L(s) = 1 | + 3-s + 3.05i·5-s + 9-s − 0.989i·11-s + (3.51 − 0.822i)13-s + 3.05i·15-s + 7.83·17-s − 4.04i·19-s + 2.51·23-s − 4.32·25-s + 27-s − 5.32·29-s + 5.68i·31-s − 0.989i·33-s − 6.44i·37-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.36i·5-s + 0.333·9-s − 0.298i·11-s + (0.973 − 0.228i)13-s + 0.788i·15-s + 1.90·17-s − 0.927i·19-s + 0.523·23-s − 0.864·25-s + 0.192·27-s − 0.988·29-s + 1.02i·31-s − 0.172i·33-s − 1.05i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.228i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7644 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.228i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.052570801\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.052570801\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-3.51 + 0.822i)T \) |
good | 5 | \( 1 - 3.05iT - 5T^{2} \) |
| 11 | \( 1 + 0.989iT - 11T^{2} \) |
| 17 | \( 1 - 7.83T + 17T^{2} \) |
| 19 | \( 1 + 4.04iT - 19T^{2} \) |
| 23 | \( 1 - 2.51T + 23T^{2} \) |
| 29 | \( 1 + 5.32T + 29T^{2} \) |
| 31 | \( 1 - 5.68iT - 31T^{2} \) |
| 37 | \( 1 + 6.44iT - 37T^{2} \) |
| 41 | \( 1 + 9.07iT - 41T^{2} \) |
| 43 | \( 1 - 3.32T + 43T^{2} \) |
| 47 | \( 1 + 12.7iT - 47T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 - 8.74iT - 59T^{2} \) |
| 61 | \( 1 - 8.64T + 61T^{2} \) |
| 67 | \( 1 - 9.73iT - 67T^{2} \) |
| 71 | \( 1 + 16.4iT - 71T^{2} \) |
| 73 | \( 1 + 10.1iT - 73T^{2} \) |
| 79 | \( 1 + 0.302T + 79T^{2} \) |
| 83 | \( 1 + 4.69iT - 83T^{2} \) |
| 89 | \( 1 + 0.235iT - 89T^{2} \) |
| 97 | \( 1 + 12.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70368975504142311646392190764, −7.24715520591371102850795302410, −6.72928538053147438004340611470, −5.74430156597315885799077399175, −5.33734354066275183893118826654, −3.94611578687377420906179096214, −3.45252453172703660285023463831, −2.90042123133004814273304181947, −2.00201374380402857954869237178, −0.809767138864285561880919689096,
1.07806923267706044368939791617, 1.43081600644455772771100020773, 2.68242525899218498931692589669, 3.67967924718778127577393161869, 4.13446395909953153709004466694, 5.09054566368277140147614259604, 5.63158602951124158140421815060, 6.37062703063982651557182175809, 7.41313458408957653982490030752, 8.108927341338640645074963324293