Properties

Label 7644.2.e.m.4705.1
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,0,0,0,0,0,6,0,0,0,4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.50922496.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 13x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.1
Root \(-2.43255i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.m.4705.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.05352i q^{5} +1.00000 q^{9} +0.989386i q^{11} +(3.51056 + 0.822183i) q^{13} -3.05352i q^{15} +7.83457 q^{17} +4.04291i q^{19} +2.51056 q^{23} -4.32401 q^{25} +1.00000 q^{27} -5.32401 q^{29} -5.68728i q^{31} +0.989386i q^{33} +6.44146i q^{37} +(3.51056 + 0.822183i) q^{39} +9.07521i q^{41} +3.32401 q^{43} -3.05352i q^{45} +12.7837i q^{47} +7.83457 q^{51} +10.3451 q^{53} +3.02112 q^{55} +4.04291i q^{57} -8.74080i q^{59} +8.64803 q^{61} +(2.51056 - 10.7196i) q^{65} -9.73019i q^{67} +2.51056 q^{69} +16.4922i q^{71} +10.1500i q^{73} -4.32401 q^{75} -0.302899 q^{79} +1.00000 q^{81} +4.69789i q^{83} -23.9231i q^{85} -5.32401 q^{87} +0.235209i q^{89} -5.68728i q^{93} +12.3451 q^{95} +12.4631i q^{97} +0.989386i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} + 4 q^{13} + 8 q^{17} - 2 q^{23} - 4 q^{25} + 6 q^{27} - 10 q^{29} + 4 q^{39} - 2 q^{43} + 8 q^{51} + 6 q^{53} - 16 q^{55} + 8 q^{61} - 2 q^{65} - 2 q^{69} - 4 q^{75} - 14 q^{79}+ \cdots + 18 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.05352i 1.36558i −0.730616 0.682789i \(-0.760767\pi\)
0.730616 0.682789i \(-0.239233\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.989386i 0.298311i 0.988814 + 0.149156i \(0.0476555\pi\)
−0.988814 + 0.149156i \(0.952344\pi\)
\(12\) 0 0
\(13\) 3.51056 + 0.822183i 0.973653 + 0.228033i
\(14\) 0 0
\(15\) 3.05352i 0.788417i
\(16\) 0 0
\(17\) 7.83457 1.90016 0.950081 0.312002i \(-0.101000\pi\)
0.950081 + 0.312002i \(0.101000\pi\)
\(18\) 0 0
\(19\) 4.04291i 0.927507i 0.885964 + 0.463754i \(0.153498\pi\)
−0.885964 + 0.463754i \(0.846502\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.51056 0.523487 0.261744 0.965137i \(-0.415702\pi\)
0.261744 + 0.965137i \(0.415702\pi\)
\(24\) 0 0
\(25\) −4.32401 −0.864803
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −5.32401 −0.988645 −0.494322 0.869279i \(-0.664584\pi\)
−0.494322 + 0.869279i \(0.664584\pi\)
\(30\) 0 0
\(31\) 5.68728i 1.02147i −0.859740 0.510733i \(-0.829374\pi\)
0.859740 0.510733i \(-0.170626\pi\)
\(32\) 0 0
\(33\) 0.989386i 0.172230i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.44146i 1.05897i 0.848320 + 0.529484i \(0.177615\pi\)
−0.848320 + 0.529484i \(0.822385\pi\)
\(38\) 0 0
\(39\) 3.51056 + 0.822183i 0.562139 + 0.131655i
\(40\) 0 0
\(41\) 9.07521i 1.41731i 0.705555 + 0.708655i \(0.250698\pi\)
−0.705555 + 0.708655i \(0.749302\pi\)
\(42\) 0 0
\(43\) 3.32401 0.506907 0.253454 0.967348i \(-0.418433\pi\)
0.253454 + 0.967348i \(0.418433\pi\)
\(44\) 0 0
\(45\) 3.05352i 0.455193i
\(46\) 0 0
\(47\) 12.7837i 1.86470i 0.361562 + 0.932348i \(0.382244\pi\)
−0.361562 + 0.932348i \(0.617756\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 7.83457 1.09706
\(52\) 0 0
\(53\) 10.3451 1.42101 0.710506 0.703691i \(-0.248466\pi\)
0.710506 + 0.703691i \(0.248466\pi\)
\(54\) 0 0
\(55\) 3.02112 0.407367
\(56\) 0 0
\(57\) 4.04291i 0.535497i
\(58\) 0 0
\(59\) 8.74080i 1.13796i −0.822353 0.568978i \(-0.807339\pi\)
0.822353 0.568978i \(-0.192661\pi\)
\(60\) 0 0
\(61\) 8.64803 1.10727 0.553633 0.832761i \(-0.313241\pi\)
0.553633 + 0.832761i \(0.313241\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.51056 10.7196i 0.311396 1.32960i
\(66\) 0 0
\(67\) 9.73019i 1.18873i −0.804195 0.594366i \(-0.797403\pi\)
0.804195 0.594366i \(-0.202597\pi\)
\(68\) 0 0
\(69\) 2.51056 0.302236
\(70\) 0 0
\(71\) 16.4922i 1.95727i 0.205614 + 0.978633i \(0.434081\pi\)
−0.205614 + 0.978633i \(0.565919\pi\)
\(72\) 0 0
\(73\) 10.1500i 1.18796i 0.804479 + 0.593982i \(0.202445\pi\)
−0.804479 + 0.593982i \(0.797555\pi\)
\(74\) 0 0
\(75\) −4.32401 −0.499294
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.302899 −0.0340788 −0.0170394 0.999855i \(-0.505424\pi\)
−0.0170394 + 0.999855i \(0.505424\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.69789i 0.515661i 0.966190 + 0.257830i \(0.0830076\pi\)
−0.966190 + 0.257830i \(0.916992\pi\)
\(84\) 0 0
\(85\) 23.9231i 2.59482i
\(86\) 0 0
\(87\) −5.32401 −0.570794
\(88\) 0 0
\(89\) 0.235209i 0.0249321i 0.999922 + 0.0124660i \(0.00396817\pi\)
−0.999922 + 0.0124660i \(0.996032\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.68728i 0.589743i
\(94\) 0 0
\(95\) 12.3451 1.26658
\(96\) 0 0
\(97\) 12.4631i 1.26544i 0.774381 + 0.632720i \(0.218062\pi\)
−0.774381 + 0.632720i \(0.781938\pi\)
\(98\) 0 0
\(99\) 0.989386i 0.0994370i
\(100\) 0 0
\(101\) −9.46149 −0.941453 −0.470727 0.882279i \(-0.656008\pi\)
−0.470727 + 0.882279i \(0.656008\pi\)
\(102\) 0 0
\(103\) −8.64803 −0.852116 −0.426058 0.904696i \(-0.640098\pi\)
−0.426058 + 0.904696i \(0.640098\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.18654 0.308055 0.154027 0.988067i \(-0.450776\pi\)
0.154027 + 0.988067i \(0.450776\pi\)
\(108\) 0 0
\(109\) 5.26751i 0.504536i −0.967657 0.252268i \(-0.918824\pi\)
0.967657 0.252268i \(-0.0811764\pi\)
\(110\) 0 0
\(111\) 6.44146i 0.611396i
\(112\) 0 0
\(113\) 1.32401 0.124553 0.0622764 0.998059i \(-0.480164\pi\)
0.0622764 + 0.998059i \(0.480164\pi\)
\(114\) 0 0
\(115\) 7.66605i 0.714863i
\(116\) 0 0
\(117\) 3.51056 + 0.822183i 0.324551 + 0.0760109i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.0211 0.911010
\(122\) 0 0
\(123\) 9.07521i 0.818284i
\(124\) 0 0
\(125\) 2.06414i 0.184622i
\(126\) 0 0
\(127\) −18.6903 −1.65849 −0.829246 0.558884i \(-0.811230\pi\)
−0.829246 + 0.558884i \(0.811230\pi\)
\(128\) 0 0
\(129\) 3.32401 0.292663
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.05352i 0.262806i
\(136\) 0 0
\(137\) 11.8935i 1.01613i 0.861318 + 0.508066i \(0.169639\pi\)
−0.861318 + 0.508066i \(0.830361\pi\)
\(138\) 0 0
\(139\) −4.64803 −0.394241 −0.197120 0.980379i \(-0.563159\pi\)
−0.197120 + 0.980379i \(0.563159\pi\)
\(140\) 0 0
\(141\) 12.7837i 1.07658i
\(142\) 0 0
\(143\) −0.813457 + 3.47330i −0.0680247 + 0.290452i
\(144\) 0 0
\(145\) 16.2570i 1.35007i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.91475i 0.812248i 0.913818 + 0.406124i \(0.133120\pi\)
−0.913818 + 0.406124i \(0.866880\pi\)
\(150\) 0 0
\(151\) 14.9977i 1.22050i −0.792211 0.610248i \(-0.791070\pi\)
0.792211 0.610248i \(-0.208930\pi\)
\(152\) 0 0
\(153\) 7.83457 0.633388
\(154\) 0 0
\(155\) −17.3662 −1.39489
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 10.3451 0.820422
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13.5241i 1.05929i −0.848221 0.529643i \(-0.822326\pi\)
0.848221 0.529643i \(-0.177674\pi\)
\(164\) 0 0
\(165\) 3.02112 0.235193
\(166\) 0 0
\(167\) 13.4525i 1.04099i −0.853865 0.520494i \(-0.825748\pi\)
0.853865 0.520494i \(-0.174252\pi\)
\(168\) 0 0
\(169\) 11.6480 + 5.77264i 0.896002 + 0.444050i
\(170\) 0 0
\(171\) 4.04291i 0.309169i
\(172\) 0 0
\(173\) −13.8768 −1.05503 −0.527517 0.849545i \(-0.676877\pi\)
−0.527517 + 0.849545i \(0.676877\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.74080i 0.656999i
\(178\) 0 0
\(179\) −10.7855 −0.806146 −0.403073 0.915168i \(-0.632058\pi\)
−0.403073 + 0.915168i \(0.632058\pi\)
\(180\) 0 0
\(181\) 19.6691 1.46200 0.730998 0.682380i \(-0.239055\pi\)
0.730998 + 0.682380i \(0.239055\pi\)
\(182\) 0 0
\(183\) 8.64803 0.639281
\(184\) 0 0
\(185\) 19.6691 1.44610
\(186\) 0 0
\(187\) 7.75142i 0.566840i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.8557 1.07492 0.537460 0.843289i \(-0.319384\pi\)
0.537460 + 0.843289i \(0.319384\pi\)
\(192\) 0 0
\(193\) 9.73019i 0.700394i −0.936676 0.350197i \(-0.886115\pi\)
0.936676 0.350197i \(-0.113885\pi\)
\(194\) 0 0
\(195\) 2.51056 10.7196i 0.179785 0.767645i
\(196\) 0 0
\(197\) 17.1610i 1.22267i 0.791371 + 0.611336i \(0.209368\pi\)
−0.791371 + 0.611336i \(0.790632\pi\)
\(198\) 0 0
\(199\) 19.6691 1.39431 0.697154 0.716921i \(-0.254449\pi\)
0.697154 + 0.716921i \(0.254449\pi\)
\(200\) 0 0
\(201\) 9.73019i 0.686315i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 27.7114 1.93545
\(206\) 0 0
\(207\) 2.51056 0.174496
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −12.7182 −0.875558 −0.437779 0.899083i \(-0.644235\pi\)
−0.437779 + 0.899083i \(0.644235\pi\)
\(212\) 0 0
\(213\) 16.4922i 1.13003i
\(214\) 0 0
\(215\) 10.1500i 0.692222i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.1500i 0.685871i
\(220\) 0 0
\(221\) 27.5037 + 6.44146i 1.85010 + 0.433299i
\(222\) 0 0
\(223\) 19.5457i 1.30888i −0.756114 0.654440i \(-0.772904\pi\)
0.756114 0.654440i \(-0.227096\pi\)
\(224\) 0 0
\(225\) −4.32401 −0.288268
\(226\) 0 0
\(227\) 4.78326i 0.317476i −0.987321 0.158738i \(-0.949257\pi\)
0.987321 0.158738i \(-0.0507425\pi\)
\(228\) 0 0
\(229\) 27.5462i 1.82030i −0.414274 0.910152i \(-0.635965\pi\)
0.414274 0.910152i \(-0.364035\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.7393 0.900093 0.450047 0.893005i \(-0.351407\pi\)
0.450047 + 0.893005i \(0.351407\pi\)
\(234\) 0 0
\(235\) 39.0354 2.54639
\(236\) 0 0
\(237\) −0.302899 −0.0196754
\(238\) 0 0
\(239\) 26.0864i 1.68739i −0.536824 0.843694i \(-0.680376\pi\)
0.536824 0.843694i \(-0.319624\pi\)
\(240\) 0 0
\(241\) 5.18214i 0.333811i 0.985973 + 0.166905i \(0.0533775\pi\)
−0.985973 + 0.166905i \(0.946623\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.32401 + 14.1929i −0.211502 + 0.903071i
\(248\) 0 0
\(249\) 4.69789i 0.297717i
\(250\) 0 0
\(251\) −8.41532 −0.531170 −0.265585 0.964087i \(-0.585565\pi\)
−0.265585 + 0.964087i \(0.585565\pi\)
\(252\) 0 0
\(253\) 2.48391i 0.156162i
\(254\) 0 0
\(255\) 23.9231i 1.49812i
\(256\) 0 0
\(257\) −21.8768 −1.36464 −0.682319 0.731055i \(-0.739028\pi\)
−0.682319 + 0.731055i \(0.739028\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.32401 −0.329548
\(262\) 0 0
\(263\) −7.11636 −0.438813 −0.219407 0.975633i \(-0.570412\pi\)
−0.219407 + 0.975633i \(0.570412\pi\)
\(264\) 0 0
\(265\) 31.5891i 1.94050i
\(266\) 0 0
\(267\) 0.235209i 0.0143945i
\(268\) 0 0
\(269\) 3.83457 0.233798 0.116899 0.993144i \(-0.462705\pi\)
0.116899 + 0.993144i \(0.462705\pi\)
\(270\) 0 0
\(271\) 21.2755i 1.29239i −0.763171 0.646197i \(-0.776359\pi\)
0.763171 0.646197i \(-0.223641\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.27812i 0.257980i
\(276\) 0 0
\(277\) 20.3874 1.22496 0.612479 0.790487i \(-0.290172\pi\)
0.612479 + 0.790487i \(0.290172\pi\)
\(278\) 0 0
\(279\) 5.68728i 0.340488i
\(280\) 0 0
\(281\) 25.4176i 1.51629i −0.652088 0.758143i \(-0.726107\pi\)
0.652088 0.758143i \(-0.273893\pi\)
\(282\) 0 0
\(283\) 15.6691 0.931434 0.465717 0.884934i \(-0.345796\pi\)
0.465717 + 0.884934i \(0.345796\pi\)
\(284\) 0 0
\(285\) 12.3451 0.731262
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 44.3805 2.61062
\(290\) 0 0
\(291\) 12.4631i 0.730602i
\(292\) 0 0
\(293\) 6.34226i 0.370519i 0.982690 + 0.185259i \(0.0593125\pi\)
−0.982690 + 0.185259i \(0.940687\pi\)
\(294\) 0 0
\(295\) −26.6903 −1.55397
\(296\) 0 0
\(297\) 0.989386i 0.0574100i
\(298\) 0 0
\(299\) 8.81346 + 2.06414i 0.509695 + 0.119372i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.46149 −0.543548
\(304\) 0 0
\(305\) 26.4070i 1.51206i
\(306\) 0 0
\(307\) 1.89341i 0.108062i −0.998539 0.0540312i \(-0.982793\pi\)
0.998539 0.0540312i \(-0.0172070\pi\)
\(308\) 0 0
\(309\) −8.64803 −0.491969
\(310\) 0 0
\(311\) 11.6691 0.661696 0.330848 0.943684i \(-0.392665\pi\)
0.330848 + 0.943684i \(0.392665\pi\)
\(312\) 0 0
\(313\) −20.6480 −1.16710 −0.583548 0.812079i \(-0.698336\pi\)
−0.583548 + 0.812079i \(0.698336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.8022i 0.999870i −0.866063 0.499935i \(-0.833357\pi\)
0.866063 0.499935i \(-0.166643\pi\)
\(318\) 0 0
\(319\) 5.26751i 0.294924i
\(320\) 0 0
\(321\) 3.18654 0.177855
\(322\) 0 0
\(323\) 31.6745i 1.76242i
\(324\) 0 0
\(325\) −15.1797 3.55513i −0.842018 0.197203i
\(326\) 0 0
\(327\) 5.26751i 0.291294i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.96782i 0.273056i 0.990636 + 0.136528i \(0.0435944\pi\)
−0.990636 + 0.136528i \(0.956406\pi\)
\(332\) 0 0
\(333\) 6.44146i 0.352990i
\(334\) 0 0
\(335\) −29.7114 −1.62331
\(336\) 0 0
\(337\) −13.9720 −0.761106 −0.380553 0.924759i \(-0.624266\pi\)
−0.380553 + 0.924759i \(0.624266\pi\)
\(338\) 0 0
\(339\) 1.32401 0.0719106
\(340\) 0 0
\(341\) 5.62691 0.304714
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 7.66605i 0.412726i
\(346\) 0 0
\(347\) 16.8979 0.907128 0.453564 0.891224i \(-0.350152\pi\)
0.453564 + 0.891224i \(0.350152\pi\)
\(348\) 0 0
\(349\) 26.8267i 1.43600i 0.696042 + 0.718001i \(0.254943\pi\)
−0.696042 + 0.718001i \(0.745057\pi\)
\(350\) 0 0
\(351\) 3.51056 + 0.822183i 0.187380 + 0.0438849i
\(352\) 0 0
\(353\) 27.2256i 1.44907i 0.689236 + 0.724537i \(0.257946\pi\)
−0.689236 + 0.724537i \(0.742054\pi\)
\(354\) 0 0
\(355\) 50.3594 2.67280
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5559i 0.557119i −0.960419 0.278560i \(-0.910143\pi\)
0.960419 0.278560i \(-0.0898570\pi\)
\(360\) 0 0
\(361\) 2.65487 0.139730
\(362\) 0 0
\(363\) 10.0211 0.525972
\(364\) 0 0
\(365\) 30.9932 1.62226
\(366\) 0 0
\(367\) −26.3594 −1.37595 −0.687975 0.725735i \(-0.741500\pi\)
−0.687975 + 0.725735i \(0.741500\pi\)
\(368\) 0 0
\(369\) 9.07521i 0.472436i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.76729 0.298619 0.149309 0.988791i \(-0.452295\pi\)
0.149309 + 0.988791i \(0.452295\pi\)
\(374\) 0 0
\(375\) 2.06414i 0.106592i
\(376\) 0 0
\(377\) −18.6903 4.37732i −0.962597 0.225443i
\(378\) 0 0
\(379\) 7.08261i 0.363809i 0.983316 + 0.181905i \(0.0582262\pi\)
−0.983316 + 0.181905i \(0.941774\pi\)
\(380\) 0 0
\(381\) −18.6903 −0.957531
\(382\) 0 0
\(383\) 9.40961i 0.480809i −0.970673 0.240404i \(-0.922720\pi\)
0.970673 0.240404i \(-0.0772801\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.32401 0.168969
\(388\) 0 0
\(389\) −11.2961 −0.572733 −0.286366 0.958120i \(-0.592447\pi\)
−0.286366 + 0.958120i \(0.592447\pi\)
\(390\) 0 0
\(391\) 19.6691 0.994711
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) 0.924911i 0.0465373i
\(396\) 0 0
\(397\) 20.2146i 1.01454i −0.861787 0.507270i \(-0.830655\pi\)
0.861787 0.507270i \(-0.169345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.64725i 0.232072i 0.993245 + 0.116036i \(0.0370189\pi\)
−0.993245 + 0.116036i \(0.962981\pi\)
\(402\) 0 0
\(403\) 4.67599 19.9655i 0.232927 0.994553i
\(404\) 0 0
\(405\) 3.05352i 0.151731i
\(406\) 0 0
\(407\) −6.37309 −0.315902
\(408\) 0 0
\(409\) 22.9982i 1.13719i 0.822619 + 0.568593i \(0.192512\pi\)
−0.822619 + 0.568593i \(0.807488\pi\)
\(410\) 0 0
\(411\) 11.8935i 0.586664i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 14.3451 0.704175
\(416\) 0 0
\(417\) −4.64803 −0.227615
\(418\) 0 0
\(419\) −40.0845 −1.95825 −0.979127 0.203249i \(-0.934850\pi\)
−0.979127 + 0.203249i \(0.934850\pi\)
\(420\) 0 0
\(421\) 19.9655i 0.973060i −0.873664 0.486530i \(-0.838262\pi\)
0.873664 0.486530i \(-0.161738\pi\)
\(422\) 0 0
\(423\) 12.7837i 0.621565i
\(424\) 0 0
\(425\) −33.8768 −1.64327
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.813457 + 3.47330i −0.0392741 + 0.167692i
\(430\) 0 0
\(431\) 8.60479i 0.414478i 0.978290 + 0.207239i \(0.0664478\pi\)
−0.978290 + 0.207239i \(0.933552\pi\)
\(432\) 0 0
\(433\) −16.6480 −0.800053 −0.400027 0.916504i \(-0.630999\pi\)
−0.400027 + 0.916504i \(0.630999\pi\)
\(434\) 0 0
\(435\) 16.2570i 0.779464i
\(436\) 0 0
\(437\) 10.1500i 0.485538i
\(438\) 0 0
\(439\) 38.3594 1.83079 0.915397 0.402552i \(-0.131877\pi\)
0.915397 + 0.402552i \(0.131877\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 32.8277 1.55969 0.779846 0.625971i \(-0.215297\pi\)
0.779846 + 0.625971i \(0.215297\pi\)
\(444\) 0 0
\(445\) 0.718216 0.0340467
\(446\) 0 0
\(447\) 9.91475i 0.468952i
\(448\) 0 0
\(449\) 5.28840i 0.249575i −0.992183 0.124787i \(-0.960175\pi\)
0.992183 0.124787i \(-0.0398249\pi\)
\(450\) 0 0
\(451\) −8.97888 −0.422799
\(452\) 0 0
\(453\) 14.9977i 0.704653i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0333i 1.45168i 0.687865 + 0.725839i \(0.258548\pi\)
−0.687865 + 0.725839i \(0.741452\pi\)
\(458\) 0 0
\(459\) 7.83457 0.365687
\(460\) 0 0
\(461\) 12.7331i 0.593038i −0.955027 0.296519i \(-0.904174\pi\)
0.955027 0.296519i \(-0.0958258\pi\)
\(462\) 0 0
\(463\) 26.9121i 1.25071i −0.780340 0.625356i \(-0.784954\pi\)
0.780340 0.625356i \(-0.215046\pi\)
\(464\) 0 0
\(465\) −17.3662 −0.805340
\(466\) 0 0
\(467\) −2.37309 −0.109813 −0.0549067 0.998491i \(-0.517486\pi\)
−0.0549067 + 0.998491i \(0.517486\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 3.28873i 0.151216i
\(474\) 0 0
\(475\) 17.4816i 0.802111i
\(476\) 0 0
\(477\) 10.3451 0.473671
\(478\) 0 0
\(479\) 22.3779i 1.02247i −0.859440 0.511236i \(-0.829188\pi\)
0.859440 0.511236i \(-0.170812\pi\)
\(480\) 0 0
\(481\) −5.29606 + 22.6131i −0.241479 + 1.03107i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 38.0565 1.72806
\(486\) 0 0
\(487\) 18.2864i 0.828637i −0.910132 0.414319i \(-0.864020\pi\)
0.910132 0.414319i \(-0.135980\pi\)
\(488\) 0 0
\(489\) 13.5241i 0.611579i
\(490\) 0 0
\(491\) −1.22877 −0.0554538 −0.0277269 0.999616i \(-0.508827\pi\)
−0.0277269 + 0.999616i \(0.508827\pi\)
\(492\) 0 0
\(493\) −41.7114 −1.87859
\(494\) 0 0
\(495\) 3.02112 0.135789
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 39.5896i 1.77227i −0.463425 0.886136i \(-0.653380\pi\)
0.463425 0.886136i \(-0.346620\pi\)
\(500\) 0 0
\(501\) 13.4525i 0.601014i
\(502\) 0 0
\(503\) −4.41532 −0.196869 −0.0984346 0.995144i \(-0.531384\pi\)
−0.0984346 + 0.995144i \(0.531384\pi\)
\(504\) 0 0
\(505\) 28.8909i 1.28563i
\(506\) 0 0
\(507\) 11.6480 + 5.77264i 0.517307 + 0.256372i
\(508\) 0 0
\(509\) 4.39115i 0.194634i −0.995253 0.0973171i \(-0.968974\pi\)
0.995253 0.0973171i \(-0.0310261\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.04291i 0.178499i
\(514\) 0 0
\(515\) 26.4070i 1.16363i
\(516\) 0 0
\(517\) −12.6480 −0.556260
\(518\) 0 0
\(519\) −13.8768 −0.609124
\(520\) 0 0
\(521\) −5.79234 −0.253767 −0.126884 0.991918i \(-0.540497\pi\)
−0.126884 + 0.991918i \(0.540497\pi\)
\(522\) 0 0
\(523\) −25.9441 −1.13446 −0.567228 0.823561i \(-0.691984\pi\)
−0.567228 + 0.823561i \(0.691984\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.5574i 1.94095i
\(528\) 0 0
\(529\) −16.6971 −0.725961
\(530\) 0 0
\(531\) 8.74080i 0.379319i
\(532\) 0 0
\(533\) −7.46149 + 31.8590i −0.323193 + 1.37997i
\(534\) 0 0
\(535\) 9.73019i 0.420673i
\(536\) 0 0
\(537\) −10.7855 −0.465429
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 35.4683i 1.52490i −0.647045 0.762452i \(-0.723995\pi\)
0.647045 0.762452i \(-0.276005\pi\)
\(542\) 0 0
\(543\) 19.6691 0.844084
\(544\) 0 0
\(545\) −16.0845 −0.688983
\(546\) 0 0
\(547\) −16.3451 −0.698867 −0.349434 0.936961i \(-0.613626\pi\)
−0.349434 + 0.936961i \(0.613626\pi\)
\(548\) 0 0
\(549\) 8.64803 0.369089
\(550\) 0 0
\(551\) 21.5245i 0.916975i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 19.6691 0.834909
\(556\) 0 0
\(557\) 23.7385i 1.00583i −0.864335 0.502916i \(-0.832260\pi\)
0.864335 0.502916i \(-0.167740\pi\)
\(558\) 0 0
\(559\) 11.6691 + 2.73295i 0.493552 + 0.115591i
\(560\) 0 0
\(561\) 7.75142i 0.327265i
\(562\) 0 0
\(563\) −16.9652 −0.714998 −0.357499 0.933914i \(-0.616370\pi\)
−0.357499 + 0.933914i \(0.616370\pi\)
\(564\) 0 0
\(565\) 4.04291i 0.170087i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.07019 0.0867868 0.0433934 0.999058i \(-0.486183\pi\)
0.0433934 + 0.999058i \(0.486183\pi\)
\(570\) 0 0
\(571\) 20.3874 0.853184 0.426592 0.904444i \(-0.359714\pi\)
0.426592 + 0.904444i \(0.359714\pi\)
\(572\) 0 0
\(573\) 14.8557 0.620605
\(574\) 0 0
\(575\) −10.8557 −0.452713
\(576\) 0 0
\(577\) 40.1294i 1.67061i −0.549787 0.835305i \(-0.685291\pi\)
0.549787 0.835305i \(-0.314709\pi\)
\(578\) 0 0
\(579\) 9.73019i 0.404373i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 10.2353i 0.423904i
\(584\) 0 0
\(585\) 2.51056 10.7196i 0.103799 0.443200i
\(586\) 0 0
\(587\) 4.32877i 0.178667i 0.996002 + 0.0893336i \(0.0284737\pi\)
−0.996002 + 0.0893336i \(0.971526\pi\)
\(588\) 0 0
\(589\) 22.9932 0.947417
\(590\) 0 0
\(591\) 17.1610i 0.705910i
\(592\) 0 0
\(593\) 27.1126i 1.11338i 0.830720 + 0.556690i \(0.187929\pi\)
−0.830720 + 0.556690i \(0.812071\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.6691 0.805004
\(598\) 0 0
\(599\) 40.8277 1.66818 0.834088 0.551632i \(-0.185995\pi\)
0.834088 + 0.551632i \(0.185995\pi\)
\(600\) 0 0
\(601\) 14.6903 0.599228 0.299614 0.954060i \(-0.403142\pi\)
0.299614 + 0.954060i \(0.403142\pi\)
\(602\) 0 0
\(603\) 9.73019i 0.396244i
\(604\) 0 0
\(605\) 30.5997i 1.24406i
\(606\) 0 0
\(607\) −8.23271 −0.334155 −0.167078 0.985944i \(-0.553433\pi\)
−0.167078 + 0.985944i \(0.553433\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.5106 + 44.8780i −0.425212 + 1.81557i
\(612\) 0 0
\(613\) 7.91509i 0.319687i 0.987142 + 0.159844i \(0.0510990\pi\)
−0.987142 + 0.159844i \(0.948901\pi\)
\(614\) 0 0
\(615\) 27.7114 1.11743
\(616\) 0 0
\(617\) 12.1932i 0.490880i −0.969412 0.245440i \(-0.921068\pi\)
0.969412 0.245440i \(-0.0789324\pi\)
\(618\) 0 0
\(619\) 37.4471i 1.50513i 0.658520 + 0.752563i \(0.271183\pi\)
−0.658520 + 0.752563i \(0.728817\pi\)
\(620\) 0 0
\(621\) 2.51056 0.100745
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.9230 −1.11692
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) 50.4660i 2.01221i
\(630\) 0 0
\(631\) 0.369126i 0.0146947i −0.999973 0.00734734i \(-0.997661\pi\)
0.999973 0.00734734i \(-0.00233875\pi\)
\(632\) 0 0
\(633\) −12.7182 −0.505504
\(634\) 0 0
\(635\) 57.0712i 2.26480i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 16.4922i 0.652422i
\(640\) 0 0
\(641\) 3.97204 0.156886 0.0784431 0.996919i \(-0.475005\pi\)
0.0784431 + 0.996919i \(0.475005\pi\)
\(642\) 0 0
\(643\) 7.24628i 0.285765i 0.989740 + 0.142883i \(0.0456372\pi\)
−0.989740 + 0.142883i \(0.954363\pi\)
\(644\) 0 0
\(645\) 10.1500i 0.399654i
\(646\) 0 0
\(647\) 22.9230 0.901195 0.450597 0.892727i \(-0.351211\pi\)
0.450597 + 0.892727i \(0.351211\pi\)
\(648\) 0 0
\(649\) 8.64803 0.339465
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.7462 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(654\) 0 0
\(655\) 24.4282i 0.954489i
\(656\) 0 0
\(657\) 10.1500i 0.395988i
\(658\) 0 0
\(659\) −35.5317 −1.38412 −0.692059 0.721841i \(-0.743296\pi\)
−0.692059 + 0.721841i \(0.743296\pi\)
\(660\) 0 0
\(661\) 22.2004i 0.863495i 0.901995 + 0.431748i \(0.142103\pi\)
−0.901995 + 0.431748i \(0.857897\pi\)
\(662\) 0 0
\(663\) 27.5037 + 6.44146i 1.06816 + 0.250165i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.3662 −0.517543
\(668\) 0 0
\(669\) 19.5457i 0.755682i
\(670\) 0 0
\(671\) 8.55624i 0.330310i
\(672\) 0 0
\(673\) 22.3451 0.861341 0.430671 0.902509i \(-0.358277\pi\)
0.430671 + 0.902509i \(0.358277\pi\)
\(674\) 0 0
\(675\) −4.32401 −0.166431
\(676\) 0 0
\(677\) −44.2499 −1.70066 −0.850331 0.526249i \(-0.823598\pi\)
−0.850331 + 0.526249i \(0.823598\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.78326i 0.183295i
\(682\) 0 0
\(683\) 7.26717i 0.278070i 0.990287 + 0.139035i \(0.0444001\pi\)
−0.990287 + 0.139035i \(0.955600\pi\)
\(684\) 0 0
\(685\) 36.3172 1.38761
\(686\) 0 0
\(687\) 27.5462i 1.05095i
\(688\) 0 0
\(689\) 36.3172 + 8.50559i 1.38357 + 0.324037i
\(690\) 0 0
\(691\) 24.0084i 0.913324i −0.889640 0.456662i \(-0.849045\pi\)
0.889640 0.456662i \(-0.150955\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.1929i 0.538366i
\(696\) 0 0
\(697\) 71.1004i 2.69312i
\(698\) 0 0
\(699\) 13.7393 0.519669
\(700\) 0 0
\(701\) 14.0143 0.529312 0.264656 0.964343i \(-0.414742\pi\)
0.264656 + 0.964343i \(0.414742\pi\)
\(702\) 0 0
\(703\) −26.0422 −0.982201
\(704\) 0 0
\(705\) 39.0354 1.47016
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.27778i 0.235767i −0.993027 0.117884i \(-0.962389\pi\)
0.993027 0.117884i \(-0.0376110\pi\)
\(710\) 0 0
\(711\) −0.302899 −0.0113596
\(712\) 0 0
\(713\) 14.2782i 0.534724i
\(714\) 0 0
\(715\) 10.6058 + 2.48391i 0.396634 + 0.0928930i
\(716\) 0 0
\(717\) 26.0864i 0.974214i
\(718\) 0 0
\(719\) −11.3383 −0.422847 −0.211423 0.977395i \(-0.567810\pi\)
−0.211423 + 0.977395i \(0.567810\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.18214i 0.192726i
\(724\) 0 0
\(725\) 23.0211 0.854983
\(726\) 0 0
\(727\) 4.74617 0.176026 0.0880129 0.996119i \(-0.471948\pi\)
0.0880129 + 0.996119i \(0.471948\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 26.0422 0.963207
\(732\) 0 0
\(733\) 15.6159i 0.576785i 0.957512 + 0.288392i \(0.0931208\pi\)
−0.957512 + 0.288392i \(0.906879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.62691 0.354612
\(738\) 0 0
\(739\) 17.9867i 0.661653i −0.943692 0.330827i \(-0.892672\pi\)
0.943692 0.330827i \(-0.107328\pi\)
\(740\) 0 0
\(741\) −3.32401 + 14.1929i −0.122111 + 0.521388i
\(742\) 0 0
\(743\) 21.1186i 0.774765i −0.921919 0.387383i \(-0.873379\pi\)
0.921919 0.387383i \(-0.126621\pi\)
\(744\) 0 0
\(745\) 30.2749 1.10919
\(746\) 0 0
\(747\) 4.69789i 0.171887i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −26.7182 −0.974962 −0.487481 0.873134i \(-0.662084\pi\)
−0.487481 + 0.873134i \(0.662084\pi\)
\(752\) 0 0
\(753\) −8.41532 −0.306671
\(754\) 0 0
\(755\) −45.7958 −1.66668
\(756\) 0 0
\(757\) −9.28178 −0.337352 −0.168676 0.985672i \(-0.553949\pi\)
−0.168676 + 0.985672i \(0.553949\pi\)
\(758\) 0 0
\(759\) 2.48391i 0.0901602i
\(760\) 0 0
\(761\) 28.4502i 1.03132i 0.856793 + 0.515660i \(0.172453\pi\)
−0.856793 + 0.515660i \(0.827547\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 23.9231i 0.864940i
\(766\) 0 0
\(767\) 7.18654 30.6851i 0.259491 1.10797i
\(768\) 0 0
\(769\) 34.0730i 1.22870i 0.789032 + 0.614352i \(0.210583\pi\)
−0.789032 + 0.614352i \(0.789417\pi\)
\(770\) 0 0
\(771\) −21.8768 −0.787874
\(772\) 0 0
\(773\) 15.6527i 0.562988i −0.959563 0.281494i \(-0.909170\pi\)
0.959563 0.281494i \(-0.0908299\pi\)
\(774\) 0 0
\(775\) 24.5919i 0.883366i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −36.6903 −1.31456
\(780\) 0 0
\(781\) −16.3172 −0.583874
\(782\) 0 0
\(783\) −5.32401 −0.190265
\(784\) 0 0
\(785\) 12.2141i 0.435940i
\(786\) 0 0
\(787\) 11.1255i 0.396582i −0.980143 0.198291i \(-0.936461\pi\)
0.980143 0.198291i \(-0.0635391\pi\)
\(788\) 0 0
\(789\) −7.11636 −0.253349
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.3594 + 7.11027i 1.07809 + 0.252493i
\(794\) 0 0
\(795\) 31.5891i 1.12035i
\(796\) 0 0
\(797\) −37.4615 −1.32695 −0.663477 0.748197i \(-0.730920\pi\)
−0.663477 + 0.748197i \(0.730920\pi\)
\(798\) 0 0
\(799\) 100.155i 3.54323i
\(800\) 0 0
\(801\) 0.235209i 0.00831069i
\(802\) 0 0
\(803\) −10.0422 −0.354383
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.83457 0.134983
\(808\) 0 0
\(809\) −7.42216 −0.260949 −0.130475 0.991452i \(-0.541650\pi\)
−0.130475 + 0.991452i \(0.541650\pi\)
\(810\) 0 0
\(811\) 12.0504i 0.423148i −0.977362 0.211574i \(-0.932141\pi\)
0.977362 0.211574i \(-0.0678589\pi\)
\(812\) 0 0
\(813\) 21.2755i 0.746164i
\(814\) 0 0
\(815\) −41.2961 −1.44654
\(816\) 0 0
\(817\) 13.4387i 0.470160i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.63697i 0.126931i −0.997984 0.0634655i \(-0.979785\pi\)
0.997984 0.0634655i \(-0.0202153\pi\)
\(822\) 0 0
\(823\) −46.5921 −1.62410 −0.812050 0.583589i \(-0.801648\pi\)
−0.812050 + 0.583589i \(0.801648\pi\)
\(824\) 0 0
\(825\) 4.27812i 0.148945i
\(826\) 0 0
\(827\) 11.5938i 0.403157i −0.979472 0.201579i \(-0.935393\pi\)
0.979472 0.201579i \(-0.0646072\pi\)
\(828\) 0 0
\(829\) 22.2749 0.773641 0.386820 0.922155i \(-0.373573\pi\)
0.386820 + 0.922155i \(0.373573\pi\)
\(830\) 0 0
\(831\) 20.3874 0.707230
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −41.0776 −1.42155
\(836\) 0 0
\(837\) 5.68728i 0.196581i
\(838\) 0 0
\(839\) 20.5858i 0.710700i 0.934733 + 0.355350i \(0.115638\pi\)
−0.934733 + 0.355350i \(0.884362\pi\)
\(840\) 0 0
\(841\) −0.654870 −0.0225817
\(842\) 0 0
\(843\) 25.4176i 0.875428i
\(844\) 0 0
\(845\) 17.6269 35.5675i 0.606384 1.22356i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 15.6691 0.537764
\(850\) 0 0
\(851\) 16.1716i 0.554357i
\(852\) 0 0
\(853\) 32.4287i 1.11034i 0.831738 + 0.555168i \(0.187346\pi\)
−0.831738 + 0.555168i \(0.812654\pi\)
\(854\) 0 0
\(855\) 12.3451 0.422195
\(856\) 0 0
\(857\) −7.41926 −0.253437 −0.126718 0.991939i \(-0.540444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(858\) 0 0
\(859\) 15.0074 0.512047 0.256023 0.966671i \(-0.417588\pi\)
0.256023 + 0.966671i \(0.417588\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.1564i 1.60522i 0.596502 + 0.802612i \(0.296557\pi\)
−0.596502 + 0.802612i \(0.703443\pi\)
\(864\) 0 0
\(865\) 42.3732i 1.44073i
\(866\) 0 0
\(867\) 44.3805 1.50724
\(868\) 0 0
\(869\) 0.299684i 0.0101661i
\(870\) 0 0
\(871\) 8.00000 34.1584i 0.271070 1.15741i
\(872\) 0 0
\(873\) 12.4631i 0.421813i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 48.1876i 1.62718i 0.581440 + 0.813590i \(0.302490\pi\)
−0.581440 + 0.813590i \(0.697510\pi\)
\(878\) 0 0
\(879\) 6.34226i 0.213919i
\(880\) 0 0
\(881\) 30.4267 1.02510 0.512551 0.858657i \(-0.328701\pi\)
0.512551 + 0.858657i \(0.328701\pi\)
\(882\) 0 0
\(883\) 32.3172 1.08756 0.543780 0.839228i \(-0.316993\pi\)
0.543780 + 0.839228i \(0.316993\pi\)
\(884\) 0 0
\(885\) −26.6903 −0.897183
\(886\) 0 0
\(887\) −6.04223 −0.202878 −0.101439 0.994842i \(-0.532345\pi\)
−0.101439 + 0.994842i \(0.532345\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.989386i 0.0331457i
\(892\) 0 0
\(893\) −51.6834 −1.72952
\(894\) 0 0
\(895\) 32.9338i 1.10086i
\(896\) 0 0
\(897\) 8.81346 + 2.06414i 0.294273 + 0.0689196i
\(898\) 0 0
\(899\) 30.2791i 1.00987i
\(900\) 0 0
\(901\) 81.0497 2.70016
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 60.0602i 1.99647i
\(906\) 0 0
\(907\) 38.0143 1.26224 0.631122 0.775684i \(-0.282595\pi\)
0.631122 + 0.775684i \(0.282595\pi\)
\(908\) 0 0
\(909\) −9.46149 −0.313818
\(910\) 0 0
\(911\) −46.2082 −1.53095 −0.765474 0.643467i \(-0.777495\pi\)
−0.765474 + 0.643467i \(0.777495\pi\)
\(912\) 0 0
\(913\) −4.64803 −0.153827
\(914\) 0 0
\(915\) 26.4070i 0.872988i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16.2327 0.535468 0.267734 0.963493i \(-0.413725\pi\)
0.267734 + 0.963493i \(0.413725\pi\)
\(920\) 0 0
\(921\) 1.89341i 0.0623898i
\(922\) 0 0
\(923\) −13.5596 + 57.8969i −0.446321 + 1.90570i
\(924\) 0 0
\(925\) 27.8529i 0.915799i
\(926\) 0 0
\(927\) −8.64803 −0.284039
\(928\) 0 0
\(929\) 10.7702i 0.353359i 0.984268 + 0.176680i \(0.0565357\pi\)
−0.984268 + 0.176680i \(0.943464\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 11.6691 0.382031
\(934\) 0 0
\(935\) 23.6691 0.774064
\(936\) 0 0
\(937\) −7.90186 −0.258142 −0.129071 0.991635i \(-0.541200\pi\)
−0.129071 + 0.991635i \(0.541200\pi\)
\(938\) 0 0
\(939\) −20.6480 −0.673823
\(940\) 0 0
\(941\) 7.38020i 0.240588i 0.992738 + 0.120294i \(0.0383836\pi\)
−0.992738 + 0.120294i \(0.961616\pi\)
\(942\) 0 0
\(943\) 22.7838i 0.741944i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50.7866i 1.65034i 0.564882 + 0.825172i \(0.308922\pi\)
−0.564882 + 0.825172i \(0.691078\pi\)
\(948\) 0 0
\(949\) −8.34513 + 35.6320i −0.270894 + 1.15666i
\(950\) 0 0
\(951\) 17.8022i 0.577275i
\(952\) 0 0
\(953\) −43.9161 −1.42258 −0.711291 0.702897i \(-0.751889\pi\)
−0.711291 + 0.702897i \(0.751889\pi\)
\(954\) 0 0
\(955\) 45.3622i 1.46789i
\(956\) 0 0
\(957\) 5.26751i 0.170274i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.34513 −0.0433913
\(962\) 0 0
\(963\) 3.18654 0.102685
\(964\) 0 0
\(965\) −29.7114 −0.956443
\(966\) 0 0
\(967\) 32.6430i 1.04973i 0.851186 + 0.524864i \(0.175884\pi\)
−0.851186 + 0.524864i \(0.824116\pi\)
\(968\) 0 0
\(969\) 31.6745i 1.01753i
\(970\) 0 0
\(971\) −45.7114 −1.46695 −0.733474 0.679718i \(-0.762102\pi\)
−0.733474 + 0.679718i \(0.762102\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −15.1797 3.55513i −0.486140 0.113855i
\(976\) 0 0
\(977\) 24.7764i 0.792668i −0.918106 0.396334i \(-0.870282\pi\)
0.918106 0.396334i \(-0.129718\pi\)
\(978\) 0 0
\(979\) −0.232712 −0.00743752
\(980\) 0 0
\(981\) 5.26751i 0.168179i
\(982\) 0 0
\(983\) 29.2968i 0.934424i −0.884145 0.467212i \(-0.845259\pi\)
0.884145 0.467212i \(-0.154741\pi\)
\(984\) 0 0
\(985\) 52.4016 1.66965
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.34513 0.265360
\(990\) 0 0
\(991\) −10.3731 −0.329512 −0.164756 0.986334i \(-0.552684\pi\)
−0.164756 + 0.986334i \(0.552684\pi\)
\(992\) 0 0
\(993\) 4.96782i 0.157649i
\(994\) 0 0
\(995\) 60.0602i 1.90404i
\(996\) 0 0
\(997\) −18.7884 −0.595035 −0.297517 0.954716i \(-0.596159\pi\)
−0.297517 + 0.954716i \(0.596159\pi\)
\(998\) 0 0
\(999\) 6.44146i 0.203799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.m.4705.1 yes 6
7.6 odd 2 7644.2.e.j.4705.6 yes 6
13.12 even 2 inner 7644.2.e.m.4705.6 yes 6
91.90 odd 2 7644.2.e.j.4705.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7644.2.e.j.4705.1 6 91.90 odd 2
7644.2.e.j.4705.6 yes 6 7.6 odd 2
7644.2.e.m.4705.1 yes 6 1.1 even 1 trivial
7644.2.e.m.4705.6 yes 6 13.12 even 2 inner