Properties

Label 7644.2.e.m
Level $7644$
Weight $2$
Character orbit 7644.e
Analytic conductor $61.038$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,0,0,6,0,0,0,4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.50922496.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 13x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - \beta_1 q^{5} + q^{9} - \beta_{4} q^{11} + (\beta_{3} - \beta_{2} + 1) q^{13} - \beta_1 q^{15} + ( - \beta_{5} + \beta_{3} + 2) q^{17} + ( - \beta_{4} + \beta_1) q^{19} + \beta_{3} q^{23}+ \cdots - \beta_{4} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} + 4 q^{13} + 8 q^{17} - 2 q^{23} - 4 q^{25} + 6 q^{27} - 10 q^{29} + 4 q^{39} - 2 q^{43} + 8 q^{51} + 6 q^{53} - 16 q^{55} + 8 q^{61} - 2 q^{65} - 2 q^{69} - 4 q^{75} - 14 q^{79}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 8x^{4} + 13x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 6\nu^{3} - 3\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 8\nu^{3} + 13\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + 6\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{5} - 7\nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} + 8\nu^{2} + 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - \beta_{3} - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{4} - 3\beta_{2} + 7\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{5} + 4\beta_{3} + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 27\beta_{4} + 15\beta_{2} - 43\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4705.1
2.43255i
1.29632i
0.634243i
0.634243i
1.29632i
2.43255i
0 1.00000 0 3.05352i 0 0 0 1.00000 0
4705.2 0 1.00000 0 2.76038i 0 0 0 1.00000 0
4705.3 0 1.00000 0 0.237279i 0 0 0 1.00000 0
4705.4 0 1.00000 0 0.237279i 0 0 0 1.00000 0
4705.5 0 1.00000 0 2.76038i 0 0 0 1.00000 0
4705.6 0 1.00000 0 3.05352i 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4705.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7644.2.e.m yes 6
7.b odd 2 1 7644.2.e.j 6
13.b even 2 1 inner 7644.2.e.m yes 6
91.b odd 2 1 7644.2.e.j 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7644.2.e.j 6 7.b odd 2 1
7644.2.e.j 6 91.b odd 2 1
7644.2.e.m yes 6 1.a even 1 1 trivial
7644.2.e.m yes 6 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7644, [\chi])\):

\( T_{5}^{6} + 17T_{5}^{4} + 72T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{6} + 20T_{11}^{4} + 84T_{11}^{2} + 64 \) Copy content Toggle raw display
\( T_{17}^{3} - 4T_{17}^{2} - 28T_{17} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 17 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 20 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{6} - 4 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( (T^{3} - 4 T^{2} - 28 T - 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 21 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( (T^{3} + T^{2} - 12 T + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 5 T^{2} - 16 T - 76)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 69 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
$37$ \( T^{6} + 144 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$41$ \( T^{6} + 152 T^{4} + \cdots + 99856 \) Copy content Toggle raw display
$43$ \( (T^{3} + T^{2} - 24 T + 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 177 T^{4} + \cdots + 7396 \) Copy content Toggle raw display
$53$ \( (T^{3} - 3 T^{2} + \cdots - 124)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 100 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$61$ \( (T^{3} - 4 T^{2} + \cdots + 448)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 128 T^{4} + \cdots + 16384 \) Copy content Toggle raw display
$71$ \( T^{6} + 404 T^{4} + \cdots + 40000 \) Copy content Toggle raw display
$73$ \( T^{6} + 125 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$79$ \( (T^{3} + 7 T^{2} - 64 T - 20)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 65 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$89$ \( T^{6} + 233 T^{4} + \cdots + 676 \) Copy content Toggle raw display
$97$ \( T^{6} + 477 T^{4} + \cdots + 2408704 \) Copy content Toggle raw display
show more
show less