Properties

Label 7644.2.e.q.4705.7
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 46x^{14} + 825x^{12} + 7500x^{10} + 37308x^{8} + 101640x^{6} + 144580x^{4} + 100432x^{2} + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.7
Root \(-1.03273i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.q.4705.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.03273i q^{5} +1.00000 q^{9} +1.53941i q^{11} +(-3.57628 + 0.458467i) q^{13} -1.03273i q^{15} -2.59762 q^{17} +5.93315i q^{19} -1.96832 q^{23} +3.93348 q^{25} +1.00000 q^{27} +3.63330 q^{29} -7.07872i q^{31} +1.53941i q^{33} -4.06240i q^{37} +(-3.57628 + 0.458467i) q^{39} -4.76561i q^{41} +0.849674 q^{43} -1.03273i q^{45} -11.6987i q^{47} -2.59762 q^{51} +10.9201 q^{53} +1.58979 q^{55} +5.93315i q^{57} +10.3335i q^{59} +9.40087 q^{61} +(0.473471 + 3.69332i) q^{65} -15.5105i q^{67} -1.96832 q^{69} +6.38275i q^{71} +8.34045i q^{73} +3.93348 q^{75} +0.841893 q^{79} +1.00000 q^{81} +15.7121i q^{83} +2.68263i q^{85} +3.63330 q^{87} +16.8796i q^{89} -7.07872i q^{93} +6.12732 q^{95} +9.90578i q^{97} +1.53941i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 16 q^{9} - 4 q^{23} - 12 q^{25} + 16 q^{27} - 4 q^{29} - 12 q^{43} - 12 q^{53} + 16 q^{61} - 24 q^{65} - 4 q^{69} - 12 q^{75} - 20 q^{79} + 16 q^{81} - 4 q^{87} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.03273i 0.461849i −0.972972 0.230925i \(-0.925825\pi\)
0.972972 0.230925i \(-0.0741751\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.53941i 0.464150i 0.972698 + 0.232075i \(0.0745516\pi\)
−0.972698 + 0.232075i \(0.925448\pi\)
\(12\) 0 0
\(13\) −3.57628 + 0.458467i −0.991883 + 0.127156i
\(14\) 0 0
\(15\) 1.03273i 0.266649i
\(16\) 0 0
\(17\) −2.59762 −0.630016 −0.315008 0.949089i \(-0.602007\pi\)
−0.315008 + 0.949089i \(0.602007\pi\)
\(18\) 0 0
\(19\) 5.93315i 1.36116i 0.732675 + 0.680579i \(0.238272\pi\)
−0.732675 + 0.680579i \(0.761728\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.96832 −0.410424 −0.205212 0.978718i \(-0.565788\pi\)
−0.205212 + 0.978718i \(0.565788\pi\)
\(24\) 0 0
\(25\) 3.93348 0.786695
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.63330 0.674688 0.337344 0.941381i \(-0.390471\pi\)
0.337344 + 0.941381i \(0.390471\pi\)
\(30\) 0 0
\(31\) 7.07872i 1.27138i −0.771946 0.635688i \(-0.780717\pi\)
0.771946 0.635688i \(-0.219283\pi\)
\(32\) 0 0
\(33\) 1.53941i 0.267977i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.06240i 0.667855i −0.942599 0.333928i \(-0.891626\pi\)
0.942599 0.333928i \(-0.108374\pi\)
\(38\) 0 0
\(39\) −3.57628 + 0.458467i −0.572664 + 0.0734135i
\(40\) 0 0
\(41\) 4.76561i 0.744263i −0.928180 0.372131i \(-0.878627\pi\)
0.928180 0.372131i \(-0.121373\pi\)
\(42\) 0 0
\(43\) 0.849674 0.129574 0.0647870 0.997899i \(-0.479363\pi\)
0.0647870 + 0.997899i \(0.479363\pi\)
\(44\) 0 0
\(45\) 1.03273i 0.153950i
\(46\) 0 0
\(47\) 11.6987i 1.70643i −0.521557 0.853217i \(-0.674648\pi\)
0.521557 0.853217i \(-0.325352\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.59762 −0.363740
\(52\) 0 0
\(53\) 10.9201 1.50000 0.749998 0.661440i \(-0.230054\pi\)
0.749998 + 0.661440i \(0.230054\pi\)
\(54\) 0 0
\(55\) 1.58979 0.214368
\(56\) 0 0
\(57\) 5.93315i 0.785865i
\(58\) 0 0
\(59\) 10.3335i 1.34531i 0.739955 + 0.672657i \(0.234847\pi\)
−0.739955 + 0.672657i \(0.765153\pi\)
\(60\) 0 0
\(61\) 9.40087 1.20366 0.601829 0.798625i \(-0.294439\pi\)
0.601829 + 0.798625i \(0.294439\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.473471 + 3.69332i 0.0587269 + 0.458100i
\(66\) 0 0
\(67\) 15.5105i 1.89491i −0.319887 0.947456i \(-0.603645\pi\)
0.319887 0.947456i \(-0.396355\pi\)
\(68\) 0 0
\(69\) −1.96832 −0.236958
\(70\) 0 0
\(71\) 6.38275i 0.757493i 0.925500 + 0.378747i \(0.123645\pi\)
−0.925500 + 0.378747i \(0.876355\pi\)
\(72\) 0 0
\(73\) 8.34045i 0.976176i 0.872794 + 0.488088i \(0.162306\pi\)
−0.872794 + 0.488088i \(0.837694\pi\)
\(74\) 0 0
\(75\) 3.93348 0.454199
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.841893 0.0947204 0.0473602 0.998878i \(-0.484919\pi\)
0.0473602 + 0.998878i \(0.484919\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 15.7121i 1.72463i 0.506372 + 0.862315i \(0.330986\pi\)
−0.506372 + 0.862315i \(0.669014\pi\)
\(84\) 0 0
\(85\) 2.68263i 0.290973i
\(86\) 0 0
\(87\) 3.63330 0.389531
\(88\) 0 0
\(89\) 16.8796i 1.78924i 0.446832 + 0.894618i \(0.352552\pi\)
−0.446832 + 0.894618i \(0.647448\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.07872i 0.734029i
\(94\) 0 0
\(95\) 6.12732 0.628649
\(96\) 0 0
\(97\) 9.90578i 1.00578i 0.864351 + 0.502890i \(0.167730\pi\)
−0.864351 + 0.502890i \(0.832270\pi\)
\(98\) 0 0
\(99\) 1.53941i 0.154717i
\(100\) 0 0
\(101\) −9.98961 −0.994003 −0.497002 0.867750i \(-0.665566\pi\)
−0.497002 + 0.867750i \(0.665566\pi\)
\(102\) 0 0
\(103\) 19.5720 1.92849 0.964243 0.265018i \(-0.0853779\pi\)
0.964243 + 0.265018i \(0.0853779\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.86479 0.663644 0.331822 0.943342i \(-0.392337\pi\)
0.331822 + 0.943342i \(0.392337\pi\)
\(108\) 0 0
\(109\) 15.5038i 1.48500i 0.669846 + 0.742500i \(0.266360\pi\)
−0.669846 + 0.742500i \(0.733640\pi\)
\(110\) 0 0
\(111\) 4.06240i 0.385586i
\(112\) 0 0
\(113\) 0.556572 0.0523579 0.0261790 0.999657i \(-0.491666\pi\)
0.0261790 + 0.999657i \(0.491666\pi\)
\(114\) 0 0
\(115\) 2.03274i 0.189554i
\(116\) 0 0
\(117\) −3.57628 + 0.458467i −0.330628 + 0.0423853i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.63021 0.784564
\(122\) 0 0
\(123\) 4.76561i 0.429700i
\(124\) 0 0
\(125\) 9.22583i 0.825184i
\(126\) 0 0
\(127\) 5.78315 0.513172 0.256586 0.966521i \(-0.417402\pi\)
0.256586 + 0.966521i \(0.417402\pi\)
\(128\) 0 0
\(129\) 0.849674 0.0748096
\(130\) 0 0
\(131\) 19.0922 1.66810 0.834049 0.551691i \(-0.186017\pi\)
0.834049 + 0.551691i \(0.186017\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.03273i 0.0888829i
\(136\) 0 0
\(137\) 8.75302i 0.747821i 0.927465 + 0.373911i \(0.121983\pi\)
−0.927465 + 0.373911i \(0.878017\pi\)
\(138\) 0 0
\(139\) −5.26687 −0.446730 −0.223365 0.974735i \(-0.571704\pi\)
−0.223365 + 0.974735i \(0.571704\pi\)
\(140\) 0 0
\(141\) 11.6987i 0.985210i
\(142\) 0 0
\(143\) −0.705771 5.50538i −0.0590195 0.460383i
\(144\) 0 0
\(145\) 3.75221i 0.311604i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.49151i 0.122189i −0.998132 0.0610945i \(-0.980541\pi\)
0.998132 0.0610945i \(-0.0194591\pi\)
\(150\) 0 0
\(151\) 8.35531i 0.679945i 0.940435 + 0.339973i \(0.110418\pi\)
−0.940435 + 0.339973i \(0.889582\pi\)
\(152\) 0 0
\(153\) −2.59762 −0.210005
\(154\) 0 0
\(155\) −7.31038 −0.587184
\(156\) 0 0
\(157\) 7.10455 0.567005 0.283502 0.958972i \(-0.408504\pi\)
0.283502 + 0.958972i \(0.408504\pi\)
\(158\) 0 0
\(159\) 10.9201 0.866023
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.5870i 0.985891i 0.870060 + 0.492946i \(0.164080\pi\)
−0.870060 + 0.492946i \(0.835920\pi\)
\(164\) 0 0
\(165\) 1.58979 0.123765
\(166\) 0 0
\(167\) 19.1612i 1.48273i −0.671100 0.741367i \(-0.734178\pi\)
0.671100 0.741367i \(-0.265822\pi\)
\(168\) 0 0
\(169\) 12.5796 3.27922i 0.967663 0.252248i
\(170\) 0 0
\(171\) 5.93315i 0.453719i
\(172\) 0 0
\(173\) 9.66620 0.734907 0.367454 0.930042i \(-0.380230\pi\)
0.367454 + 0.930042i \(0.380230\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.3335i 0.776717i
\(178\) 0 0
\(179\) 0.694977 0.0519450 0.0259725 0.999663i \(-0.491732\pi\)
0.0259725 + 0.999663i \(0.491732\pi\)
\(180\) 0 0
\(181\) −7.81108 −0.580593 −0.290297 0.956937i \(-0.593754\pi\)
−0.290297 + 0.956937i \(0.593754\pi\)
\(182\) 0 0
\(183\) 9.40087 0.694933
\(184\) 0 0
\(185\) −4.19535 −0.308448
\(186\) 0 0
\(187\) 3.99882i 0.292422i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.5453 1.77604 0.888018 0.459808i \(-0.152082\pi\)
0.888018 + 0.459808i \(0.152082\pi\)
\(192\) 0 0
\(193\) 20.9887i 1.51080i −0.655263 0.755401i \(-0.727442\pi\)
0.655263 0.755401i \(-0.272558\pi\)
\(194\) 0 0
\(195\) 0.473471 + 3.69332i 0.0339060 + 0.264484i
\(196\) 0 0
\(197\) 2.07654i 0.147947i 0.997260 + 0.0739737i \(0.0235681\pi\)
−0.997260 + 0.0739737i \(0.976432\pi\)
\(198\) 0 0
\(199\) 6.29595 0.446308 0.223154 0.974783i \(-0.428365\pi\)
0.223154 + 0.974783i \(0.428365\pi\)
\(200\) 0 0
\(201\) 15.5105i 1.09403i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.92157 −0.343737
\(206\) 0 0
\(207\) −1.96832 −0.136808
\(208\) 0 0
\(209\) −9.13356 −0.631782
\(210\) 0 0
\(211\) 13.9093 0.957555 0.478777 0.877936i \(-0.341080\pi\)
0.478777 + 0.877936i \(0.341080\pi\)
\(212\) 0 0
\(213\) 6.38275i 0.437339i
\(214\) 0 0
\(215\) 0.877480i 0.0598437i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 8.34045i 0.563596i
\(220\) 0 0
\(221\) 9.28984 1.19093i 0.624902 0.0801104i
\(222\) 0 0
\(223\) 1.99158i 0.133366i −0.997774 0.0666829i \(-0.978758\pi\)
0.997774 0.0666829i \(-0.0212416\pi\)
\(224\) 0 0
\(225\) 3.93348 0.262232
\(226\) 0 0
\(227\) 16.1480i 1.07178i −0.844287 0.535891i \(-0.819976\pi\)
0.844287 0.535891i \(-0.180024\pi\)
\(228\) 0 0
\(229\) 23.0670i 1.52431i 0.647395 + 0.762155i \(0.275858\pi\)
−0.647395 + 0.762155i \(0.724142\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.26648 0.0829701 0.0414851 0.999139i \(-0.486791\pi\)
0.0414851 + 0.999139i \(0.486791\pi\)
\(234\) 0 0
\(235\) −12.0816 −0.788115
\(236\) 0 0
\(237\) 0.841893 0.0546868
\(238\) 0 0
\(239\) 7.46395i 0.482803i −0.970425 0.241402i \(-0.922393\pi\)
0.970425 0.241402i \(-0.0776071\pi\)
\(240\) 0 0
\(241\) 25.2319i 1.62533i −0.582730 0.812666i \(-0.698016\pi\)
0.582730 0.812666i \(-0.301984\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.72015 21.2186i −0.173079 1.35011i
\(248\) 0 0
\(249\) 15.7121i 0.995716i
\(250\) 0 0
\(251\) −25.4021 −1.60337 −0.801683 0.597750i \(-0.796062\pi\)
−0.801683 + 0.597750i \(0.796062\pi\)
\(252\) 0 0
\(253\) 3.03006i 0.190499i
\(254\) 0 0
\(255\) 2.68263i 0.167993i
\(256\) 0 0
\(257\) 9.29097 0.579555 0.289777 0.957094i \(-0.406419\pi\)
0.289777 + 0.957094i \(0.406419\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.63330 0.224896
\(262\) 0 0
\(263\) −7.53559 −0.464664 −0.232332 0.972637i \(-0.574636\pi\)
−0.232332 + 0.972637i \(0.574636\pi\)
\(264\) 0 0
\(265\) 11.2775i 0.692772i
\(266\) 0 0
\(267\) 16.8796i 1.03302i
\(268\) 0 0
\(269\) −16.4290 −1.00169 −0.500846 0.865536i \(-0.666978\pi\)
−0.500846 + 0.865536i \(0.666978\pi\)
\(270\) 0 0
\(271\) 3.37238i 0.204857i −0.994740 0.102429i \(-0.967339\pi\)
0.994740 0.102429i \(-0.0326613\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.05524i 0.365145i
\(276\) 0 0
\(277\) 18.1400 1.08992 0.544962 0.838461i \(-0.316544\pi\)
0.544962 + 0.838461i \(0.316544\pi\)
\(278\) 0 0
\(279\) 7.07872i 0.423792i
\(280\) 0 0
\(281\) 3.31382i 0.197686i 0.995103 + 0.0988431i \(0.0315142\pi\)
−0.995103 + 0.0988431i \(0.968486\pi\)
\(282\) 0 0
\(283\) −18.0808 −1.07479 −0.537395 0.843330i \(-0.680592\pi\)
−0.537395 + 0.843330i \(0.680592\pi\)
\(284\) 0 0
\(285\) 6.12732 0.362951
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −10.2523 −0.603079
\(290\) 0 0
\(291\) 9.90578i 0.580687i
\(292\) 0 0
\(293\) 22.9860i 1.34286i 0.741070 + 0.671428i \(0.234319\pi\)
−0.741070 + 0.671428i \(0.765681\pi\)
\(294\) 0 0
\(295\) 10.6717 0.621332
\(296\) 0 0
\(297\) 1.53941i 0.0893258i
\(298\) 0 0
\(299\) 7.03929 0.902413i 0.407093 0.0521879i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.98961 −0.573888
\(304\) 0 0
\(305\) 9.70853i 0.555909i
\(306\) 0 0
\(307\) 2.75982i 0.157511i −0.996894 0.0787556i \(-0.974905\pi\)
0.996894 0.0787556i \(-0.0250947\pi\)
\(308\) 0 0
\(309\) 19.5720 1.11341
\(310\) 0 0
\(311\) −22.6438 −1.28401 −0.642007 0.766698i \(-0.721898\pi\)
−0.642007 + 0.766698i \(0.721898\pi\)
\(312\) 0 0
\(313\) 3.18533 0.180045 0.0900227 0.995940i \(-0.471306\pi\)
0.0900227 + 0.995940i \(0.471306\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.9006i 0.836903i 0.908239 + 0.418451i \(0.137427\pi\)
−0.908239 + 0.418451i \(0.862573\pi\)
\(318\) 0 0
\(319\) 5.59316i 0.313157i
\(320\) 0 0
\(321\) 6.86479 0.383155
\(322\) 0 0
\(323\) 15.4121i 0.857551i
\(324\) 0 0
\(325\) −14.0672 + 1.80337i −0.780310 + 0.100033i
\(326\) 0 0
\(327\) 15.5038i 0.857365i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.223213i 0.0122689i 0.999981 + 0.00613444i \(0.00195267\pi\)
−0.999981 + 0.00613444i \(0.998047\pi\)
\(332\) 0 0
\(333\) 4.06240i 0.222618i
\(334\) 0 0
\(335\) −16.0181 −0.875163
\(336\) 0 0
\(337\) 28.4641 1.55054 0.775269 0.631631i \(-0.217614\pi\)
0.775269 + 0.631631i \(0.217614\pi\)
\(338\) 0 0
\(339\) 0.556572 0.0302289
\(340\) 0 0
\(341\) 10.8971 0.590110
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.03274i 0.109439i
\(346\) 0 0
\(347\) 6.22869 0.334373 0.167187 0.985925i \(-0.446532\pi\)
0.167187 + 0.985925i \(0.446532\pi\)
\(348\) 0 0
\(349\) 5.41696i 0.289963i −0.989434 0.144981i \(-0.953688\pi\)
0.989434 0.144981i \(-0.0463123\pi\)
\(350\) 0 0
\(351\) −3.57628 + 0.458467i −0.190888 + 0.0244712i
\(352\) 0 0
\(353\) 5.96971i 0.317736i −0.987300 0.158868i \(-0.949216\pi\)
0.987300 0.158868i \(-0.0507844\pi\)
\(354\) 0 0
\(355\) 6.59163 0.349848
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.4673i 0.710776i −0.934719 0.355388i \(-0.884349\pi\)
0.934719 0.355388i \(-0.115651\pi\)
\(360\) 0 0
\(361\) −16.2022 −0.852749
\(362\) 0 0
\(363\) 8.63021 0.452968
\(364\) 0 0
\(365\) 8.61340 0.450846
\(366\) 0 0
\(367\) 15.3952 0.803623 0.401812 0.915722i \(-0.368381\pi\)
0.401812 + 0.915722i \(0.368381\pi\)
\(368\) 0 0
\(369\) 4.76561i 0.248088i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 28.9376 1.49833 0.749165 0.662383i \(-0.230455\pi\)
0.749165 + 0.662383i \(0.230455\pi\)
\(374\) 0 0
\(375\) 9.22583i 0.476420i
\(376\) 0 0
\(377\) −12.9937 + 1.66575i −0.669211 + 0.0857906i
\(378\) 0 0
\(379\) 1.43062i 0.0734860i 0.999325 + 0.0367430i \(0.0116983\pi\)
−0.999325 + 0.0367430i \(0.988302\pi\)
\(380\) 0 0
\(381\) 5.78315 0.296280
\(382\) 0 0
\(383\) 10.4343i 0.533168i 0.963812 + 0.266584i \(0.0858950\pi\)
−0.963812 + 0.266584i \(0.914105\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.849674 0.0431913
\(388\) 0 0
\(389\) 16.7064 0.847047 0.423524 0.905885i \(-0.360793\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(390\) 0 0
\(391\) 5.11297 0.258574
\(392\) 0 0
\(393\) 19.0922 0.963077
\(394\) 0 0
\(395\) 0.869445i 0.0437465i
\(396\) 0 0
\(397\) 20.8252i 1.04519i −0.852582 0.522594i \(-0.824964\pi\)
0.852582 0.522594i \(-0.175036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.4129i 1.01937i −0.860361 0.509685i \(-0.829762\pi\)
0.860361 0.509685i \(-0.170238\pi\)
\(402\) 0 0
\(403\) 3.24536 + 25.3155i 0.161663 + 1.26106i
\(404\) 0 0
\(405\) 1.03273i 0.0513166i
\(406\) 0 0
\(407\) 6.25372 0.309985
\(408\) 0 0
\(409\) 15.2757i 0.755334i 0.925942 + 0.377667i \(0.123274\pi\)
−0.925942 + 0.377667i \(0.876726\pi\)
\(410\) 0 0
\(411\) 8.75302i 0.431755i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.2263 0.796519
\(416\) 0 0
\(417\) −5.26687 −0.257920
\(418\) 0 0
\(419\) −30.8019 −1.50477 −0.752386 0.658723i \(-0.771097\pi\)
−0.752386 + 0.658723i \(0.771097\pi\)
\(420\) 0 0
\(421\) 25.6176i 1.24853i 0.781215 + 0.624263i \(0.214601\pi\)
−0.781215 + 0.624263i \(0.785399\pi\)
\(422\) 0 0
\(423\) 11.6987i 0.568811i
\(424\) 0 0
\(425\) −10.2177 −0.495631
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.705771 5.50538i −0.0340749 0.265802i
\(430\) 0 0
\(431\) 4.98233i 0.239991i −0.992774 0.119995i \(-0.961712\pi\)
0.992774 0.119995i \(-0.0382879\pi\)
\(432\) 0 0
\(433\) 4.59730 0.220932 0.110466 0.993880i \(-0.464766\pi\)
0.110466 + 0.993880i \(0.464766\pi\)
\(434\) 0 0
\(435\) 3.75221i 0.179905i
\(436\) 0 0
\(437\) 11.6784i 0.558652i
\(438\) 0 0
\(439\) 32.8118 1.56602 0.783011 0.622008i \(-0.213683\pi\)
0.783011 + 0.622008i \(0.213683\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 41.0763 1.95159 0.975797 0.218680i \(-0.0701751\pi\)
0.975797 + 0.218680i \(0.0701751\pi\)
\(444\) 0 0
\(445\) 17.4320 0.826357
\(446\) 0 0
\(447\) 1.49151i 0.0705459i
\(448\) 0 0
\(449\) 5.29494i 0.249884i −0.992164 0.124942i \(-0.960126\pi\)
0.992164 0.124942i \(-0.0398744\pi\)
\(450\) 0 0
\(451\) 7.33624 0.345450
\(452\) 0 0
\(453\) 8.35531i 0.392566i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.50567i 0.397879i 0.980012 + 0.198939i \(0.0637497\pi\)
−0.980012 + 0.198939i \(0.936250\pi\)
\(458\) 0 0
\(459\) −2.59762 −0.121247
\(460\) 0 0
\(461\) 27.3100i 1.27195i −0.771708 0.635977i \(-0.780597\pi\)
0.771708 0.635977i \(-0.219403\pi\)
\(462\) 0 0
\(463\) 15.3373i 0.712783i −0.934337 0.356392i \(-0.884007\pi\)
0.934337 0.356392i \(-0.115993\pi\)
\(464\) 0 0
\(465\) −7.31038 −0.339011
\(466\) 0 0
\(467\) 6.20400 0.287087 0.143543 0.989644i \(-0.454150\pi\)
0.143543 + 0.989644i \(0.454150\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 7.10455 0.327360
\(472\) 0 0
\(473\) 1.30800i 0.0601418i
\(474\) 0 0
\(475\) 23.3379i 1.07082i
\(476\) 0 0
\(477\) 10.9201 0.499999
\(478\) 0 0
\(479\) 28.5211i 1.30316i 0.758579 + 0.651582i \(0.225894\pi\)
−0.758579 + 0.651582i \(0.774106\pi\)
\(480\) 0 0
\(481\) 1.86248 + 14.5283i 0.0849218 + 0.662434i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.2300 0.464518
\(486\) 0 0
\(487\) 21.6837i 0.982584i −0.870995 0.491292i \(-0.836525\pi\)
0.870995 0.491292i \(-0.163475\pi\)
\(488\) 0 0
\(489\) 12.5870i 0.569205i
\(490\) 0 0
\(491\) −22.7589 −1.02709 −0.513547 0.858061i \(-0.671669\pi\)
−0.513547 + 0.858061i \(0.671669\pi\)
\(492\) 0 0
\(493\) −9.43796 −0.425064
\(494\) 0 0
\(495\) 1.58979 0.0714558
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.56425i 0.249090i −0.992214 0.124545i \(-0.960253\pi\)
0.992214 0.124545i \(-0.0397471\pi\)
\(500\) 0 0
\(501\) 19.1612i 0.856057i
\(502\) 0 0
\(503\) −24.1810 −1.07818 −0.539089 0.842249i \(-0.681231\pi\)
−0.539089 + 0.842249i \(0.681231\pi\)
\(504\) 0 0
\(505\) 10.3165i 0.459080i
\(506\) 0 0
\(507\) 12.5796 3.27922i 0.558680 0.145635i
\(508\) 0 0
\(509\) 26.4547i 1.17258i −0.810100 0.586292i \(-0.800587\pi\)
0.810100 0.586292i \(-0.199413\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.93315i 0.261955i
\(514\) 0 0
\(515\) 20.2125i 0.890670i
\(516\) 0 0
\(517\) 18.0092 0.792042
\(518\) 0 0
\(519\) 9.66620 0.424299
\(520\) 0 0
\(521\) −36.5080 −1.59945 −0.799723 0.600369i \(-0.795020\pi\)
−0.799723 + 0.600369i \(0.795020\pi\)
\(522\) 0 0
\(523\) −8.26328 −0.361328 −0.180664 0.983545i \(-0.557825\pi\)
−0.180664 + 0.983545i \(0.557825\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.3879i 0.800988i
\(528\) 0 0
\(529\) −19.1257 −0.831552
\(530\) 0 0
\(531\) 10.3335i 0.448438i
\(532\) 0 0
\(533\) 2.18488 + 17.0432i 0.0946375 + 0.738221i
\(534\) 0 0
\(535\) 7.08944i 0.306503i
\(536\) 0 0
\(537\) 0.694977 0.0299905
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.56309i 0.110196i 0.998481 + 0.0550980i \(0.0175471\pi\)
−0.998481 + 0.0550980i \(0.982453\pi\)
\(542\) 0 0
\(543\) −7.81108 −0.335206
\(544\) 0 0
\(545\) 16.0112 0.685846
\(546\) 0 0
\(547\) 5.54538 0.237103 0.118552 0.992948i \(-0.462175\pi\)
0.118552 + 0.992948i \(0.462175\pi\)
\(548\) 0 0
\(549\) 9.40087 0.401220
\(550\) 0 0
\(551\) 21.5569i 0.918356i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.19535 −0.178083
\(556\) 0 0
\(557\) 39.2095i 1.66136i 0.556749 + 0.830681i \(0.312049\pi\)
−0.556749 + 0.830681i \(0.687951\pi\)
\(558\) 0 0
\(559\) −3.03867 + 0.389548i −0.128522 + 0.0164761i
\(560\) 0 0
\(561\) 3.99882i 0.168830i
\(562\) 0 0
\(563\) −25.4640 −1.07318 −0.536590 0.843843i \(-0.680288\pi\)
−0.536590 + 0.843843i \(0.680288\pi\)
\(564\) 0 0
\(565\) 0.574787i 0.0241815i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.7708 −0.619224 −0.309612 0.950863i \(-0.600199\pi\)
−0.309612 + 0.950863i \(0.600199\pi\)
\(570\) 0 0
\(571\) −22.8985 −0.958271 −0.479135 0.877741i \(-0.659050\pi\)
−0.479135 + 0.877741i \(0.659050\pi\)
\(572\) 0 0
\(573\) 24.5453 1.02540
\(574\) 0 0
\(575\) −7.74236 −0.322879
\(576\) 0 0
\(577\) 3.38812i 0.141049i 0.997510 + 0.0705247i \(0.0224673\pi\)
−0.997510 + 0.0705247i \(0.977533\pi\)
\(578\) 0 0
\(579\) 20.9887i 0.872262i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 16.8106i 0.696224i
\(584\) 0 0
\(585\) 0.473471 + 3.69332i 0.0195756 + 0.152700i
\(586\) 0 0
\(587\) 24.6516i 1.01748i −0.860920 0.508741i \(-0.830111\pi\)
0.860920 0.508741i \(-0.169889\pi\)
\(588\) 0 0
\(589\) 41.9991 1.73054
\(590\) 0 0
\(591\) 2.07654i 0.0854175i
\(592\) 0 0
\(593\) 16.8200i 0.690714i −0.938471 0.345357i \(-0.887758\pi\)
0.938471 0.345357i \(-0.112242\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.29595 0.257676
\(598\) 0 0
\(599\) −36.3058 −1.48342 −0.741708 0.670723i \(-0.765984\pi\)
−0.741708 + 0.670723i \(0.765984\pi\)
\(600\) 0 0
\(601\) −10.5378 −0.429848 −0.214924 0.976631i \(-0.568950\pi\)
−0.214924 + 0.976631i \(0.568950\pi\)
\(602\) 0 0
\(603\) 15.5105i 0.631637i
\(604\) 0 0
\(605\) 8.91264i 0.362350i
\(606\) 0 0
\(607\) 21.3240 0.865515 0.432758 0.901510i \(-0.357541\pi\)
0.432758 + 0.901510i \(0.357541\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.36348 + 41.8379i 0.216983 + 1.69258i
\(612\) 0 0
\(613\) 10.3189i 0.416775i 0.978046 + 0.208387i \(0.0668214\pi\)
−0.978046 + 0.208387i \(0.933179\pi\)
\(614\) 0 0
\(615\) −4.92157 −0.198457
\(616\) 0 0
\(617\) 33.6554i 1.35492i −0.735561 0.677458i \(-0.763081\pi\)
0.735561 0.677458i \(-0.236919\pi\)
\(618\) 0 0
\(619\) 33.6509i 1.35254i −0.736652 0.676272i \(-0.763594\pi\)
0.736652 0.676272i \(-0.236406\pi\)
\(620\) 0 0
\(621\) −1.96832 −0.0789861
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 10.1396 0.405585
\(626\) 0 0
\(627\) −9.13356 −0.364759
\(628\) 0 0
\(629\) 10.5526i 0.420760i
\(630\) 0 0
\(631\) 8.16711i 0.325128i −0.986698 0.162564i \(-0.948024\pi\)
0.986698 0.162564i \(-0.0519763\pi\)
\(632\) 0 0
\(633\) 13.9093 0.552845
\(634\) 0 0
\(635\) 5.97241i 0.237008i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.38275i 0.252498i
\(640\) 0 0
\(641\) 18.5538 0.732831 0.366416 0.930451i \(-0.380585\pi\)
0.366416 + 0.930451i \(0.380585\pi\)
\(642\) 0 0
\(643\) 42.1637i 1.66277i −0.555694 0.831387i \(-0.687547\pi\)
0.555694 0.831387i \(-0.312453\pi\)
\(644\) 0 0
\(645\) 0.877480i 0.0345507i
\(646\) 0 0
\(647\) −16.3130 −0.641329 −0.320665 0.947193i \(-0.603906\pi\)
−0.320665 + 0.947193i \(0.603906\pi\)
\(648\) 0 0
\(649\) −15.9076 −0.624428
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.0675 0.433103 0.216551 0.976271i \(-0.430519\pi\)
0.216551 + 0.976271i \(0.430519\pi\)
\(654\) 0 0
\(655\) 19.7171i 0.770409i
\(656\) 0 0
\(657\) 8.34045i 0.325392i
\(658\) 0 0
\(659\) −20.4824 −0.797882 −0.398941 0.916977i \(-0.630622\pi\)
−0.398941 + 0.916977i \(0.630622\pi\)
\(660\) 0 0
\(661\) 1.61115i 0.0626665i 0.999509 + 0.0313333i \(0.00997532\pi\)
−0.999509 + 0.0313333i \(0.990025\pi\)
\(662\) 0 0
\(663\) 9.28984 1.19093i 0.360788 0.0462517i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.15152 −0.276908
\(668\) 0 0
\(669\) 1.99158i 0.0769987i
\(670\) 0 0
\(671\) 14.4718i 0.558679i
\(672\) 0 0
\(673\) 26.8874 1.03643 0.518217 0.855249i \(-0.326596\pi\)
0.518217 + 0.855249i \(0.326596\pi\)
\(674\) 0 0
\(675\) 3.93348 0.151400
\(676\) 0 0
\(677\) 13.3811 0.514277 0.257138 0.966375i \(-0.417220\pi\)
0.257138 + 0.966375i \(0.417220\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 16.1480i 0.618793i
\(682\) 0 0
\(683\) 37.0003i 1.41578i 0.706325 + 0.707888i \(0.250352\pi\)
−0.706325 + 0.707888i \(0.749648\pi\)
\(684\) 0 0
\(685\) 9.03948 0.345381
\(686\) 0 0
\(687\) 23.0670i 0.880060i
\(688\) 0 0
\(689\) −39.0535 + 5.00653i −1.48782 + 0.190733i
\(690\) 0 0
\(691\) 0.284680i 0.0108297i −0.999985 0.00541487i \(-0.998276\pi\)
0.999985 0.00541487i \(-0.00172361\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.43923i 0.206322i
\(696\) 0 0
\(697\) 12.3793i 0.468898i
\(698\) 0 0
\(699\) 1.26648 0.0479028
\(700\) 0 0
\(701\) −39.2818 −1.48365 −0.741826 0.670592i \(-0.766040\pi\)
−0.741826 + 0.670592i \(0.766040\pi\)
\(702\) 0 0
\(703\) 24.1028 0.909056
\(704\) 0 0
\(705\) −12.0816 −0.455018
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 48.8608i 1.83500i −0.397731 0.917502i \(-0.630202\pi\)
0.397731 0.917502i \(-0.369798\pi\)
\(710\) 0 0
\(711\) 0.841893 0.0315735
\(712\) 0 0
\(713\) 13.9332i 0.521803i
\(714\) 0 0
\(715\) −5.68555 + 0.728868i −0.212627 + 0.0272581i
\(716\) 0 0
\(717\) 7.46395i 0.278746i
\(718\) 0 0
\(719\) −33.7989 −1.26049 −0.630243 0.776398i \(-0.717045\pi\)
−0.630243 + 0.776398i \(0.717045\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 25.2319i 0.938385i
\(724\) 0 0
\(725\) 14.2915 0.530774
\(726\) 0 0
\(727\) −35.4765 −1.31575 −0.657875 0.753127i \(-0.728545\pi\)
−0.657875 + 0.753127i \(0.728545\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.20713 −0.0816337
\(732\) 0 0
\(733\) 11.6407i 0.429958i 0.976619 + 0.214979i \(0.0689683\pi\)
−0.976619 + 0.214979i \(0.931032\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.8771 0.879524
\(738\) 0 0
\(739\) 4.59842i 0.169156i −0.996417 0.0845779i \(-0.973046\pi\)
0.996417 0.0845779i \(-0.0269542\pi\)
\(740\) 0 0
\(741\) −2.72015 21.2186i −0.0999274 0.779485i
\(742\) 0 0
\(743\) 35.6187i 1.30672i 0.757045 + 0.653362i \(0.226642\pi\)
−0.757045 + 0.653362i \(0.773358\pi\)
\(744\) 0 0
\(745\) −1.54032 −0.0564329
\(746\) 0 0
\(747\) 15.7121i 0.574877i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 13.0712 0.476974 0.238487 0.971146i \(-0.423349\pi\)
0.238487 + 0.971146i \(0.423349\pi\)
\(752\) 0 0
\(753\) −25.4021 −0.925704
\(754\) 0 0
\(755\) 8.62874 0.314032
\(756\) 0 0
\(757\) 49.9763 1.81642 0.908210 0.418515i \(-0.137449\pi\)
0.908210 + 0.418515i \(0.137449\pi\)
\(758\) 0 0
\(759\) 3.03006i 0.109984i
\(760\) 0 0
\(761\) 51.8461i 1.87942i 0.341973 + 0.939710i \(0.388905\pi\)
−0.341973 + 0.939710i \(0.611095\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.68263i 0.0969908i
\(766\) 0 0
\(767\) −4.73760 36.9557i −0.171065 1.33439i
\(768\) 0 0
\(769\) 13.8806i 0.500546i 0.968175 + 0.250273i \(0.0805203\pi\)
−0.968175 + 0.250273i \(0.919480\pi\)
\(770\) 0 0
\(771\) 9.29097 0.334606
\(772\) 0 0
\(773\) 43.0185i 1.54727i 0.633633 + 0.773633i \(0.281563\pi\)
−0.633633 + 0.773633i \(0.718437\pi\)
\(774\) 0 0
\(775\) 27.8440i 1.00019i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.2751 1.01306
\(780\) 0 0
\(781\) −9.82569 −0.351591
\(782\) 0 0
\(783\) 3.63330 0.129844
\(784\) 0 0
\(785\) 7.33705i 0.261871i
\(786\) 0 0
\(787\) 46.1860i 1.64635i 0.567785 + 0.823177i \(0.307800\pi\)
−0.567785 + 0.823177i \(0.692200\pi\)
\(788\) 0 0
\(789\) −7.53559 −0.268274
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −33.6202 + 4.30999i −1.19389 + 0.153052i
\(794\) 0 0
\(795\) 11.2775i 0.399972i
\(796\) 0 0
\(797\) −44.2564 −1.56764 −0.783821 0.620987i \(-0.786732\pi\)
−0.783821 + 0.620987i \(0.786732\pi\)
\(798\) 0 0
\(799\) 30.3889i 1.07508i
\(800\) 0 0
\(801\) 16.8796i 0.596412i
\(802\) 0 0
\(803\) −12.8394 −0.453093
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −16.4290 −0.578327
\(808\) 0 0
\(809\) 40.5315 1.42501 0.712506 0.701666i \(-0.247560\pi\)
0.712506 + 0.701666i \(0.247560\pi\)
\(810\) 0 0
\(811\) 21.6526i 0.760324i 0.924920 + 0.380162i \(0.124132\pi\)
−0.924920 + 0.380162i \(0.875868\pi\)
\(812\) 0 0
\(813\) 3.37238i 0.118274i
\(814\) 0 0
\(815\) 12.9989 0.455333
\(816\) 0 0
\(817\) 5.04124i 0.176371i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.40284i 0.328161i 0.986447 + 0.164081i \(0.0524657\pi\)
−0.986447 + 0.164081i \(0.947534\pi\)
\(822\) 0 0
\(823\) −27.8277 −0.970014 −0.485007 0.874510i \(-0.661183\pi\)
−0.485007 + 0.874510i \(0.661183\pi\)
\(824\) 0 0
\(825\) 6.05524i 0.210817i
\(826\) 0 0
\(827\) 43.0432i 1.49676i 0.663270 + 0.748380i \(0.269168\pi\)
−0.663270 + 0.748380i \(0.730832\pi\)
\(828\) 0 0
\(829\) 8.09336 0.281094 0.140547 0.990074i \(-0.455114\pi\)
0.140547 + 0.990074i \(0.455114\pi\)
\(830\) 0 0
\(831\) 18.1400 0.629268
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −19.7882 −0.684800
\(836\) 0 0
\(837\) 7.07872i 0.244676i
\(838\) 0 0
\(839\) 21.3057i 0.735556i −0.929914 0.367778i \(-0.880119\pi\)
0.929914 0.367778i \(-0.119881\pi\)
\(840\) 0 0
\(841\) −15.7991 −0.544796
\(842\) 0 0
\(843\) 3.31382i 0.114134i
\(844\) 0 0
\(845\) −3.38654 12.9913i −0.116500 0.446914i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −18.0808 −0.620531
\(850\) 0 0
\(851\) 7.99613i 0.274104i
\(852\) 0 0
\(853\) 20.9324i 0.716713i 0.933585 + 0.358356i \(0.116663\pi\)
−0.933585 + 0.358356i \(0.883337\pi\)
\(854\) 0 0
\(855\) 6.12732 0.209550
\(856\) 0 0
\(857\) −26.1151 −0.892073 −0.446037 0.895015i \(-0.647165\pi\)
−0.446037 + 0.895015i \(0.647165\pi\)
\(858\) 0 0
\(859\) 38.7926 1.32359 0.661793 0.749687i \(-0.269796\pi\)
0.661793 + 0.749687i \(0.269796\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.6994i 0.976940i −0.872581 0.488470i \(-0.837555\pi\)
0.872581 0.488470i \(-0.162445\pi\)
\(864\) 0 0
\(865\) 9.98253i 0.339416i
\(866\) 0 0
\(867\) −10.2523 −0.348188
\(868\) 0 0
\(869\) 1.29602i 0.0439645i
\(870\) 0 0
\(871\) 7.11107 + 55.4700i 0.240949 + 1.87953i
\(872\) 0 0
\(873\) 9.90578i 0.335260i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35.5972i 1.20203i 0.799238 + 0.601015i \(0.205237\pi\)
−0.799238 + 0.601015i \(0.794763\pi\)
\(878\) 0 0
\(879\) 22.9860i 0.775298i
\(880\) 0 0
\(881\) 15.6969 0.528840 0.264420 0.964408i \(-0.414819\pi\)
0.264420 + 0.964408i \(0.414819\pi\)
\(882\) 0 0
\(883\) −26.4371 −0.889681 −0.444840 0.895610i \(-0.646740\pi\)
−0.444840 + 0.895610i \(0.646740\pi\)
\(884\) 0 0
\(885\) 10.6717 0.358726
\(886\) 0 0
\(887\) −31.3875 −1.05389 −0.526944 0.849900i \(-0.676662\pi\)
−0.526944 + 0.849900i \(0.676662\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.53941i 0.0515723i
\(892\) 0 0
\(893\) 69.4102 2.32272
\(894\) 0 0
\(895\) 0.717721i 0.0239908i
\(896\) 0 0
\(897\) 7.03929 0.902413i 0.235035 0.0301307i
\(898\) 0 0
\(899\) 25.7192i 0.857782i
\(900\) 0 0
\(901\) −28.3664 −0.945022
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.06671i 0.268146i
\(906\) 0 0
\(907\) −9.77516 −0.324579 −0.162289 0.986743i \(-0.551888\pi\)
−0.162289 + 0.986743i \(0.551888\pi\)
\(908\) 0 0
\(909\) −9.98961 −0.331334
\(910\) 0 0
\(911\) −55.2193 −1.82950 −0.914749 0.404024i \(-0.867611\pi\)
−0.914749 + 0.404024i \(0.867611\pi\)
\(912\) 0 0
\(913\) −24.1875 −0.800488
\(914\) 0 0
\(915\) 9.70853i 0.320954i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.40993 −0.112483 −0.0562415 0.998417i \(-0.517912\pi\)
−0.0562415 + 0.998417i \(0.517912\pi\)
\(920\) 0 0
\(921\) 2.75982i 0.0909391i
\(922\) 0 0
\(923\) −2.92628 22.8265i −0.0963198 0.751345i
\(924\) 0 0
\(925\) 15.9794i 0.525398i
\(926\) 0 0
\(927\) 19.5720 0.642829
\(928\) 0 0
\(929\) 23.9446i 0.785598i −0.919624 0.392799i \(-0.871507\pi\)
0.919624 0.392799i \(-0.128493\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −22.6438 −0.741326
\(934\) 0 0
\(935\) −4.12968 −0.135055
\(936\) 0 0
\(937\) 50.4540 1.64826 0.824130 0.566400i \(-0.191664\pi\)
0.824130 + 0.566400i \(0.191664\pi\)
\(938\) 0 0
\(939\) 3.18533 0.103949
\(940\) 0 0
\(941\) 31.5937i 1.02992i −0.857213 0.514962i \(-0.827806\pi\)
0.857213 0.514962i \(-0.172194\pi\)
\(942\) 0 0
\(943\) 9.38026i 0.305463i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.9608i 1.39604i −0.716079 0.698020i \(-0.754065\pi\)
0.716079 0.698020i \(-0.245935\pi\)
\(948\) 0 0
\(949\) −3.82383 29.8278i −0.124127 0.968252i
\(950\) 0 0
\(951\) 14.9006i 0.483186i
\(952\) 0 0
\(953\) 6.86388 0.222343 0.111171 0.993801i \(-0.464540\pi\)
0.111171 + 0.993801i \(0.464540\pi\)
\(954\) 0 0
\(955\) 25.3486i 0.820261i
\(956\) 0 0
\(957\) 5.59316i 0.180801i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −19.1083 −0.616397
\(962\) 0 0
\(963\) 6.86479 0.221215
\(964\) 0 0
\(965\) −21.6756 −0.697763
\(966\) 0 0
\(967\) 13.3204i 0.428356i −0.976795 0.214178i \(-0.931293\pi\)
0.976795 0.214178i \(-0.0687073\pi\)
\(968\) 0 0
\(969\) 15.4121i 0.495108i
\(970\) 0 0
\(971\) 23.5330 0.755210 0.377605 0.925967i \(-0.376748\pi\)
0.377605 + 0.925967i \(0.376748\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −14.0672 + 1.80337i −0.450512 + 0.0577541i
\(976\) 0 0
\(977\) 54.5764i 1.74605i −0.487672 0.873027i \(-0.662154\pi\)
0.487672 0.873027i \(-0.337846\pi\)
\(978\) 0 0
\(979\) −25.9847 −0.830474
\(980\) 0 0
\(981\) 15.5038i 0.495000i
\(982\) 0 0
\(983\) 23.4645i 0.748403i −0.927347 0.374201i \(-0.877917\pi\)
0.927347 0.374201i \(-0.122083\pi\)
\(984\) 0 0
\(985\) 2.14450 0.0683294
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.67243 −0.0531803
\(990\) 0 0
\(991\) 2.83495 0.0900551 0.0450275 0.998986i \(-0.485662\pi\)
0.0450275 + 0.998986i \(0.485662\pi\)
\(992\) 0 0
\(993\) 0.223213i 0.00708344i
\(994\) 0 0
\(995\) 6.50199i 0.206127i
\(996\) 0 0
\(997\) 50.1515 1.58832 0.794158 0.607712i \(-0.207912\pi\)
0.794158 + 0.607712i \(0.207912\pi\)
\(998\) 0 0
\(999\) 4.06240i 0.128529i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.q.4705.7 yes 16
7.6 odd 2 7644.2.e.p.4705.10 yes 16
13.12 even 2 inner 7644.2.e.q.4705.10 yes 16
91.90 odd 2 7644.2.e.p.4705.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7644.2.e.p.4705.7 16 91.90 odd 2
7644.2.e.p.4705.10 yes 16 7.6 odd 2
7644.2.e.q.4705.7 yes 16 1.1 even 1 trivial
7644.2.e.q.4705.10 yes 16 13.12 even 2 inner