Defining parameters
Level: | \( N \) | \(=\) | \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7644.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(3136\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7644))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1616 | 82 | 1534 |
Cusp forms | 1521 | 82 | 1439 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(92\) | \(0\) | \(92\) | \(85\) | \(0\) | \(85\) | \(7\) | \(0\) | \(7\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(108\) | \(0\) | \(108\) | \(100\) | \(0\) | \(100\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(111\) | \(0\) | \(111\) | \(103\) | \(0\) | \(103\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(95\) | \(0\) | \(95\) | \(87\) | \(0\) | \(87\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(112\) | \(0\) | \(112\) | \(104\) | \(0\) | \(104\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(96\) | \(0\) | \(96\) | \(88\) | \(0\) | \(88\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(93\) | \(0\) | \(93\) | \(85\) | \(0\) | \(85\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(109\) | \(0\) | \(109\) | \(101\) | \(0\) | \(101\) | \(8\) | \(0\) | \(8\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(96\) | \(9\) | \(87\) | \(92\) | \(9\) | \(83\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(104\) | \(11\) | \(93\) | \(100\) | \(11\) | \(89\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(104\) | \(12\) | \(92\) | \(100\) | \(12\) | \(88\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(96\) | \(9\) | \(87\) | \(92\) | \(9\) | \(83\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(104\) | \(9\) | \(95\) | \(100\) | \(9\) | \(91\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(96\) | \(11\) | \(85\) | \(92\) | \(11\) | \(81\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(96\) | \(12\) | \(84\) | \(92\) | \(12\) | \(80\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(104\) | \(9\) | \(95\) | \(100\) | \(9\) | \(91\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(792\) | \(41\) | \(751\) | \(745\) | \(41\) | \(704\) | \(47\) | \(0\) | \(47\) | ||||||
Minus space | \(-\) | \(824\) | \(41\) | \(783\) | \(776\) | \(41\) | \(735\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7644))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7644))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7644)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1274))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2548))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3822))\)\(^{\oplus 2}\)