Properties

Label 7644.2.e.m.4705.4
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,0,0,6,0,0,0,4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.50922496.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 13x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.4
Root \(0.634243i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.m.4705.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +0.237279i q^{5} +1.00000 q^{9} +2.12216i q^{11} +(1.74823 - 3.15336i) q^{13} +0.237279i q^{15} -3.19547 q^{17} +1.88488i q^{19} +0.748228 q^{23} +4.94370 q^{25} +1.00000 q^{27} +3.94370 q^{29} +4.42185i q^{31} +2.12216i q^{33} +10.0765i q^{37} +(1.74823 - 3.15336i) q^{39} +5.89191i q^{41} -5.94370 q^{43} +0.237279i q^{45} -2.77425i q^{47} -3.19547 q^{51} -2.44724 q^{53} -0.503544 q^{55} +1.88488i q^{57} +4.65913i q^{59} -9.88740 q^{61} +(0.748228 + 0.414819i) q^{65} +2.53697i q^{67} +0.748228 q^{69} -11.4404i q^{71} +1.41032i q^{73} +4.94370 q^{75} +5.44015 q^{79} +1.00000 q^{81} -6.54401i q^{83} -0.758219i q^{85} +3.94370 q^{87} -12.3762i q^{89} +4.42185i q^{93} -0.447242 q^{95} +16.2057i q^{97} +2.12216i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} + 4 q^{13} + 8 q^{17} - 2 q^{23} - 4 q^{25} + 6 q^{27} - 10 q^{29} + 4 q^{39} - 2 q^{43} + 8 q^{51} + 6 q^{53} - 16 q^{55} + 8 q^{61} - 2 q^{65} - 2 q^{69} - 4 q^{75} - 14 q^{79}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0.237279i 0.106115i 0.998591 + 0.0530573i \(0.0168966\pi\)
−0.998591 + 0.0530573i \(0.983103\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.12216i 0.639854i 0.947442 + 0.319927i \(0.103658\pi\)
−0.947442 + 0.319927i \(0.896342\pi\)
\(12\) 0 0
\(13\) 1.74823 3.15336i 0.484871 0.874586i
\(14\) 0 0
\(15\) 0.237279i 0.0612653i
\(16\) 0 0
\(17\) −3.19547 −0.775015 −0.387508 0.921866i \(-0.626664\pi\)
−0.387508 + 0.921866i \(0.626664\pi\)
\(18\) 0 0
\(19\) 1.88488i 0.432420i 0.976347 + 0.216210i \(0.0693696\pi\)
−0.976347 + 0.216210i \(0.930630\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.748228 0.156016 0.0780082 0.996953i \(-0.475144\pi\)
0.0780082 + 0.996953i \(0.475144\pi\)
\(24\) 0 0
\(25\) 4.94370 0.988740
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.94370 0.732326 0.366163 0.930551i \(-0.380671\pi\)
0.366163 + 0.930551i \(0.380671\pi\)
\(30\) 0 0
\(31\) 4.42185i 0.794188i 0.917778 + 0.397094i \(0.129981\pi\)
−0.917778 + 0.397094i \(0.870019\pi\)
\(32\) 0 0
\(33\) 2.12216i 0.369420i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0765i 1.65656i 0.560312 + 0.828281i \(0.310681\pi\)
−0.560312 + 0.828281i \(0.689319\pi\)
\(38\) 0 0
\(39\) 1.74823 3.15336i 0.279941 0.504942i
\(40\) 0 0
\(41\) 5.89191i 0.920161i 0.887877 + 0.460081i \(0.152180\pi\)
−0.887877 + 0.460081i \(0.847820\pi\)
\(42\) 0 0
\(43\) −5.94370 −0.906406 −0.453203 0.891407i \(-0.649719\pi\)
−0.453203 + 0.891407i \(0.649719\pi\)
\(44\) 0 0
\(45\) 0.237279i 0.0353715i
\(46\) 0 0
\(47\) 2.77425i 0.404666i −0.979317 0.202333i \(-0.935148\pi\)
0.979317 0.202333i \(-0.0648524\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.19547 −0.447455
\(52\) 0 0
\(53\) −2.44724 −0.336155 −0.168077 0.985774i \(-0.553756\pi\)
−0.168077 + 0.985774i \(0.553756\pi\)
\(54\) 0 0
\(55\) −0.503544 −0.0678978
\(56\) 0 0
\(57\) 1.88488i 0.249658i
\(58\) 0 0
\(59\) 4.65913i 0.606567i 0.952900 + 0.303283i \(0.0980829\pi\)
−0.952900 + 0.303283i \(0.901917\pi\)
\(60\) 0 0
\(61\) −9.88740 −1.26595 −0.632976 0.774172i \(-0.718167\pi\)
−0.632976 + 0.774172i \(0.718167\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.748228 + 0.414819i 0.0928063 + 0.0514519i
\(66\) 0 0
\(67\) 2.53697i 0.309941i 0.987919 + 0.154970i \(0.0495282\pi\)
−0.987919 + 0.154970i \(0.950472\pi\)
\(68\) 0 0
\(69\) 0.748228 0.0900761
\(70\) 0 0
\(71\) 11.4404i 1.35773i −0.734264 0.678864i \(-0.762473\pi\)
0.734264 0.678864i \(-0.237527\pi\)
\(72\) 0 0
\(73\) 1.41032i 0.165065i 0.996588 + 0.0825326i \(0.0263009\pi\)
−0.996588 + 0.0825326i \(0.973699\pi\)
\(74\) 0 0
\(75\) 4.94370 0.570849
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.44015 0.612065 0.306033 0.952021i \(-0.400998\pi\)
0.306033 + 0.952021i \(0.400998\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.54401i 0.718298i −0.933280 0.359149i \(-0.883067\pi\)
0.933280 0.359149i \(-0.116933\pi\)
\(84\) 0 0
\(85\) 0.758219i 0.0822404i
\(86\) 0 0
\(87\) 3.94370 0.422809
\(88\) 0 0
\(89\) 12.3762i 1.31187i −0.754817 0.655936i \(-0.772274\pi\)
0.754817 0.655936i \(-0.227726\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.42185i 0.458524i
\(94\) 0 0
\(95\) −0.447242 −0.0458861
\(96\) 0 0
\(97\) 16.2057i 1.64544i 0.568450 + 0.822718i \(0.307543\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(98\) 0 0
\(99\) 2.12216i 0.213285i
\(100\) 0 0
\(101\) 16.5793 1.64970 0.824852 0.565348i \(-0.191258\pi\)
0.824852 + 0.565348i \(0.191258\pi\)
\(102\) 0 0
\(103\) 9.88740 0.974234 0.487117 0.873337i \(-0.338048\pi\)
0.487117 + 0.873337i \(0.338048\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6919 1.03363 0.516814 0.856098i \(-0.327118\pi\)
0.516814 + 0.856098i \(0.327118\pi\)
\(108\) 0 0
\(109\) 8.36914i 0.801618i 0.916162 + 0.400809i \(0.131271\pi\)
−0.916162 + 0.400809i \(0.868729\pi\)
\(110\) 0 0
\(111\) 10.0765i 0.956417i
\(112\) 0 0
\(113\) −7.94370 −0.747280 −0.373640 0.927574i \(-0.621891\pi\)
−0.373640 + 0.927574i \(0.621891\pi\)
\(114\) 0 0
\(115\) 0.177539i 0.0165556i
\(116\) 0 0
\(117\) 1.74823 3.15336i 0.161624 0.291529i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.49646 0.590587
\(122\) 0 0
\(123\) 5.89191i 0.531255i
\(124\) 0 0
\(125\) 2.35943i 0.211034i
\(126\) 0 0
\(127\) 6.89448 0.611787 0.305893 0.952066i \(-0.401045\pi\)
0.305893 + 0.952066i \(0.401045\pi\)
\(128\) 0 0
\(129\) −5.94370 −0.523313
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.237279i 0.0204218i
\(136\) 0 0
\(137\) 18.0308i 1.54048i 0.637757 + 0.770238i \(0.279862\pi\)
−0.637757 + 0.770238i \(0.720138\pi\)
\(138\) 0 0
\(139\) 13.8874 1.17791 0.588957 0.808165i \(-0.299539\pi\)
0.588957 + 0.808165i \(0.299539\pi\)
\(140\) 0 0
\(141\) 2.77425i 0.233634i
\(142\) 0 0
\(143\) 6.69193 + 3.71001i 0.559607 + 0.310247i
\(144\) 0 0
\(145\) 0.935758i 0.0777105i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.7865i 1.12943i 0.825285 + 0.564717i \(0.191015\pi\)
−0.825285 + 0.564717i \(0.808985\pi\)
\(150\) 0 0
\(151\) 10.9061i 0.887527i 0.896144 + 0.443764i \(0.146357\pi\)
−0.896144 + 0.443764i \(0.853643\pi\)
\(152\) 0 0
\(153\) −3.19547 −0.258338
\(154\) 0 0
\(155\) −1.04921 −0.0842749
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) −2.44724 −0.194079
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.8069i 1.39474i 0.716710 + 0.697371i \(0.245647\pi\)
−0.716710 + 0.697371i \(0.754353\pi\)
\(164\) 0 0
\(165\) −0.503544 −0.0392008
\(166\) 0 0
\(167\) 18.3278i 1.41825i −0.705083 0.709125i \(-0.749090\pi\)
0.705083 0.709125i \(-0.250910\pi\)
\(168\) 0 0
\(169\) −6.88740 11.0256i −0.529800 0.848123i
\(170\) 0 0
\(171\) 1.88488i 0.144140i
\(172\) 0 0
\(173\) 4.20256 0.319515 0.159757 0.987156i \(-0.448929\pi\)
0.159757 + 0.987156i \(0.448929\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.65913i 0.350202i
\(178\) 0 0
\(179\) 24.5230 1.83294 0.916468 0.400107i \(-0.131027\pi\)
0.916468 + 0.400107i \(0.131027\pi\)
\(180\) 0 0
\(181\) −2.39094 −0.177717 −0.0888586 0.996044i \(-0.528322\pi\)
−0.0888586 + 0.996044i \(0.528322\pi\)
\(182\) 0 0
\(183\) −9.88740 −0.730897
\(184\) 0 0
\(185\) −2.39094 −0.175785
\(186\) 0 0
\(187\) 6.78128i 0.495897i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.300986 0.0217786 0.0108893 0.999941i \(-0.496534\pi\)
0.0108893 + 0.999941i \(0.496534\pi\)
\(192\) 0 0
\(193\) 2.53697i 0.182615i 0.995823 + 0.0913077i \(0.0291047\pi\)
−0.995823 + 0.0913077i \(0.970895\pi\)
\(194\) 0 0
\(195\) 0.748228 + 0.414819i 0.0535817 + 0.0297058i
\(196\) 0 0
\(197\) 9.66166i 0.688365i 0.938903 + 0.344182i \(0.111844\pi\)
−0.938903 + 0.344182i \(0.888156\pi\)
\(198\) 0 0
\(199\) −2.39094 −0.169489 −0.0847446 0.996403i \(-0.527007\pi\)
−0.0847446 + 0.996403i \(0.527007\pi\)
\(200\) 0 0
\(201\) 2.53697i 0.178944i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.39803 −0.0976425
\(206\) 0 0
\(207\) 0.748228 0.0520054
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −14.9366 −1.02828 −0.514139 0.857707i \(-0.671889\pi\)
−0.514139 + 0.857707i \(0.671889\pi\)
\(212\) 0 0
\(213\) 11.4404i 0.783884i
\(214\) 0 0
\(215\) 1.41032i 0.0961828i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.41032i 0.0953004i
\(220\) 0 0
\(221\) −5.58641 + 10.0765i −0.375783 + 0.677817i
\(222\) 0 0
\(223\) 11.6777i 0.781996i 0.920391 + 0.390998i \(0.127870\pi\)
−0.920391 + 0.390998i \(0.872130\pi\)
\(224\) 0 0
\(225\) 4.94370 0.329580
\(226\) 0 0
\(227\) 13.1478i 0.872647i 0.899790 + 0.436323i \(0.143720\pi\)
−0.899790 + 0.436323i \(0.856280\pi\)
\(228\) 0 0
\(229\) 1.30420i 0.0861837i 0.999071 + 0.0430918i \(0.0137208\pi\)
−0.999071 + 0.0430918i \(0.986279\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.4331 0.814517 0.407259 0.913313i \(-0.366485\pi\)
0.407259 + 0.913313i \(0.366485\pi\)
\(234\) 0 0
\(235\) 0.658273 0.0429410
\(236\) 0 0
\(237\) 5.44015 0.353376
\(238\) 0 0
\(239\) 21.3260i 1.37946i −0.724065 0.689732i \(-0.757728\pi\)
0.724065 0.689732i \(-0.242272\pi\)
\(240\) 0 0
\(241\) 1.76540i 0.113719i −0.998382 0.0568596i \(-0.981891\pi\)
0.998382 0.0568596i \(-0.0181087\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.94370 + 3.29519i 0.378188 + 0.209668i
\(248\) 0 0
\(249\) 6.54401i 0.414709i
\(250\) 0 0
\(251\) −16.3768 −1.03369 −0.516846 0.856078i \(-0.672894\pi\)
−0.516846 + 0.856078i \(0.672894\pi\)
\(252\) 0 0
\(253\) 1.58786i 0.0998277i
\(254\) 0 0
\(255\) 0.758219i 0.0474815i
\(256\) 0 0
\(257\) −3.79744 −0.236878 −0.118439 0.992961i \(-0.537789\pi\)
−0.118439 + 0.992961i \(0.537789\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.94370 0.244109
\(262\) 0 0
\(263\) 6.13208 0.378120 0.189060 0.981966i \(-0.439456\pi\)
0.189060 + 0.981966i \(0.439456\pi\)
\(264\) 0 0
\(265\) 0.580680i 0.0356709i
\(266\) 0 0
\(267\) 12.3762i 0.757409i
\(268\) 0 0
\(269\) −7.19547 −0.438716 −0.219358 0.975644i \(-0.570396\pi\)
−0.219358 + 0.975644i \(0.570396\pi\)
\(270\) 0 0
\(271\) 24.5882i 1.49362i 0.665035 + 0.746812i \(0.268417\pi\)
−0.665035 + 0.746812i \(0.731583\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.4913i 0.632649i
\(276\) 0 0
\(277\) 0.545670 0.0327861 0.0163931 0.999866i \(-0.494782\pi\)
0.0163931 + 0.999866i \(0.494782\pi\)
\(278\) 0 0
\(279\) 4.42185i 0.264729i
\(280\) 0 0
\(281\) 0.223920i 0.0133580i −0.999978 0.00667898i \(-0.997874\pi\)
0.999978 0.00667898i \(-0.00212600\pi\)
\(282\) 0 0
\(283\) −6.39094 −0.379902 −0.189951 0.981794i \(-0.560833\pi\)
−0.189951 + 0.981794i \(0.560833\pi\)
\(284\) 0 0
\(285\) −0.447242 −0.0264923
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −6.78897 −0.399351
\(290\) 0 0
\(291\) 16.2057i 0.949993i
\(292\) 0 0
\(293\) 12.8507i 0.750748i −0.926873 0.375374i \(-0.877514\pi\)
0.926873 0.375374i \(-0.122486\pi\)
\(294\) 0 0
\(295\) −1.10552 −0.0643656
\(296\) 0 0
\(297\) 2.12216i 0.123140i
\(298\) 0 0
\(299\) 1.30807 2.35943i 0.0756478 0.136450i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 16.5793 0.952457
\(304\) 0 0
\(305\) 2.34608i 0.134336i
\(306\) 0 0
\(307\) 10.8481i 0.619131i −0.950878 0.309566i \(-0.899816\pi\)
0.950878 0.309566i \(-0.100184\pi\)
\(308\) 0 0
\(309\) 9.88740 0.562474
\(310\) 0 0
\(311\) −10.3909 −0.589216 −0.294608 0.955618i \(-0.595189\pi\)
−0.294608 + 0.955618i \(0.595189\pi\)
\(312\) 0 0
\(313\) −2.11260 −0.119411 −0.0597057 0.998216i \(-0.519016\pi\)
−0.0597057 + 0.998216i \(0.519016\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.2982i 1.58938i 0.607013 + 0.794692i \(0.292368\pi\)
−0.607013 + 0.794692i \(0.707632\pi\)
\(318\) 0 0
\(319\) 8.36914i 0.468582i
\(320\) 0 0
\(321\) 10.6919 0.596765
\(322\) 0 0
\(323\) 6.02307i 0.335132i
\(324\) 0 0
\(325\) 8.64271 15.5893i 0.479411 0.864737i
\(326\) 0 0
\(327\) 8.36914i 0.462815i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.17571i 0.174553i 0.996184 + 0.0872765i \(0.0278164\pi\)
−0.996184 + 0.0872765i \(0.972184\pi\)
\(332\) 0 0
\(333\) 10.0765i 0.552188i
\(334\) 0 0
\(335\) −0.601972 −0.0328892
\(336\) 0 0
\(337\) 13.8311 0.753428 0.376714 0.926330i \(-0.377054\pi\)
0.376714 + 0.926330i \(0.377054\pi\)
\(338\) 0 0
\(339\) −7.94370 −0.431442
\(340\) 0 0
\(341\) −9.38385 −0.508164
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.177539i 0.00955838i
\(346\) 0 0
\(347\) −4.70610 −0.252637 −0.126318 0.991990i \(-0.540316\pi\)
−0.126318 + 0.991990i \(0.540316\pi\)
\(348\) 0 0
\(349\) 6.29337i 0.336876i 0.985712 + 0.168438i \(0.0538723\pi\)
−0.985712 + 0.168438i \(0.946128\pi\)
\(350\) 0 0
\(351\) 1.74823 3.15336i 0.0933135 0.168314i
\(352\) 0 0
\(353\) 17.6757i 0.940784i 0.882458 + 0.470392i \(0.155887\pi\)
−0.882458 + 0.470392i \(0.844113\pi\)
\(354\) 0 0
\(355\) 2.71457 0.144075
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.1733i 1.27582i 0.770111 + 0.637910i \(0.220201\pi\)
−0.770111 + 0.637910i \(0.779799\pi\)
\(360\) 0 0
\(361\) 15.4472 0.813013
\(362\) 0 0
\(363\) 6.49646 0.340976
\(364\) 0 0
\(365\) −0.334639 −0.0175158
\(366\) 0 0
\(367\) 21.2854 1.11109 0.555545 0.831486i \(-0.312510\pi\)
0.555545 + 0.831486i \(0.312510\pi\)
\(368\) 0 0
\(369\) 5.89191i 0.306720i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 32.2642 1.67058 0.835288 0.549813i \(-0.185301\pi\)
0.835288 + 0.549813i \(0.185301\pi\)
\(374\) 0 0
\(375\) 2.35943i 0.121841i
\(376\) 0 0
\(377\) 6.89448 12.4359i 0.355084 0.640482i
\(378\) 0 0
\(379\) 27.8834i 1.43227i −0.697961 0.716136i \(-0.745909\pi\)
0.697961 0.716136i \(-0.254091\pi\)
\(380\) 0 0
\(381\) 6.89448 0.353215
\(382\) 0 0
\(383\) 16.4429i 0.840195i −0.907479 0.420098i \(-0.861996\pi\)
0.907479 0.420098i \(-0.138004\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.94370 −0.302135
\(388\) 0 0
\(389\) 25.7748 1.30683 0.653417 0.756998i \(-0.273335\pi\)
0.653417 + 0.756998i \(0.273335\pi\)
\(390\) 0 0
\(391\) −2.39094 −0.120915
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 1.29084i 0.0649490i
\(396\) 0 0
\(397\) 9.42438i 0.472996i −0.971632 0.236498i \(-0.924000\pi\)
0.971632 0.236498i \(-0.0759997\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.1556i 1.10640i 0.833049 + 0.553200i \(0.186593\pi\)
−0.833049 + 0.553200i \(0.813407\pi\)
\(402\) 0 0
\(403\) 13.9437 + 7.73040i 0.694585 + 0.385079i
\(404\) 0 0
\(405\) 0.237279i 0.0117905i
\(406\) 0 0
\(407\) −21.3839 −1.05996
\(408\) 0 0
\(409\) 0.532617i 0.0263362i −0.999913 0.0131681i \(-0.995808\pi\)
0.999913 0.0131681i \(-0.00419166\pi\)
\(410\) 0 0
\(411\) 18.0308i 0.889394i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.55276 0.0762219
\(416\) 0 0
\(417\) 13.8874 0.680069
\(418\) 0 0
\(419\) −25.9858 −1.26949 −0.634745 0.772721i \(-0.718895\pi\)
−0.634745 + 0.772721i \(0.718895\pi\)
\(420\) 0 0
\(421\) 7.73040i 0.376757i 0.982097 + 0.188378i \(0.0603231\pi\)
−0.982097 + 0.188378i \(0.939677\pi\)
\(422\) 0 0
\(423\) 2.77425i 0.134889i
\(424\) 0 0
\(425\) −15.7974 −0.766288
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.69193 + 3.71001i 0.323089 + 0.179121i
\(430\) 0 0
\(431\) 30.6443i 1.47608i 0.674756 + 0.738041i \(0.264249\pi\)
−0.674756 + 0.738041i \(0.735751\pi\)
\(432\) 0 0
\(433\) 1.88740 0.0907025 0.0453513 0.998971i \(-0.485559\pi\)
0.0453513 + 0.998971i \(0.485559\pi\)
\(434\) 0 0
\(435\) 0.935758i 0.0448662i
\(436\) 0 0
\(437\) 1.41032i 0.0674646i
\(438\) 0 0
\(439\) −9.28543 −0.443169 −0.221585 0.975141i \(-0.571123\pi\)
−0.221585 + 0.975141i \(0.571123\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.53011 −0.452789 −0.226395 0.974036i \(-0.572694\pi\)
−0.226395 + 0.974036i \(0.572694\pi\)
\(444\) 0 0
\(445\) 2.93661 0.139209
\(446\) 0 0
\(447\) 13.7865i 0.652079i
\(448\) 0 0
\(449\) 15.8042i 0.745847i 0.927862 + 0.372923i \(0.121645\pi\)
−0.927862 + 0.372923i \(0.878355\pi\)
\(450\) 0 0
\(451\) −12.5035 −0.588769
\(452\) 0 0
\(453\) 10.9061i 0.512414i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.9368i 1.49394i 0.664858 + 0.746970i \(0.268492\pi\)
−0.664858 + 0.746970i \(0.731508\pi\)
\(458\) 0 0
\(459\) −3.19547 −0.149152
\(460\) 0 0
\(461\) 25.9254i 1.20747i −0.797187 0.603733i \(-0.793679\pi\)
0.797187 0.603733i \(-0.206321\pi\)
\(462\) 0 0
\(463\) 0.310379i 0.0144245i 0.999974 + 0.00721226i \(0.00229576\pi\)
−0.999974 + 0.00721226i \(0.997704\pi\)
\(464\) 0 0
\(465\) −1.04921 −0.0486561
\(466\) 0 0
\(467\) −17.3839 −0.804429 −0.402214 0.915546i \(-0.631759\pi\)
−0.402214 + 0.915546i \(0.631759\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 12.6135i 0.579967i
\(474\) 0 0
\(475\) 9.31826i 0.427551i
\(476\) 0 0
\(477\) −2.44724 −0.112052
\(478\) 0 0
\(479\) 29.9922i 1.37038i −0.728366 0.685188i \(-0.759720\pi\)
0.728366 0.685188i \(-0.240280\pi\)
\(480\) 0 0
\(481\) 31.7748 + 17.6160i 1.44881 + 0.803220i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.84527 −0.174605
\(486\) 0 0
\(487\) 23.5196i 1.06577i 0.846187 + 0.532887i \(0.178893\pi\)
−0.846187 + 0.532887i \(0.821107\pi\)
\(488\) 0 0
\(489\) 17.8069i 0.805255i
\(490\) 0 0
\(491\) −1.68484 −0.0760357 −0.0380179 0.999277i \(-0.512104\pi\)
−0.0380179 + 0.999277i \(0.512104\pi\)
\(492\) 0 0
\(493\) −12.6020 −0.567564
\(494\) 0 0
\(495\) −0.503544 −0.0226326
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 10.9542i 0.490376i −0.969476 0.245188i \(-0.921150\pi\)
0.969476 0.245188i \(-0.0788497\pi\)
\(500\) 0 0
\(501\) 18.3278i 0.818827i
\(502\) 0 0
\(503\) −12.3768 −0.551853 −0.275926 0.961179i \(-0.588985\pi\)
−0.275926 + 0.961179i \(0.588985\pi\)
\(504\) 0 0
\(505\) 3.93393i 0.175058i
\(506\) 0 0
\(507\) −6.88740 11.0256i −0.305880 0.489664i
\(508\) 0 0
\(509\) 41.9669i 1.86015i −0.367371 0.930074i \(-0.619742\pi\)
0.367371 0.930074i \(-0.380258\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.88488i 0.0832193i
\(514\) 0 0
\(515\) 2.34608i 0.103380i
\(516\) 0 0
\(517\) 5.88740 0.258927
\(518\) 0 0
\(519\) 4.20256 0.184472
\(520\) 0 0
\(521\) −1.81162 −0.0793684 −0.0396842 0.999212i \(-0.512635\pi\)
−0.0396842 + 0.999212i \(0.512635\pi\)
\(522\) 0 0
\(523\) 29.6622 1.29704 0.648519 0.761199i \(-0.275389\pi\)
0.648519 + 0.761199i \(0.275389\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.1299i 0.615508i
\(528\) 0 0
\(529\) −22.4402 −0.975659
\(530\) 0 0
\(531\) 4.65913i 0.202189i
\(532\) 0 0
\(533\) 18.5793 + 10.3004i 0.804760 + 0.446160i
\(534\) 0 0
\(535\) 2.53697i 0.109683i
\(536\) 0 0
\(537\) 24.5230 1.05825
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 21.2930i 0.915456i 0.889092 + 0.457728i \(0.151337\pi\)
−0.889092 + 0.457728i \(0.848663\pi\)
\(542\) 0 0
\(543\) −2.39094 −0.102605
\(544\) 0 0
\(545\) −1.98582 −0.0850634
\(546\) 0 0
\(547\) −3.55276 −0.151905 −0.0759525 0.997111i \(-0.524200\pi\)
−0.0759525 + 0.997111i \(0.524200\pi\)
\(548\) 0 0
\(549\) −9.88740 −0.421984
\(550\) 0 0
\(551\) 7.43338i 0.316673i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.39094 −0.101490
\(556\) 0 0
\(557\) 15.5652i 0.659521i 0.944065 + 0.329760i \(0.106968\pi\)
−0.944065 + 0.329760i \(0.893032\pi\)
\(558\) 0 0
\(559\) −10.3909 + 18.7426i −0.439490 + 0.792729i
\(560\) 0 0
\(561\) 6.78128i 0.286306i
\(562\) 0 0
\(563\) 42.1657 1.77707 0.888537 0.458805i \(-0.151722\pi\)
0.888537 + 0.458805i \(0.151722\pi\)
\(564\) 0 0
\(565\) 1.88488i 0.0792973i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.8240 0.956832 0.478416 0.878133i \(-0.341211\pi\)
0.478416 + 0.878133i \(0.341211\pi\)
\(570\) 0 0
\(571\) 0.545670 0.0228356 0.0114178 0.999935i \(-0.496366\pi\)
0.0114178 + 0.999935i \(0.496366\pi\)
\(572\) 0 0
\(573\) 0.300986 0.0125739
\(574\) 0 0
\(575\) 3.69901 0.154260
\(576\) 0 0
\(577\) 30.3936i 1.26530i −0.774437 0.632651i \(-0.781967\pi\)
0.774437 0.632651i \(-0.218033\pi\)
\(578\) 0 0
\(579\) 2.53697i 0.105433i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.19343i 0.215090i
\(584\) 0 0
\(585\) 0.748228 + 0.414819i 0.0309354 + 0.0171506i
\(586\) 0 0
\(587\) 39.1909i 1.61758i −0.588096 0.808791i \(-0.700122\pi\)
0.588096 0.808791i \(-0.299878\pi\)
\(588\) 0 0
\(589\) −8.33464 −0.343423
\(590\) 0 0
\(591\) 9.66166i 0.397428i
\(592\) 0 0
\(593\) 34.7824i 1.42834i −0.699970 0.714172i \(-0.746803\pi\)
0.699970 0.714172i \(-0.253197\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.39094 −0.0978547
\(598\) 0 0
\(599\) −1.53011 −0.0625186 −0.0312593 0.999511i \(-0.509952\pi\)
−0.0312593 + 0.999511i \(0.509952\pi\)
\(600\) 0 0
\(601\) −10.8945 −0.444395 −0.222198 0.975002i \(-0.571323\pi\)
−0.222198 + 0.975002i \(0.571323\pi\)
\(602\) 0 0
\(603\) 2.53697i 0.103314i
\(604\) 0 0
\(605\) 1.54148i 0.0626699i
\(606\) 0 0
\(607\) 18.2642 0.741319 0.370660 0.928769i \(-0.379132\pi\)
0.370660 + 0.928769i \(0.379132\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.74823 4.85003i −0.353915 0.196211i
\(612\) 0 0
\(613\) 16.9772i 0.685704i 0.939389 + 0.342852i \(0.111393\pi\)
−0.939389 + 0.342852i \(0.888607\pi\)
\(614\) 0 0
\(615\) −1.39803 −0.0563739
\(616\) 0 0
\(617\) 6.48595i 0.261114i −0.991441 0.130557i \(-0.958323\pi\)
0.991441 0.130557i \(-0.0416766\pi\)
\(618\) 0 0
\(619\) 17.0487i 0.685244i −0.939473 0.342622i \(-0.888685\pi\)
0.939473 0.342622i \(-0.111315\pi\)
\(620\) 0 0
\(621\) 0.748228 0.0300254
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 24.1586 0.966346
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) 32.1991i 1.28386i
\(630\) 0 0
\(631\) 32.6469i 1.29965i −0.760082 0.649827i \(-0.774841\pi\)
0.760082 0.649827i \(-0.225159\pi\)
\(632\) 0 0
\(633\) −14.9366 −0.593677
\(634\) 0 0
\(635\) 1.63592i 0.0649195i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 11.4404i 0.452576i
\(640\) 0 0
\(641\) −23.8311 −0.941272 −0.470636 0.882328i \(-0.655975\pi\)
−0.470636 + 0.882328i \(0.655975\pi\)
\(642\) 0 0
\(643\) 4.12483i 0.162667i −0.996687 0.0813337i \(-0.974082\pi\)
0.996687 0.0813337i \(-0.0259180\pi\)
\(644\) 0 0
\(645\) 1.41032i 0.0555312i
\(646\) 0 0
\(647\) −29.1586 −1.14634 −0.573172 0.819435i \(-0.694287\pi\)
−0.573172 + 0.819435i \(0.694287\pi\)
\(648\) 0 0
\(649\) −9.88740 −0.388114
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.7677 1.59536 0.797682 0.603079i \(-0.206059\pi\)
0.797682 + 0.603079i \(0.206059\pi\)
\(654\) 0 0
\(655\) 1.89824i 0.0741702i
\(656\) 0 0
\(657\) 1.41032i 0.0550217i
\(658\) 0 0
\(659\) −30.2447 −1.17817 −0.589083 0.808073i \(-0.700511\pi\)
−0.589083 + 0.808073i \(0.700511\pi\)
\(660\) 0 0
\(661\) 23.2973i 0.906161i −0.891470 0.453081i \(-0.850325\pi\)
0.891470 0.453081i \(-0.149675\pi\)
\(662\) 0 0
\(663\) −5.58641 + 10.0765i −0.216958 + 0.391338i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.95079 0.114255
\(668\) 0 0
\(669\) 11.6777i 0.451486i
\(670\) 0 0
\(671\) 20.9826i 0.810024i
\(672\) 0 0
\(673\) 9.55276 0.368232 0.184116 0.982905i \(-0.441058\pi\)
0.184116 + 0.982905i \(0.441058\pi\)
\(674\) 0 0
\(675\) 4.94370 0.190283
\(676\) 0 0
\(677\) −41.1813 −1.58273 −0.791363 0.611347i \(-0.790628\pi\)
−0.791363 + 0.611347i \(0.790628\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 13.1478i 0.503823i
\(682\) 0 0
\(683\) 11.5599i 0.442327i −0.975237 0.221164i \(-0.929015\pi\)
0.975237 0.221164i \(-0.0709855\pi\)
\(684\) 0 0
\(685\) −4.27834 −0.163467
\(686\) 0 0
\(687\) 1.30420i 0.0497582i
\(688\) 0 0
\(689\) −4.27834 + 7.71704i −0.162992 + 0.293996i
\(690\) 0 0
\(691\) 5.84553i 0.222374i 0.993799 + 0.111187i \(0.0354653\pi\)
−0.993799 + 0.111187i \(0.964535\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.29519i 0.124994i
\(696\) 0 0
\(697\) 18.8274i 0.713139i
\(698\) 0 0
\(699\) 12.4331 0.470262
\(700\) 0 0
\(701\) −20.8382 −0.787047 −0.393524 0.919314i \(-0.628744\pi\)
−0.393524 + 0.919314i \(0.628744\pi\)
\(702\) 0 0
\(703\) −18.9929 −0.716331
\(704\) 0 0
\(705\) 0.658273 0.0247920
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.6821i 0.513840i 0.966433 + 0.256920i \(0.0827077\pi\)
−0.966433 + 0.256920i \(0.917292\pi\)
\(710\) 0 0
\(711\) 5.44015 0.204022
\(712\) 0 0
\(713\) 3.30855i 0.123906i
\(714\) 0 0
\(715\) −0.880309 + 1.58786i −0.0329217 + 0.0593825i
\(716\) 0 0
\(717\) 21.3260i 0.796434i
\(718\) 0 0
\(719\) 32.7819 1.22256 0.611279 0.791415i \(-0.290655\pi\)
0.611279 + 0.791415i \(0.290655\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.76540i 0.0656558i
\(724\) 0 0
\(725\) 19.4965 0.724080
\(726\) 0 0
\(727\) 34.7677 1.28946 0.644731 0.764409i \(-0.276969\pi\)
0.644731 + 0.764409i \(0.276969\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 18.9929 0.702478
\(732\) 0 0
\(733\) 38.8956i 1.43664i 0.695712 + 0.718321i \(0.255089\pi\)
−0.695712 + 0.718321i \(0.744911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.38385 −0.198317
\(738\) 0 0
\(739\) 11.9747i 0.440497i 0.975444 + 0.220248i \(0.0706868\pi\)
−0.975444 + 0.220248i \(0.929313\pi\)
\(740\) 0 0
\(741\) 5.94370 + 3.29519i 0.218347 + 0.121052i
\(742\) 0 0
\(743\) 18.1503i 0.665869i −0.942950 0.332935i \(-0.891961\pi\)
0.942950 0.332935i \(-0.108039\pi\)
\(744\) 0 0
\(745\) −3.27125 −0.119849
\(746\) 0 0
\(747\) 6.54401i 0.239433i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −28.9366 −1.05591 −0.527956 0.849272i \(-0.677041\pi\)
−0.527956 + 0.849272i \(0.677041\pi\)
\(752\) 0 0
\(753\) −16.3768 −0.596803
\(754\) 0 0
\(755\) −2.58780 −0.0941796
\(756\) 0 0
\(757\) −7.06339 −0.256723 −0.128362 0.991727i \(-0.540972\pi\)
−0.128362 + 0.991727i \(0.540972\pi\)
\(758\) 0 0
\(759\) 1.58786i 0.0576355i
\(760\) 0 0
\(761\) 7.42171i 0.269037i 0.990911 + 0.134518i \(0.0429487\pi\)
−0.990911 + 0.134518i \(0.957051\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.758219i 0.0274135i
\(766\) 0 0
\(767\) 14.6919 + 8.14522i 0.530495 + 0.294107i
\(768\) 0 0
\(769\) 2.16854i 0.0781994i 0.999235 + 0.0390997i \(0.0124490\pi\)
−0.999235 + 0.0390997i \(0.987551\pi\)
\(770\) 0 0
\(771\) −3.79744 −0.136762
\(772\) 0 0
\(773\) 19.3350i 0.695431i 0.937600 + 0.347716i \(0.113043\pi\)
−0.937600 + 0.347716i \(0.886957\pi\)
\(774\) 0 0
\(775\) 21.8603i 0.785245i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.1055 −0.397896
\(780\) 0 0
\(781\) 24.2783 0.868747
\(782\) 0 0
\(783\) 3.94370 0.140936
\(784\) 0 0
\(785\) 0.949118i 0.0338755i
\(786\) 0 0
\(787\) 25.9985i 0.926746i 0.886163 + 0.463373i \(0.153361\pi\)
−0.886163 + 0.463373i \(0.846639\pi\)
\(788\) 0 0
\(789\) 6.13208 0.218308
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −17.2854 + 31.1786i −0.613823 + 1.10718i
\(794\) 0 0
\(795\) 0.580680i 0.0205946i
\(796\) 0 0
\(797\) −11.4207 −0.404541 −0.202271 0.979330i \(-0.564832\pi\)
−0.202271 + 0.979330i \(0.564832\pi\)
\(798\) 0 0
\(799\) 8.86504i 0.313623i
\(800\) 0 0
\(801\) 12.3762i 0.437291i
\(802\) 0 0
\(803\) −2.99291 −0.105618
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −7.19547 −0.253293
\(808\) 0 0
\(809\) −46.7114 −1.64229 −0.821143 0.570723i \(-0.806663\pi\)
−0.821143 + 0.570723i \(0.806663\pi\)
\(810\) 0 0
\(811\) 24.7076i 0.867603i 0.901009 + 0.433801i \(0.142828\pi\)
−0.901009 + 0.433801i \(0.857172\pi\)
\(812\) 0 0
\(813\) 24.5882i 0.862345i
\(814\) 0 0
\(815\) −4.22521 −0.148003
\(816\) 0 0
\(817\) 11.2031i 0.391948i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27.4685i 0.958659i −0.877635 0.479329i \(-0.840880\pi\)
0.877635 0.479329i \(-0.159120\pi\)
\(822\) 0 0
\(823\) 27.5496 0.960318 0.480159 0.877181i \(-0.340579\pi\)
0.480159 + 0.877181i \(0.340579\pi\)
\(824\) 0 0
\(825\) 10.4913i 0.365260i
\(826\) 0 0
\(827\) 29.5757i 1.02845i −0.857656 0.514223i \(-0.828080\pi\)
0.857656 0.514223i \(-0.171920\pi\)
\(828\) 0 0
\(829\) −11.2713 −0.391467 −0.195733 0.980657i \(-0.562709\pi\)
−0.195733 + 0.980657i \(0.562709\pi\)
\(830\) 0 0
\(831\) 0.545670 0.0189291
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.34881 0.150497
\(836\) 0 0
\(837\) 4.42185i 0.152841i
\(838\) 0 0
\(839\) 38.2552i 1.32072i −0.750951 0.660358i \(-0.770405\pi\)
0.750951 0.660358i \(-0.229595\pi\)
\(840\) 0 0
\(841\) −13.4472 −0.463698
\(842\) 0 0
\(843\) 0.223920i 0.00771222i
\(844\) 0 0
\(845\) 2.61615 1.63424i 0.0899982 0.0562195i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.39094 −0.219337
\(850\) 0 0
\(851\) 7.53950i 0.258451i
\(852\) 0 0
\(853\) 8.47526i 0.290187i 0.989418 + 0.145094i \(0.0463484\pi\)
−0.989418 + 0.145094i \(0.953652\pi\)
\(854\) 0 0
\(855\) −0.447242 −0.0152954
\(856\) 0 0
\(857\) 11.5722 0.395300 0.197650 0.980273i \(-0.436669\pi\)
0.197650 + 0.980273i \(0.436669\pi\)
\(858\) 0 0
\(859\) −51.1728 −1.74599 −0.872997 0.487725i \(-0.837827\pi\)
−0.872997 + 0.487725i \(0.837827\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.1506i 0.413610i −0.978382 0.206805i \(-0.933693\pi\)
0.978382 0.206805i \(-0.0663066\pi\)
\(864\) 0 0
\(865\) 0.997180i 0.0339052i
\(866\) 0 0
\(867\) −6.78897 −0.230565
\(868\) 0 0
\(869\) 11.5449i 0.391632i
\(870\) 0 0
\(871\) 8.00000 + 4.43521i 0.271070 + 0.150281i
\(872\) 0 0
\(873\) 16.2057i 0.548479i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.8985i 0.840764i −0.907347 0.420382i \(-0.861896\pi\)
0.907347 0.420382i \(-0.138104\pi\)
\(878\) 0 0
\(879\) 12.8507i 0.433444i
\(880\) 0 0
\(881\) −54.7451 −1.84441 −0.922204 0.386704i \(-0.873614\pi\)
−0.922204 + 0.386704i \(0.873614\pi\)
\(882\) 0 0
\(883\) −8.27834 −0.278588 −0.139294 0.990251i \(-0.544483\pi\)
−0.139294 + 0.990251i \(0.544483\pi\)
\(884\) 0 0
\(885\) −1.10552 −0.0371615
\(886\) 0 0
\(887\) 1.00709 0.0338147 0.0169073 0.999857i \(-0.494618\pi\)
0.0169073 + 0.999857i \(0.494618\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.12216i 0.0710949i
\(892\) 0 0
\(893\) 5.22912 0.174986
\(894\) 0 0
\(895\) 5.81881i 0.194501i
\(896\) 0 0
\(897\) 1.30807 2.35943i 0.0436753 0.0787792i
\(898\) 0 0
\(899\) 17.4384i 0.581605i
\(900\) 0 0
\(901\) 7.82009 0.260525
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.567321i 0.0188584i
\(906\) 0 0
\(907\) 3.16182 0.104986 0.0524932 0.998621i \(-0.483283\pi\)
0.0524932 + 0.998621i \(0.483283\pi\)
\(908\) 0 0
\(909\) 16.5793 0.549901
\(910\) 0 0
\(911\) 47.3191 1.56775 0.783876 0.620918i \(-0.213240\pi\)
0.783876 + 0.620918i \(0.213240\pi\)
\(912\) 0 0
\(913\) 13.8874 0.459606
\(914\) 0 0
\(915\) 2.34608i 0.0775589i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −10.2642 −0.338583 −0.169292 0.985566i \(-0.554148\pi\)
−0.169292 + 0.985566i \(0.554148\pi\)
\(920\) 0 0
\(921\) 10.8481i 0.357456i
\(922\) 0 0
\(923\) −36.0758 20.0005i −1.18745 0.658323i
\(924\) 0 0
\(925\) 49.8151i 1.63791i
\(926\) 0 0
\(927\) 9.88740 0.324745
\(928\) 0 0
\(929\) 29.1145i 0.955214i −0.878574 0.477607i \(-0.841504\pi\)
0.878574 0.477607i \(-0.158496\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −10.3909 −0.340184
\(934\) 0 0
\(935\) 1.60906 0.0526219
\(936\) 0 0
\(937\) 40.6551 1.32814 0.664072 0.747668i \(-0.268827\pi\)
0.664072 + 0.747668i \(0.268827\pi\)
\(938\) 0 0
\(939\) −2.11260 −0.0689422
\(940\) 0 0
\(941\) 40.8983i 1.33325i 0.745395 + 0.666623i \(0.232261\pi\)
−0.745395 + 0.666623i \(0.767739\pi\)
\(942\) 0 0
\(943\) 4.40849i 0.143560i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 51.1790i 1.66309i −0.555454 0.831547i \(-0.687456\pi\)
0.555454 0.831547i \(-0.312544\pi\)
\(948\) 0 0
\(949\) 4.44724 + 2.46556i 0.144364 + 0.0800353i
\(950\) 0 0
\(951\) 28.2982i 0.917631i
\(952\) 0 0
\(953\) 39.4933 1.27931 0.639657 0.768661i \(-0.279077\pi\)
0.639657 + 0.768661i \(0.279077\pi\)
\(954\) 0 0
\(955\) 0.0714177i 0.00231102i
\(956\) 0 0
\(957\) 8.36914i 0.270536i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.4472 0.369266
\(962\) 0 0
\(963\) 10.6919 0.344543
\(964\) 0 0
\(965\) −0.601972 −0.0193782
\(966\) 0 0
\(967\) 3.53415i 0.113651i 0.998384 + 0.0568254i \(0.0180978\pi\)
−0.998384 + 0.0568254i \(0.981902\pi\)
\(968\) 0 0
\(969\) 6.02307i 0.193489i
\(970\) 0 0
\(971\) −16.6020 −0.532783 −0.266391 0.963865i \(-0.585831\pi\)
−0.266391 + 0.963865i \(0.585831\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.64271 15.5893i 0.276788 0.499256i
\(976\) 0 0
\(977\) 38.1838i 1.22161i −0.791782 0.610803i \(-0.790847\pi\)
0.791782 0.610803i \(-0.209153\pi\)
\(978\) 0 0
\(979\) 26.2642 0.839406
\(980\) 0 0
\(981\) 8.36914i 0.267206i
\(982\) 0 0
\(983\) 21.6497i 0.690519i 0.938507 + 0.345260i \(0.112209\pi\)
−0.938507 + 0.345260i \(0.887791\pi\)
\(984\) 0 0
\(985\) −2.29251 −0.0730455
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.44724 −0.141414
\(990\) 0 0
\(991\) −25.3839 −0.806345 −0.403172 0.915124i \(-0.632092\pi\)
−0.403172 + 0.915124i \(0.632092\pi\)
\(992\) 0 0
\(993\) 3.17571i 0.100778i
\(994\) 0 0
\(995\) 0.567321i 0.0179853i
\(996\) 0 0
\(997\) −41.7606 −1.32257 −0.661286 0.750134i \(-0.729989\pi\)
−0.661286 + 0.750134i \(0.729989\pi\)
\(998\) 0 0
\(999\) 10.0765i 0.318806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.m.4705.4 yes 6
7.6 odd 2 7644.2.e.j.4705.3 6
13.12 even 2 inner 7644.2.e.m.4705.3 yes 6
91.90 odd 2 7644.2.e.j.4705.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7644.2.e.j.4705.3 6 7.6 odd 2
7644.2.e.j.4705.4 yes 6 91.90 odd 2
7644.2.e.m.4705.3 yes 6 13.12 even 2 inner
7644.2.e.m.4705.4 yes 6 1.1 even 1 trivial