11.0279 −0.637761
\(300\) 0 0
\(301\) −13.8913 −0.800683
\(302\) − 32.8517i − 1.89040i
\(303\) − 7.89134i − 0.453345i
\(304\) 2.62191 0.150377
\(305\) 0 0
\(306\) −2.11491 −0.120901
\(307\) − 22.3510i − 1.27564i −0.770187 0.637818i \(-0.779837\pi\)
0.770187 0.637818i \(-0.220163\pi\)
\(308\) − 18.6289i − 1.06148i
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −11.4512 −0.649335 −0.324668 0.945828i \(-0.605252\pi\)
−0.324668 + 0.945828i \(0.605252\pi\)
\(312\) 4.94567i 0.279993i
\(313\) 24.4791i 1.38364i 0.722070 + 0.691820i \(0.243191\pi\)
−0.722070 + 0.691820i \(0.756809\pi\)
\(314\) −6.71585 −0.378997
\(315\) 0 0
\(316\) −8.12115 −0.456850
\(317\) 26.5419i 1.49074i 0.666651 + 0.745370i \(0.267727\pi\)
−0.666651 + 0.745370i \(0.732273\pi\)
\(318\) 7.70265i 0.431943i
\(319\) 25.3859 1.42133
\(320\) 0 0
\(321\) −15.0279 −0.838777
\(322\) 7.74378i 0.431544i
\(323\) 0.926221i 0.0515363i
\(324\) −2.47283 −0.137380
\(325\) 0 0
\(326\) −8.01472 −0.443894
\(327\) 13.0279i 0.720446i
\(328\) 2.92622i 0.161574i
\(329\) −0.965115 −0.0532085
\(330\) 0 0
\(331\) −15.2383 −0.837572 −0.418786 0.908085i \(-0.637544\pi\)
−0.418786 + 0.908085i \(0.637544\pi\)
\(332\) − 20.9193i − 1.14809i
\(333\) 9.87189i 0.540976i
\(334\) −39.3525 −2.15327
\(335\) 0 0
\(336\) −4.64832 −0.253586
\(337\) 22.5738i 1.22967i 0.788654 + 0.614837i \(0.210778\pi\)
−0.788654 + 0.614837i \(0.789222\pi\)
\(338\) − 24.2361i − 1.31827i
\(339\) −15.5140 −0.842603
\(340\) 0 0
\(341\) −16.7981 −0.909669
\(342\) 1.95887i 0.105924i
\(343\) − 18.5613i − 1.00222i
\(344\) −8.45963 −0.456113
\(345\) 0 0
\(346\) −7.97359 −0.428663
\(347\) − 16.3246i − 0.876348i −0.898890 0.438174i \(-0.855625\pi\)
0.898890 0.438174i \(-0.144375\pi\)
\(348\) 13.6832i 0.733497i
\(349\) 26.3315 1.40949 0.704747 0.709459i \(-0.251061\pi\)
0.704747 + 0.709459i \(0.251061\pi\)
\(350\) 0 0
\(351\) 4.94567 0.263980
\(352\) 36.6414i 1.95299i
\(353\) 29.9930i 1.59637i 0.602413 + 0.798184i \(0.294206\pi\)
−0.602413 + 0.798184i \(0.705794\pi\)
\(354\) 15.6615 0.832400
\(355\) 0 0
\(356\) 10.4596 0.554359
\(357\) − 1.64207i − 0.0869078i
\(358\) 46.7283i 2.46967i
\(359\) −25.9736 −1.37083 −0.685417 0.728151i \(-0.740380\pi\)
−0.685417 + 0.728151i \(0.740380\pi\)
\(360\) 0 0
\(361\) −18.1421 −0.954848
\(362\) 2.97208i 0.156209i
\(363\) 10.0474i 0.527350i
\(364\) −20.0823 −1.05260
\(365\) 0 0
\(366\) 28.3510 1.48193
\(367\) − 24.9193i − 1.30077i −0.759603 0.650387i \(-0.774607\pi\)
0.759603 0.650387i \(-0.225393\pi\)
\(368\) − 6.31207i − 0.329039i
\(369\) 2.92622 0.152333
\(370\) 0 0
\(371\) −5.98055 −0.310495
\(372\) − 9.05433i − 0.469445i
\(373\) − 2.25622i − 0.116823i −0.998293 0.0584114i \(-0.981396\pi\)
0.998293 0.0584114i \(-0.0186035\pi\)
\(374\) −9.70265 −0.501712
\(375\) 0 0
\(376\) −0.587741 −0.0303105
\(377\) − 27.3664i − 1.40944i
\(378\) − 3.47283i − 0.178623i
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −17.5529 −0.899260
\(382\) 39.6087i 2.02656i
\(383\) − 13.9666i − 0.713662i −0.934169 0.356831i \(-0.883857\pi\)
0.934169 0.356831i \(-0.116143\pi\)
\(384\) −7.77643 −0.396839
\(385\) 0 0
\(386\) −4.22982 −0.215292
\(387\) 8.45963i 0.430027i
\(388\) 39.2966i 1.99498i
\(389\) 4.09474 0.207612 0.103806 0.994598i \(-0.466898\pi\)
0.103806 + 0.994598i \(0.466898\pi\)
\(390\) 0 0
\(391\) 2.22982 0.112767
\(392\) − 4.30359i − 0.217364i
\(393\) − 9.89134i − 0.498952i
\(394\) 44.5544 2.24462
\(395\) 0 0
\(396\) −11.3447 −0.570094
\(397\) − 19.4681i − 0.977076i −0.872543 0.488538i \(-0.837530\pi\)
0.872543 0.488538i \(-0.162470\pi\)
\(398\) − 19.4053i − 0.972700i
\(399\) −1.52092 −0.0761414
\(400\) 0 0
\(401\) 34.8734 1.74149 0.870747 0.491731i \(-0.163636\pi\)
0.870747 + 0.491731i \(0.163636\pi\)
\(402\) − 29.5529i − 1.47396i
\(403\) 18.1087i 0.902057i
\(404\) 19.5140 0.970856
\(405\) 0 0
\(406\) −19.2166 −0.953704
\(407\) 45.2897i 2.24493i
\(408\) − 1.00000i − 0.0495074i
\(409\) 29.9108 1.47899 0.739497 0.673160i \(-0.235064\pi\)
0.739497 + 0.673160i \(0.235064\pi\)
\(410\) 0 0
\(411\) −19.1685 −0.945513
\(412\) − 19.7827i − 0.974622i
\(413\) 12.1600i 0.598357i
\(414\) 4.71585 0.231772
\(415\) 0 0
\(416\) 39.5000 1.93665
\(417\) − 13.1755i − 0.645206i
\(418\) 8.98680i 0.439559i
\(419\) −9.04737 −0.441993 −0.220997 0.975275i \(-0.570931\pi\)
−0.220997 + 0.975275i \(0.570931\pi\)
\(420\) 0 0
\(421\) −26.0753 −1.27083 −0.635416 0.772170i \(-0.719171\pi\)
−0.635416 + 0.772170i \(0.719171\pi\)
\(422\) − 40.8664i − 1.98935i
\(423\) 0.587741i 0.0285770i
\(424\) −3.64207 −0.176875
\(425\) 0 0
\(426\) 12.4596 0.603671
\(427\) 22.0125i 1.06526i
\(428\) − 37.1616i − 1.79627i
\(429\) 22.6894 1.09546
\(430\) 0 0
\(431\) −1.76322 −0.0849315 −0.0424658 0.999098i \(-0.513521\pi\)
−0.0424658 + 0.999098i \(0.513521\pi\)
\(432\) 2.83076i 0.136195i
\(433\) 21.1057i 1.01428i 0.861865 + 0.507138i \(0.169297\pi\)
−0.861865 + 0.507138i \(0.830703\pi\)
\(434\) 12.7159 0.610380
\(435\) 0 0
\(436\) −32.2159 −1.54286
\(437\) − 2.06530i − 0.0987968i
\(438\) 16.4185i 0.784506i
\(439\) 33.7174 1.60924 0.804621 0.593789i \(-0.202368\pi\)
0.804621 + 0.593789i \(0.202368\pi\)
\(440\) 0 0
\(441\) −4.30359 −0.204933
\(442\) 10.4596i 0.497514i
\(443\) − 40.7019i − 1.93381i −0.255142 0.966904i \(-0.582122\pi\)
0.255142 0.966904i \(-0.417878\pi\)
\(444\) −24.4115 −1.15852
\(445\) 0 0
\(446\) −16.3774 −0.775491
\(447\) − 7.97359i − 0.377138i
\(448\) − 18.4402i − 0.871217i
\(449\) −20.1087 −0.948987 −0.474493 0.880259i \(-0.657369\pi\)
−0.474493 + 0.880259i \(0.657369\pi\)
\(450\) 0 0
\(451\) 13.4247 0.632147
\(452\) − 38.3635i − 1.80447i
\(453\) − 15.5334i − 0.729823i
\(454\) −8.20341 −0.385005
\(455\) 0 0
\(456\) −0.926221 −0.0433743
\(457\) − 29.1491i − 1.36354i −0.731568 0.681768i \(-0.761211\pi\)
0.731568 0.681768i \(-0.238789\pi\)
\(458\) 6.01472i 0.281049i
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −15.0932 −0.702962 −0.351481 0.936195i \(-0.614322\pi\)
−0.351481 + 0.936195i \(0.614322\pi\)
\(462\) − 15.9325i − 0.741245i
\(463\) 37.6351i 1.74905i 0.484979 + 0.874526i \(0.338827\pi\)
−0.484979 + 0.874526i \(0.661173\pi\)
\(464\) 15.6638 0.727172
\(465\) 0 0
\(466\) 32.3510 1.49863
\(467\) 9.72433i 0.449988i 0.974360 + 0.224994i \(0.0722363\pi\)
−0.974360 + 0.224994i \(0.927764\pi\)
\(468\) 12.2298i 0.565323i
\(469\) 22.9457 1.05953
\(470\) 0 0
\(471\) −3.17548 −0.146319
\(472\) 7.40530i 0.340856i
\(473\) 38.8106i 1.78451i
\(474\) −6.94567 −0.319025
\(475\) 0 0
\(476\) 4.06058 0.186116
\(477\) 3.64207i 0.166759i
\(478\) − 17.1755i − 0.785588i
\(479\) 13.1366 0.600226 0.300113 0.953904i \(-0.402976\pi\)
0.300113 + 0.953904i \(0.402976\pi\)
\(480\) 0 0
\(481\) 48.8231 2.22614
\(482\) 32.8106i 1.49448i
\(483\) 3.66152i 0.166605i
\(484\) −24.8455 −1.12934
\(485\) 0 0
\(486\) −2.11491 −0.0959342
\(487\) − 1.43171i − 0.0648768i −0.999474 0.0324384i \(-0.989673\pi\)
0.999474 0.0324384i \(-0.0103273\pi\)
\(488\) 13.4053i 0.606829i
\(489\) −3.78963 −0.171373
\(490\) 0 0
\(491\) −30.0947 −1.35816 −0.679078 0.734066i \(-0.737620\pi\)
−0.679078 + 0.734066i \(0.737620\pi\)
\(492\) 7.23606i 0.326227i
\(493\) 5.53341i 0.249212i
\(494\) 9.68793 0.435880
\(495\) 0 0
\(496\) −10.3649 −0.465397
\(497\) 9.67401i 0.433939i
\(498\) − 17.8913i − 0.801730i
\(499\) −3.62263 −0.162171 −0.0810855 0.996707i \(-0.525839\pi\)
−0.0810855 + 0.996707i \(0.525839\pi\)
\(500\) 0 0
\(501\) −18.6072 −0.831308
\(502\) − 43.0963i − 1.92348i
\(503\) 22.5544i 1.00565i 0.864388 + 0.502825i \(0.167706\pi\)
−0.864388 + 0.502825i \(0.832294\pi\)
\(504\) 1.64207 0.0731438
\(505\) 0 0
\(506\) 21.6351 0.961798
\(507\) − 11.4596i − 0.508940i
\(508\) − 43.4053i − 1.92580i
\(509\) −16.7283 −0.741471 −0.370735 0.928739i \(-0.620894\pi\)
−0.370735 + 0.928739i \(0.620894\pi\)
\(510\) 0 0
\(511\) −12.7478 −0.563929
\(512\) 28.2702i 1.24938i
\(513\) 0.926221i 0.0408937i
\(514\) 4.22982 0.186569
\(515\) 0 0
\(516\) −20.9193 −0.920919
\(517\) 2.69641i 0.118588i
\(518\) − 34.2834i − 1.50633i
\(519\) −3.77018 −0.165493
\(520\) 0 0
\(521\) 26.8734 1.17735 0.588673 0.808372i \(-0.299651\pi\)
0.588673 + 0.808372i \(0.299651\pi\)
\(522\) 11.7026i 0.512211i
\(523\) 41.7996i 1.82777i 0.405973 + 0.913885i \(0.366933\pi\)
−0.405973 + 0.913885i \(0.633067\pi\)
\(524\) 24.4596 1.06852
\(525\) 0 0
\(526\) 33.6498 1.46720
\(527\) − 3.66152i − 0.159498i
\(528\) 12.9868i 0.565178i
\(529\) 18.0279 0.783823
\(530\) 0 0
\(531\) 7.40530 0.321363
\(532\) − 3.76099i − 0.163060i
\(533\) − 14.4721i − 0.626857i
\(534\) 8.94567 0.387117
\(535\) 0 0
\(536\) 13.9736 0.603567
\(537\) 22.0947i 0.953459i
\(538\) 10.7306i 0.462628i
\(539\) −19.7438 −0.850425
\(540\) 0 0
\(541\) 29.1102 1.25154 0.625772 0.780006i \(-0.284784\pi\)
0.625772 + 0.780006i \(0.284784\pi\)
\(542\) − 4.45963i − 0.191558i
\(543\) 1.40530i 0.0603071i
\(544\) −7.98680 −0.342431
\(545\) 0 0
\(546\) −17.1755 −0.735043
\(547\) − 13.8844i − 0.593653i −0.954931 0.296827i \(-0.904072\pi\)
0.954931 0.296827i \(-0.0959283\pi\)
\(548\) − 47.4006i − 2.02485i
\(549\) 13.4053 0.572124
\(550\) 0 0
\(551\) 5.12516 0.218339
\(552\) 2.22982i 0.0949072i
\(553\) − 5.39281i − 0.229326i
\(554\) 36.0125 1.53002
\(555\) 0 0
\(556\) 32.5808 1.38173
\(557\) − 0.108664i − 0.00460426i −0.999997 0.00230213i \(-0.999267\pi\)
0.999997 0.00230213i \(-0.000732791\pi\)
\(558\) − 7.74378i − 0.327820i
\(559\) 41.8385 1.76958
\(560\) 0 0
\(561\) −4.58774 −0.193695
\(562\) 43.5823i 1.83841i
\(563\) − 8.54885i − 0.360291i −0.983640 0.180145i \(-0.942343\pi\)
0.983640 0.180145i \(-0.0576569\pi\)
\(564\) −1.45339 −0.0611986
\(565\) 0 0
\(566\) −35.2555 −1.48190
\(567\) − 1.64207i − 0.0689606i
\(568\) 5.89134i 0.247195i
\(569\) 21.0668 0.883167 0.441583 0.897220i \(-0.354417\pi\)
0.441583 + 0.897220i \(0.354417\pi\)
\(570\) 0 0
\(571\) −9.25774 −0.387424 −0.193712 0.981058i \(-0.562053\pi\)
−0.193712 + 0.981058i \(0.562053\pi\)
\(572\) 56.1072i 2.34596i
\(573\) 18.7283i 0.782388i
\(574\) −10.1623 −0.424165
\(575\) 0 0
\(576\) −11.2298 −0.467909
\(577\) 21.2313i 0.883872i 0.897047 + 0.441936i \(0.145708\pi\)
−0.897047 + 0.441936i \(0.854292\pi\)
\(578\) − 2.11491i − 0.0879686i
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 13.8913 0.576310
\(582\) 33.6087i 1.39313i
\(583\) 16.7089i 0.692012i
\(584\) −7.76322 −0.321245
\(585\) 0 0
\(586\) −44.9993 −1.85890
\(587\) 14.2617i 0.588645i 0.955706 + 0.294323i \(0.0950940\pi\)
−0.955706 + 0.294323i \(0.904906\pi\)
\(588\) − 10.6421i − 0.438872i
\(589\) −3.39138 −0.139739
\(590\) 0 0
\(591\) 21.0668 0.866573
\(592\) 27.9450i 1.14853i
\(593\) − 42.4138i − 1.74173i −0.491527 0.870863i \(-0.663561\pi\)
0.491527 0.870863i \(-0.336439\pi\)
\(594\) −9.70265 −0.398105
\(595\) 0 0
\(596\) 19.7174 0.807655
\(597\) − 9.17548i − 0.375528i
\(598\) − 23.3230i − 0.953750i
\(599\) −8.93318 −0.365000 −0.182500 0.983206i \(-0.558419\pi\)
−0.182500 + 0.983206i \(0.558419\pi\)
\(600\) 0 0
\(601\) 9.62263 0.392515 0.196258 0.980552i \(-0.437121\pi\)
0.196258 + 0.980552i \(0.437121\pi\)
\(602\) − 29.3789i − 1.19739i
\(603\) − 13.9736i − 0.569049i
\(604\) 38.4115 1.56294
\(605\) 0 0
\(606\) 16.6894 0.677962
\(607\) 30.7647i 1.24870i 0.781144 + 0.624351i \(0.214637\pi\)
−0.781144 + 0.624351i \(0.785363\pi\)
\(608\) 7.39754i 0.300010i
\(609\) −9.08627 −0.368194
\(610\) 0 0
\(611\) 2.90677 0.117595
\(612\) − 2.47283i − 0.0999584i
\(613\) − 0.147558i − 0.00595982i −0.999996 0.00297991i \(-0.999051\pi\)
0.999996 0.00297991i \(-0.000948536\pi\)
\(614\) 47.2702 1.90767
\(615\) 0 0
\(616\) 7.53341 0.303530
\(617\) − 25.6226i − 1.03153i −0.856731 0.515764i \(-0.827508\pi\)
0.856731 0.515764i \(-0.172492\pi\)
\(618\) − 16.9193i − 0.680592i
\(619\) 18.5544 0.745763 0.372882 0.927879i \(-0.378370\pi\)
0.372882 + 0.927879i \(0.378370\pi\)
\(620\) 0 0
\(621\) 2.22982 0.0894794
\(622\) − 24.2181i − 0.971058i
\(623\) 6.94567i 0.278272i
\(624\) 14.0000 0.560449
\(625\) 0 0
\(626\) −51.7710 −2.06918
\(627\) 4.24926i 0.169699i
\(628\) − 7.85244i − 0.313347i
\(629\) −9.87189 −0.393618
\(630\) 0 0
\(631\) 41.6282 1.65719 0.828595 0.559848i \(-0.189141\pi\)
0.828595 + 0.559848i \(0.189141\pi\)
\(632\) − 3.28415i − 0.130636i
\(633\) − 19.3230i − 0.768022i
\(634\) −56.1336 −2.22935
\(635\) 0 0
\(636\) −9.00624 −0.357121
\(637\) 21.2841i 0.843309i
\(638\) 53.6887i 2.12556i
\(639\) 5.89134 0.233058
\(640\) 0 0
\(641\) 13.3300 0.526503 0.263252 0.964727i \(-0.415205\pi\)
0.263252 + 0.964727i \(0.415205\pi\)
\(642\) − 31.7827i − 1.25436i
\(643\) − 25.1685i − 0.992550i −0.868165 0.496275i \(-0.834701\pi\)
0.868165 0.496275i \(-0.165299\pi\)
\(644\) −9.05433 −0.356791
\(645\) 0 0
\(646\) −1.95887 −0.0770708
\(647\) − 6.40378i − 0.251759i −0.992046 0.125879i \(-0.959825\pi\)
0.992046 0.125879i \(-0.0401752\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 33.9736 1.33358
\(650\) 0 0
\(651\) 6.01249 0.235648
\(652\) − 9.37113i − 0.367002i
\(653\) − 48.8884i − 1.91315i −0.291486 0.956575i \(-0.594150\pi\)
0.291486 0.956575i \(-0.405850\pi\)
\(654\) −27.5529 −1.07740
\(655\) 0 0
\(656\) 8.28343 0.323414
\(657\) 7.76322i 0.302872i
\(658\) − 2.04113i − 0.0795715i
\(659\) −14.6072 −0.569015 −0.284508 0.958674i \(-0.591830\pi\)
−0.284508 + 0.958674i \(0.591830\pi\)
\(660\) 0 0
\(661\) 0.774193 0.0301126 0.0150563 0.999887i \(-0.495207\pi\)
0.0150563 + 0.999887i \(0.495207\pi\)
\(662\) − 32.2276i − 1.25256i
\(663\) 4.94567i 0.192074i
\(664\) 8.45963 0.328297
\(665\) 0 0
\(666\) −20.8781 −0.809011
\(667\) − 12.3385i − 0.477748i
\(668\) − 46.0125i − 1.78028i
\(669\) −7.74378 −0.299392
\(670\) 0 0
\(671\) 61.5000 2.37418
\(672\) − 13.1149i − 0.505919i
\(673\) − 19.2144i − 0.740660i −0.928900 0.370330i \(-0.879245\pi\)
0.928900 0.370330i \(-0.120755\pi\)
\(674\) −47.7415 −1.83894
\(675\) 0 0
\(676\) 28.3378 1.08991
\(677\) − 27.2144i − 1.04593i −0.852353 0.522967i \(-0.824825\pi\)
0.852353 0.522967i \(-0.175175\pi\)
\(678\) − 32.8106i − 1.26008i
\(679\) −26.0947 −1.00142
\(680\) 0 0
\(681\) −3.87885 −0.148638
\(682\) − 35.5264i − 1.36038i
\(683\) 23.2702i 0.890410i 0.895429 + 0.445205i \(0.146869\pi\)
−0.895429 + 0.445205i \(0.853131\pi\)
\(684\) −2.29039 −0.0875753
\(685\) 0 0
\(686\) 39.2555 1.49878
\(687\) 2.84396i 0.108504i
\(688\) 23.9472i 0.912978i
\(689\) 18.0125 0.686221
\(690\) 0 0
\(691\) 29.6740 1.12885 0.564426 0.825484i \(-0.309097\pi\)
0.564426 + 0.825484i \(0.309097\pi\)
\(692\) − 9.32304i − 0.354409i
\(693\) − 7.53341i − 0.286171i
\(694\) 34.5249 1.31055
\(695\) 0 0
\(696\) −5.53341 −0.209743
\(697\) 2.92622i 0.110839i
\(698\) 55.6887i 2.10785i
\(699\) 15.2966 0.578572
\(700\) 0 0
\(701\) −23.7702 −0.897787 −0.448894 0.893585i \(-0.648182\pi\)
−0.448894 + 0.893585i \(0.648182\pi\)
\(702\) 10.4596i 0.394773i
\(703\) 9.14355i 0.344856i
\(704\) −51.5195 −1.94171
\(705\) 0 0
\(706\) −63.4325 −2.38731
\(707\) 12.9582i 0.487342i
\(708\) 18.3121i 0.688210i
\(709\) 42.2423 1.58644 0.793221 0.608933i \(-0.208402\pi\)
0.793221 + 0.608933i \(0.208402\pi\)
\(710\) 0 0
\(711\) −3.28415 −0.123165
\(712\) 4.22982i 0.158519i
\(713\) 8.16451i 0.305763i
\(714\) 3.47283 0.129968
\(715\) 0 0
\(716\) −54.6366 −2.04187
\(717\) − 8.12115i − 0.303290i
\(718\) − 54.9317i − 2.05003i
\(719\) −12.1281 −0.452302 −0.226151 0.974092i \(-0.572614\pi\)
−0.226151 + 0.974092i \(0.572614\pi\)
\(720\) 0 0
\(721\) 13.1366 0.489232
\(722\) − 38.3689i − 1.42794i
\(723\) 15.5140i 0.576970i
\(724\) −3.47507 −0.129150
\(725\) 0 0
\(726\) −21.2493 −0.788634
\(727\) 7.57926i 0.281099i 0.990074 + 0.140550i \(0.0448870\pi\)
−0.990074 + 0.140550i \(0.955113\pi\)
\(728\) − 8.12115i − 0.300990i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.45963 −0.312891
\(732\) 33.1491i 1.22523i
\(733\) − 33.1102i − 1.22295i −0.791263 0.611476i \(-0.790576\pi\)
0.791263 0.611476i \(-0.209424\pi\)
\(734\) 52.7019 1.94526
\(735\) 0 0
\(736\) 17.8091 0.656451
\(737\) − 64.1072i − 2.36142i
\(738\) 6.18869i 0.227809i
\(739\) −22.8634 −0.841044 −0.420522 0.907282i \(-0.638153\pi\)
−0.420522 + 0.907282i \(0.638153\pi\)
\(740\) 0 0
\(741\) 4.58078 0.168279
\(742\) − 12.6483i − 0.464334i
\(743\) 47.7438i 1.75155i 0.482720 + 0.875775i \(0.339649\pi\)
−0.482720 + 0.875775i \(0.660351\pi\)
\(744\) 3.66152 0.134238
\(745\) 0 0
\(746\) 4.77170 0.174704
\(747\) − 8.45963i − 0.309522i
\(748\) − 11.3447i − 0.414804i
\(749\) 24.6770 0.901676
\(750\) 0 0
\(751\) 7.36640 0.268804 0.134402 0.990927i \(-0.457089\pi\)
0.134402 + 0.990927i \(0.457089\pi\)
\(752\) 1.66376i 0.0606709i
\(753\) − 20.3774i − 0.742593i
\(754\) 57.8774 2.10777
\(755\) 0 0
\(756\) 4.06058 0.147682
\(757\) 2.25622i 0.0820038i 0.999159 + 0.0410019i \(0.0130550\pi\)
−0.999159 + 0.0410019i \(0.986945\pi\)
\(758\) − 59.2174i − 2.15087i
\(759\) 10.2298 0.371319
\(760\) 0 0
\(761\) 8.02641 0.290957 0.145479 0.989361i \(-0.453528\pi\)
0.145479 + 0.989361i \(0.453528\pi\)
\(762\) − 37.1227i − 1.34481i
\(763\) − 21.3928i − 0.774472i
\(764\) −46.3121 −1.67551
\(765\) 0 0
\(766\) 29.5381 1.06726
\(767\) − 36.6241i − 1.32242i
\(768\) 6.01320i 0.216983i
\(769\) −37.1810 −1.34078 −0.670391 0.742008i \(-0.733873\pi\)
−0.670391 + 0.742008i \(0.733873\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) − 4.94567i − 0.177998i
\(773\) 17.4806i 0.628733i 0.949302 + 0.314367i \(0.101792\pi\)
−0.949302 + 0.314367i \(0.898208\pi\)
\(774\) −17.8913 −0.643091
\(775\) 0 0
\(776\) −15.8913 −0.570466
\(777\) − 16.2104i − 0.581544i
\(778\) 8.66000i 0.310476i
\(779\) 2.71033 0.0971075
\(780\) 0 0
\(781\) 27.0279 0.967135
\(782\) 4.71585i 0.168639i
\(783\) 5.53341i 0.197748i
\(784\) −12.1824 −0.435087
\(785\) 0 0
\(786\) 20.9193 0.746165
\(787\) − 26.7787i − 0.954556i −0.878752 0.477278i \(-0.841623\pi\)
0.878752 0.477278i \(-0.158377\pi\)
\(788\) 52.0947i 1.85580i
\(789\) 15.9108 0.566439
\(790\) 0 0
\(791\) 25.4751 0.905789
\(792\) − 4.58774i − 0.163018i
\(793\) − 66.2982i − 2.35432i
\(794\) 41.1732 1.46118
\(795\) 0 0
\(796\) 22.6894 0.804206
\(797\) 29.5723i 1.04750i 0.851871 + 0.523752i \(0.175468\pi\)
−0.851871 + 0.523752i \(0.824532\pi\)
\(798\) − 3.21661i − 0.113867i
\(799\) −0.587741 −0.0207928
\(800\) 0 0
\(801\) 4.22982 0.149453
\(802\) 73.7540i 2.60435i
\(803\) 35.6157i 1.25685i
\(804\) 34.5544 1.21864
\(805\) 0 0
\(806\) −38.2982 −1.34899
\(807\) 5.07378i 0.178605i
\(808\) 7.89134i 0.277616i
\(809\) −18.0778 −0.635581 −0.317791 0.948161i \(-0.602941\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(810\) 0 0
\(811\) 16.0823 0.564724 0.282362 0.959308i \(-0.408882\pi\)
0.282362 + 0.959308i \(0.408882\pi\)
\(812\) − 22.4688i − 0.788501i
\(813\) − 2.10866i − 0.0739541i
\(814\) −95.7835 −3.35721
\(815\) 0 0
\(816\) −2.83076 −0.0990964
\(817\) 7.83549i 0.274129i
\(818\) 63.2585i 2.21178i
\(819\) −8.12115 −0.283776
\(820\) 0 0
\(821\) −30.4596 −1.06305 −0.531524 0.847043i \(-0.678381\pi\)
−0.531524 + 0.847043i \(0.678381\pi\)
\(822\) − 40.5397i − 1.41398i
\(823\) 5.68097i 0.198026i 0.995086 + 0.0990130i \(0.0315686\pi\)
−0.995086 + 0.0990130i \(0.968431\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −25.7174 −0.894822
\(827\) 20.3774i 0.708591i 0.935134 + 0.354295i \(0.115279\pi\)
−0.935134 + 0.354295i \(0.884721\pi\)
\(828\) 5.51396i 0.191623i
\(829\) 52.9387 1.83864 0.919319 0.393514i \(-0.128741\pi\)
0.919319 + 0.393514i \(0.128741\pi\)
\(830\) 0 0
\(831\) 17.0279 0.590692
\(832\) 55.5389i 1.92547i
\(833\) − 4.30359i − 0.149111i
\(834\) 27.8649 0.964884
\(835\) 0 0
\(836\) −10.5077 −0.363417
\(837\) − 3.66152i − 0.126561i
\(838\) − 19.1344i − 0.660985i
\(839\) −9.10019 −0.314173 −0.157087 0.987585i \(-0.550210\pi\)
−0.157087 + 0.987585i \(0.550210\pi\)
\(840\) 0 0
\(841\) 1.61862 0.0558144
\(842\) − 55.1468i − 1.90049i
\(843\) 20.6072i 0.709749i
\(844\) 47.7827 1.64475
\(845\) 0 0
\(846\) −1.24302 −0.0427359
\(847\) − 16.4985i − 0.566896i
\(848\) 10.3098i 0.354041i
\(849\) −16.6700 −0.572113
\(850\) 0 0
\(851\) 22.0125 0.754578
\(852\) 14.5683i 0.499102i
\(853\) 11.2144i 0.383973i 0.981398 + 0.191986i \(0.0614930\pi\)
−0.981398 + 0.191986i \(0.938507\pi\)
\(854\) −46.5544 −1.59306
\(855\) 0 0
\(856\) 15.0279 0.513644
\(857\) − 30.2812i − 1.03439i −0.855869 0.517193i \(-0.826977\pi\)
0.855869 0.517193i \(-0.173023\pi\)
\(858\) 47.9861i 1.63822i
\(859\) −13.2074 −0.450631 −0.225316 0.974286i \(-0.572341\pi\)
−0.225316 + 0.974286i \(0.572341\pi\)
\(860\) 0 0
\(861\) −4.80507 −0.163756
\(862\) − 3.72906i − 0.127012i
\(863\) 4.62664i 0.157492i 0.996895 + 0.0787462i \(0.0250917\pi\)
−0.996895 + 0.0787462i \(0.974908\pi\)
\(864\) −7.98680 −0.271716
\(865\) 0 0
\(866\) −44.6366 −1.51681
\(867\) − 1.00000i − 0.0339618i
\(868\) 14.8679i 0.504649i
\(869\) −15.0668 −0.511107
\(870\) 0 0
\(871\) −69.1087 −2.34166
\(872\) − 13.0279i − 0.441181i
\(873\) 15.8913i 0.537840i
\(874\) 4.36792 0.147747
\(875\) 0 0
\(876\) −19.1972 −0.648612
\(877\) 28.8609i 0.974564i 0.873245 + 0.487282i \(0.162012\pi\)
−0.873245 + 0.487282i \(0.837988\pi\)
\(878\) 71.3091i 2.40657i
\(879\) −21.2772 −0.717662
\(880\) 0 0
\(881\) −45.5195 −1.53359 −0.766795 0.641892i \(-0.778150\pi\)
−0.766795 + 0.641892i \(0.778150\pi\)
\(882\) − 9.10170i − 0.306470i
\(883\) − 4.54189i − 0.152847i −0.997075 0.0764233i \(-0.975650\pi\)
0.997075 0.0764233i \(-0.0243500\pi\)
\(884\) −12.2298 −0.411333
\(885\) 0 0
\(886\) 86.0808 2.89194
\(887\) 5.64903i 0.189676i 0.995493 + 0.0948380i \(0.0302333\pi\)
−0.995493 + 0.0948380i \(0.969767\pi\)
\(888\) − 9.87189i − 0.331279i
\(889\) 28.8231 0.966695
\(890\) 0 0
\(891\) −4.58774 −0.153695
\(892\) − 19.1491i − 0.641158i
\(893\) 0.544378i 0.0182169i
\(894\) 16.8634 0.563997
\(895\) 0 0
\(896\) 12.7695 0.426598
\(897\) − 11.0279i − 0.368212i
\(898\) − 42.5280i − 1.41918i
\(899\) −20.2607 −0.675732
\(900\) 0 0
\(901\) −3.64207 −0.121335
\(902\) 28.3921i 0.945353i
\(903\) − 13.8913i − 0.462275i
\(904\) 15.5140 0.515987
\(905\) 0 0
\(906\) 32.8517 1.09143
\(907\) − 20.2882i − 0.673657i −0.941566 0.336829i \(-0.890646\pi\)
0.941566 0.336829i \(-0.109354\pi\)
\(908\) − 9.59175i − 0.318313i
\(909\) 7.89134 0.261739
\(910\) 0 0
\(911\) 4.38433 0.145259 0.0726297 0.997359i \(-0.476861\pi\)
0.0726297 + 0.997359i \(0.476861\pi\)
\(912\) 2.62191i 0.0868201i
\(913\) − 38.8106i − 1.28444i
\(914\) 61.6476 2.03912
\(915\) 0 0
\(916\) −7.03265 −0.232365
\(917\) 16.2423i 0.536368i
\(918\) − 2.11491i − 0.0698024i
\(919\) −52.8984 −1.74496 −0.872478 0.488653i \(-0.837488\pi\)
−0.872478 + 0.488653i \(0.837488\pi\)
\(920\) 0 0
\(921\) 22.3510 0.736489
\(922\) − 31.9208i − 1.05125i
\(923\) − 29.1366i − 0.959043i
\(924\) 18.6289 0.612845
\(925\) 0 0
\(926\) −79.5948 −2.61565
\(927\) − 8.00000i − 0.262754i
\(928\) 44.1942i 1.45075i
\(929\) 2.76171 0.0906087 0.0453043 0.998973i \(-0.485574\pi\)
0.0453043 + 0.998973i \(0.485574\pi\)
\(930\) 0 0
\(931\) −3.98608 −0.130638
\(932\) 37.8260i 1.23903i
\(933\) − 11.4512i − 0.374894i
\(934\) −20.5661 −0.672942
\(935\) 0 0
\(936\) −4.94567 −0.161654
\(937\) 13.7871i 0.450406i 0.974312 + 0.225203i \(0.0723046\pi\)
−0.974312 + 0.225203i \(0.927695\pi\)
\(938\) 48.5280i 1.58449i
\(939\) −24.4791 −0.798844
\(940\) 0 0
\(941\) −43.1616 −1.40703 −0.703513 0.710682i \(-0.748386\pi\)
−0.703513 + 0.710682i \(0.748386\pi\)
\(942\) − 6.71585i − 0.218814i
\(943\) − 6.52493i − 0.212481i
\(944\) 20.9626 0.682275
\(945\) 0 0
\(946\) −82.0808 −2.66868
\(947\) 3.83549i 0.124637i 0.998056 + 0.0623183i \(0.0198494\pi\)
−0.998056 + 0.0623183i \(0.980151\pi\)
\(948\) − 8.12115i − 0.263763i
\(949\) 38.3943 1.24633
\(950\) 0 0
\(951\) −26.5419 −0.860680
\(952\) 1.64207i 0.0532199i
\(953\) − 32.8176i − 1.06306i −0.847038 0.531532i \(-0.821616\pi\)
0.847038 0.531532i \(-0.178384\pi\)
\(954\) −7.70265 −0.249382
\(955\) 0 0
\(956\) 20.0823 0.649507
\(957\) 25.3859i 0.820608i
\(958\) 27.7827i 0.897617i
\(959\) 31.4761 1.01642
\(960\) 0 0
\(961\) −17.5933 −0.567525
\(962\) 103.256i 3.32912i
\(963\) − 15.0279i − 0.484268i
\(964\) −38.3635 −1.23560
\(965\) 0 0
\(966\) −7.74378 −0.249152
\(967\) − 10.2159i − 0.328521i −0.986417 0.164261i \(-0.947476\pi\)
0.986417 0.164261i \(-0.0525238\pi\)
\(968\) − 10.0474i − 0.322935i
\(969\) −0.926221 −0.0297545
\(970\) 0 0
\(971\) −45.2966 −1.45364 −0.726819 0.686829i \(-0.759002\pi\)
−0.726819 + 0.686829i \(0.759002\pi\)
\(972\) − 2.47283i − 0.0793162i
\(973\) 21.6351i 0.693590i
\(974\) 3.02792 0.0970210
\(975\) 0 0
\(976\) 37.9472 1.21466
\(977\) − 38.4596i − 1.23043i −0.788358 0.615216i \(-0.789069\pi\)
0.788358 0.615216i \(-0.210931\pi\)
\(978\) − 8.01472i − 0.256283i
\(979\) 19.4053 0.620196
\(980\) 0 0
\(981\) −13.0279 −0.415950
\(982\) − 63.6476i − 2.03108i
\(983\) − 12.4163i − 0.396017i −0.980200 0.198009i \(-0.936553\pi\)
0.980200 0.198009i \(-0.0634474\pi\)
\(984\) −2.92622 −0.0932845
\(985\) 0 0
\(986\) −11.7026 −0.372688
\(987\) − 0.965115i − 0.0307199i
\(988\) 11.3275i 0.360376i
\(989\) 18.8634 0.599822
\(990\) 0 0
\(991\) −28.8231 −0.915595 −0.457798 0.889056i \(-0.651362\pi\)
−0.457798 + 0.889056i \(0.651362\pi\)
\(992\) − 29.2438i − 0.928492i
\(993\) − 15.2383i − 0.483573i
\(994\) −20.4596 −0.648940
\(995\) 0 0
\(996\) 20.9193 0.662852
\(997\) 30.6266i 0.969955i 0.874527 + 0.484978i \(0.161172\pi\)
−0.874527 + 0.484978i \(0.838828\pi\)
\(998\) − 7.66152i − 0.242521i
\(999\) −9.87189 −0.312333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.b.i.1174.6 6
5.2 odd 4 255.2.a.c.1.1 3
5.3 odd 4 1275.2.a.p.1.3 3
5.4 even 2 inner 1275.2.b.i.1174.1 6
15.2 even 4 765.2.a.j.1.3 3
15.8 even 4 3825.2.a.bb.1.1 3
20.7 even 4 4080.2.a.br.1.2 3
85.67 odd 4 4335.2.a.s.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.c.1.1 3 5.2 odd 4
765.2.a.j.1.3 3 15.2 even 4
1275.2.a.p.1.3 3 5.3 odd 4
1275.2.b.i.1174.1 6 5.4 even 2 inner
1275.2.b.i.1174.6 6 1.1 even 1 trivial
3825.2.a.bb.1.1 3 15.8 even 4
4080.2.a.br.1.2 3 20.7 even 4
4335.2.a.s.1.1 3 85.67 odd 4