Properties

Label 7644.2.a.v
Level $7644$
Weight $2$
Character orbit 7644.a
Self dual yes
Analytic conductor $61.038$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(1,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,1,0,0,0,3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_1 q^{5} + q^{9} + (\beta_{2} + 2 \beta_1) q^{11} + q^{13} - \beta_1 q^{15} + (\beta_{2} - \beta_1 + 1) q^{17} + (2 \beta_{2} + 1) q^{19} + ( - \beta_{2} - \beta_1 - 2) q^{23} + (\beta_{2} + \beta_1 - 2) q^{25}+ \cdots + (\beta_{2} + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + q^{5} + 3 q^{9} + q^{11} + 3 q^{13} - q^{15} + q^{17} + q^{19} - 6 q^{23} - 6 q^{25} - 3 q^{27} + 2 q^{29} + 6 q^{31} - q^{33} - 9 q^{37} - 3 q^{39} + 14 q^{41} + 4 q^{43} + q^{45}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69963
0.239123
2.46050
0 −1.00000 0 −1.69963 0 0 0 1.00000 0
1.2 0 −1.00000 0 0.239123 0 0 0 1.00000 0
1.3 0 −1.00000 0 2.46050 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7644.2.a.v 3
7.b odd 2 1 7644.2.a.y 3
7.d odd 6 2 1092.2.q.c 6
21.g even 6 2 3276.2.r.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.q.c 6 7.d odd 6 2
3276.2.r.g 6 21.g even 6 2
7644.2.a.v 3 1.a even 1 1 trivial
7644.2.a.y 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7644))\):

\( T_{5}^{3} - T_{5}^{2} - 4T_{5} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 20T_{11} - 27 \) Copy content Toggle raw display
\( T_{17}^{3} - T_{17}^{2} - 12T_{17} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 4T + 1 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} + \cdots - 27 \) Copy content Toggle raw display
$13$ \( (T - 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - T^{2} - 12T - 9 \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$29$ \( T^{3} - 2 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$31$ \( T^{3} - 6 T^{2} + \cdots + 67 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$41$ \( T^{3} - 14 T^{2} + \cdots + 489 \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{3} - 2 T^{2} + \cdots + 392 \) Copy content Toggle raw display
$53$ \( T^{3} + 13 T^{2} + \cdots - 93 \) Copy content Toggle raw display
$59$ \( T^{3} - 19 T^{2} + \cdots - 129 \) Copy content Toggle raw display
$61$ \( T^{3} - 17 T^{2} + \cdots - 99 \) Copy content Toggle raw display
$67$ \( T^{3} - T^{2} + \cdots + 439 \) Copy content Toggle raw display
$71$ \( T^{3} - 29 T^{2} + \cdots - 861 \) Copy content Toggle raw display
$73$ \( T^{3} + 22 T^{2} + \cdots + 363 \) Copy content Toggle raw display
$79$ \( T^{3} + 4 T^{2} + \cdots - 321 \) Copy content Toggle raw display
$83$ \( T^{3} - 18 T^{2} + \cdots - 11 \) Copy content Toggle raw display
$89$ \( T^{3} + 13 T^{2} + \cdots - 1203 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots + 523 \) Copy content Toggle raw display
show more
show less