Properties

Label 7644.2.e.q
Level $7644$
Weight $2$
Character orbit 7644.e
Analytic conductor $61.038$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 46x^{14} + 825x^{12} + 7500x^{10} + 37308x^{8} + 101640x^{6} + 144580x^{4} + 100432x^{2} + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_1 q^{5} + q^{9} + \beta_{7} q^{11} + \beta_{10} q^{13} + \beta_1 q^{15} + ( - \beta_{5} - \beta_{4}) q^{17} + ( - \beta_{13} - \beta_{7}) q^{19} + ( - \beta_{6} - \beta_{5}) q^{23}+ \cdots + \beta_{7} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 16 q^{9} - 4 q^{23} - 12 q^{25} + 16 q^{27} - 4 q^{29} - 12 q^{43} - 12 q^{53} + 16 q^{61} - 24 q^{65} - 4 q^{69} - 12 q^{75} - 20 q^{79} + 16 q^{81} - 4 q^{87} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 46x^{14} + 825x^{12} + 7500x^{10} + 37308x^{8} + 101640x^{6} + 144580x^{4} + 100432x^{2} + 26896 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1029 \nu^{14} + 46524 \nu^{12} + 810588 \nu^{10} + 7012670 \nu^{8} + 31937661 \nu^{6} + \cdots + 26131976 ) / 8084 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5779 \nu^{14} + 259588 \nu^{12} + 4487279 \nu^{10} + 38499406 \nu^{8} + 174091604 \nu^{6} + \cdots + 144572216 ) / 32336 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 10181 \nu^{14} - 457843 \nu^{12} - 7925901 \nu^{10} - 68119059 \nu^{8} - 308620618 \nu^{6} + \cdots - 258224456 ) / 16168 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7107 \nu^{14} + 319283 \nu^{12} + 5520145 \nu^{10} + 47371277 \nu^{8} + 214261466 \nu^{6} + \cdots + 178048832 ) / 8084 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 69333 \nu^{15} - 3111090 \nu^{13} - 53685041 \nu^{11} - 459255180 \nu^{9} + \cdots - 1622011624 \nu ) / 1325776 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 35401 \nu^{15} + 1588471 \nu^{13} + 27419701 \nu^{11} + 234835195 \nu^{9} + 1059524506 \nu^{7} + \cdots + 872739288 \nu ) / 662888 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 5779 \nu^{15} + 259588 \nu^{13} + 4487279 \nu^{11} + 38499406 \nu^{9} + 174091604 \nu^{7} + \cdots + 144572216 \nu ) / 32336 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 628715 \nu^{15} + 850381 \nu^{14} + 28258576 \nu^{13} + 38204620 \nu^{12} + 488879103 \nu^{11} + \cdots + 21399812568 ) / 2651552 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 628715 \nu^{15} - 850381 \nu^{14} + 28258576 \nu^{13} - 38204620 \nu^{12} + 488879103 \nu^{11} + \cdots - 21399812568 ) / 2651552 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 252577 \nu^{15} - 11351796 \nu^{13} - 196381393 \nu^{11} - 1686697514 \nu^{9} + \cdots - 6418142072 \nu ) / 662888 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 926273 \nu^{15} - 41611766 \nu^{13} - 719442749 \nu^{11} - 6174680152 \nu^{9} + \cdots - 23352611144 \nu ) / 1325776 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 2473233 \nu^{15} - 533492 \nu^{14} - 111120200 \nu^{13} - 23989264 \nu^{12} + \cdots - 13573364224 ) / 2651552 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 2473233 \nu^{15} + 533492 \nu^{14} - 111120200 \nu^{13} + 23989264 \nu^{12} + \cdots + 13573364224 ) / 2651552 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{13} - 2\beta_{12} - \beta_{11} - \beta_{10} + 2\beta_{9} + \beta_{8} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{15} + 2 \beta_{14} + \beta_{11} - \beta_{10} + 3 \beta_{6} - 2 \beta_{5} - 13 \beta_{4} + \cdots + 63 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{15} + 2 \beta_{14} - 23 \beta_{13} + 35 \beta_{12} + 21 \beta_{11} + 21 \beta_{10} + \cdots + 109 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 41 \beta_{15} - 41 \beta_{14} - 27 \beta_{11} + 27 \beta_{10} - 79 \beta_{6} + 42 \beta_{5} + 331 \beta_{4} + \cdots - 823 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 50 \beta_{15} - 50 \beta_{14} + 425 \beta_{13} - 545 \beta_{12} - 357 \beta_{11} - 357 \beta_{10} + \cdots - 1537 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 669 \beta_{15} + 669 \beta_{14} + 561 \beta_{11} - 561 \beta_{10} + 1575 \beta_{6} - 714 \beta_{5} + \cdots + 11981 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 986 \beta_{15} + 986 \beta_{14} - 7385 \beta_{13} + 8425 \beta_{12} + 5827 \beta_{11} + \cdots + 23415 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 10477 \beta_{15} - 10477 \beta_{14} - 10545 \beta_{11} + 10545 \beta_{10} - 28537 \beta_{6} + \cdots - 184757 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 17930 \beta_{15} - 17930 \beta_{14} + 125241 \beta_{13} - 132079 \beta_{12} - 94741 \beta_{11} + \cdots - 370629 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 164687 \beta_{15} + 164687 \beta_{14} + 188009 \beta_{11} - 188009 \beta_{10} + 495283 \beta_{6} + \cdots + 2937641 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 313250 \beta_{15} + 313250 \beta_{14} - 2099069 \beta_{13} + 2103681 \beta_{12} + 1546027 \beta_{11} + \cdots + 5980679 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 2622537 \beta_{15} - 2622537 \beta_{14} - 3250405 \beta_{11} + 3250405 \beta_{10} - 8409585 \beta_{6} + \cdots - 47483817 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 5349474 \beta_{15} - 5349474 \beta_{14} + 34958089 \beta_{13} - 33929327 \beta_{12} + \cdots - 97484809 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4705.1
4.06325i
3.13069i
2.49203i
2.43216i
2.13442i
1.03592i
1.03273i
0.931518i
0.931518i
1.03273i
1.03592i
2.13442i
2.43216i
2.49203i
3.13069i
4.06325i
0 1.00000 0 4.06325i 0 0 0 1.00000 0
4705.2 0 1.00000 0 3.13069i 0 0 0 1.00000 0
4705.3 0 1.00000 0 2.49203i 0 0 0 1.00000 0
4705.4 0 1.00000 0 2.43216i 0 0 0 1.00000 0
4705.5 0 1.00000 0 2.13442i 0 0 0 1.00000 0
4705.6 0 1.00000 0 1.03592i 0 0 0 1.00000 0
4705.7 0 1.00000 0 1.03273i 0 0 0 1.00000 0
4705.8 0 1.00000 0 0.931518i 0 0 0 1.00000 0
4705.9 0 1.00000 0 0.931518i 0 0 0 1.00000 0
4705.10 0 1.00000 0 1.03273i 0 0 0 1.00000 0
4705.11 0 1.00000 0 1.03592i 0 0 0 1.00000 0
4705.12 0 1.00000 0 2.13442i 0 0 0 1.00000 0
4705.13 0 1.00000 0 2.43216i 0 0 0 1.00000 0
4705.14 0 1.00000 0 2.49203i 0 0 0 1.00000 0
4705.15 0 1.00000 0 3.13069i 0 0 0 1.00000 0
4705.16 0 1.00000 0 4.06325i 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4705.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7644.2.e.q yes 16
7.b odd 2 1 7644.2.e.p 16
13.b even 2 1 inner 7644.2.e.q yes 16
91.b odd 2 1 7644.2.e.p 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7644.2.e.p 16 7.b odd 2 1
7644.2.e.p 16 91.b odd 2 1
7644.2.e.q yes 16 1.a even 1 1 trivial
7644.2.e.q yes 16 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7644, [\chi])\):

\( T_{5}^{16} + 46 T_{5}^{14} + 825 T_{5}^{12} + 7500 T_{5}^{10} + 37308 T_{5}^{8} + 101640 T_{5}^{6} + \cdots + 26896 \) Copy content Toggle raw display
\( T_{11}^{16} + 88 T_{11}^{14} + 2772 T_{11}^{12} + 42528 T_{11}^{10} + 355556 T_{11}^{8} + 1668832 T_{11}^{6} + \cdots + 2166784 \) Copy content Toggle raw display
\( T_{17}^{8} - 92T_{17}^{6} + 16T_{17}^{5} + 2708T_{17}^{4} - 416T_{17}^{3} - 30464T_{17}^{2} + 1152T_{17} + 106048 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T - 1)^{16} \) Copy content Toggle raw display
$5$ \( T^{16} + 46 T^{14} + \cdots + 26896 \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} + 88 T^{14} + \cdots + 2166784 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 815730721 \) Copy content Toggle raw display
$17$ \( (T^{8} - 92 T^{6} + \cdots + 106048)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 928055296 \) Copy content Toggle raw display
$23$ \( (T^{8} + 2 T^{7} + \cdots - 294784)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 2 T^{7} + \cdots + 199552)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 1494286336 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 13153337344 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 581937071104 \) Copy content Toggle raw display
$43$ \( (T^{8} + 6 T^{7} + \cdots + 42752)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 4650958065664 \) Copy content Toggle raw display
$53$ \( (T^{8} + 6 T^{7} + \cdots + 1984)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 34780758016 \) Copy content Toggle raw display
$61$ \( (T^{8} - 8 T^{7} + \cdots + 192512)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 9487582756864 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 10654113796096 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 140388753227776 \) Copy content Toggle raw display
$79$ \( (T^{8} + 10 T^{7} + \cdots - 5325824)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 169190997934336 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 9364358895376 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 19550829543424 \) Copy content Toggle raw display
show more
show less