Properties

Label 7644.2.a
Level $7644$
Weight $2$
Character orbit 7644.a
Rep. character $\chi_{7644}(1,\cdot)$
Character field $\Q$
Dimension $82$
Newform subspaces $32$
Sturm bound $3136$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 32 \)
Sturm bound: \(3136\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7644))\).

Total New Old
Modular forms 1616 82 1534
Cusp forms 1521 82 1439
Eisenstein series 95 0 95

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(92\)\(0\)\(92\)\(85\)\(0\)\(85\)\(7\)\(0\)\(7\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(108\)\(0\)\(108\)\(100\)\(0\)\(100\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(111\)\(0\)\(111\)\(103\)\(0\)\(103\)\(8\)\(0\)\(8\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(95\)\(0\)\(95\)\(87\)\(0\)\(87\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(112\)\(0\)\(112\)\(104\)\(0\)\(104\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(96\)\(0\)\(96\)\(88\)\(0\)\(88\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(93\)\(0\)\(93\)\(85\)\(0\)\(85\)\(8\)\(0\)\(8\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(109\)\(0\)\(109\)\(101\)\(0\)\(101\)\(8\)\(0\)\(8\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(96\)\(9\)\(87\)\(92\)\(9\)\(83\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(104\)\(11\)\(93\)\(100\)\(11\)\(89\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(104\)\(12\)\(92\)\(100\)\(12\)\(88\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(96\)\(9\)\(87\)\(92\)\(9\)\(83\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(104\)\(9\)\(95\)\(100\)\(9\)\(91\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(96\)\(11\)\(85\)\(92\)\(11\)\(81\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(96\)\(12\)\(84\)\(92\)\(12\)\(80\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(104\)\(9\)\(95\)\(100\)\(9\)\(91\)\(4\)\(0\)\(4\)
Plus space\(+\)\(792\)\(41\)\(751\)\(745\)\(41\)\(704\)\(47\)\(0\)\(47\)
Minus space\(-\)\(824\)\(41\)\(783\)\(776\)\(41\)\(735\)\(48\)\(0\)\(48\)

Trace form

\( 82 q + 4 q^{5} + 82 q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{15} - 4 q^{17} - 8 q^{19} - 8 q^{23} + 78 q^{25} + 4 q^{29} - 12 q^{33} - 20 q^{37} + 12 q^{41} - 16 q^{43} + 4 q^{45} + 20 q^{47} + 12 q^{53} - 12 q^{57}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7644))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 13
7644.2.a.a 7644.a 1.a $1$ $61.038$ \(\Q\) None 156.2.a.b \(0\) \(-1\) \(0\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{9}-q^{13}+6q^{17}-2q^{19}+\cdots\)
7644.2.a.b 7644.a 1.a $1$ $61.038$ \(\Q\) None 7644.2.a.b \(0\) \(-1\) \(1\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{9}+2q^{11}-q^{13}-q^{15}+\cdots\)
7644.2.a.c 7644.a 1.a $1$ $61.038$ \(\Q\) None 1092.2.a.e \(0\) \(-1\) \(2\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{9}+q^{13}-2q^{15}+\cdots\)
7644.2.a.d 7644.a 1.a $1$ $61.038$ \(\Q\) None 7644.2.a.d \(0\) \(-1\) \(3\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}+q^{9}+2q^{11}+q^{13}+\cdots\)
7644.2.a.e 7644.a 1.a $1$ $61.038$ \(\Q\) None 7644.2.a.d \(0\) \(1\) \(-3\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}+q^{9}+2q^{11}-q^{13}+\cdots\)
7644.2.a.f 7644.a 1.a $1$ $61.038$ \(\Q\) None 1092.2.a.d \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{9}-6q^{11}+q^{13}-q^{15}+\cdots\)
7644.2.a.g 7644.a 1.a $1$ $61.038$ \(\Q\) None 7644.2.a.b \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{9}+2q^{11}+q^{13}-q^{15}+\cdots\)
7644.2.a.h 7644.a 1.a $1$ $61.038$ \(\Q\) None 1092.2.a.c \(0\) \(1\) \(0\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{9}-2q^{11}+q^{13}-4q^{17}+\cdots\)
7644.2.a.i 7644.a 1.a $1$ $61.038$ \(\Q\) None 1092.2.a.b \(0\) \(1\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{9}+2q^{11}-q^{13}+q^{15}+\cdots\)
7644.2.a.j 7644.a 1.a $1$ $61.038$ \(\Q\) None 1092.2.a.a \(0\) \(1\) \(2\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+q^{9}+q^{13}+2q^{15}+\cdots\)
7644.2.a.k 7644.a 1.a $1$ $61.038$ \(\Q\) None 156.2.a.a \(0\) \(1\) \(4\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}+q^{9}-4q^{11}-q^{13}+\cdots\)
7644.2.a.l 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{7}) \) None 7644.2.a.l \(0\) \(-2\) \(-2\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1+\beta )q^{5}+q^{9}+(-3+\beta )q^{11}+\cdots\)
7644.2.a.m 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{3}) \) None 7644.2.a.m \(0\) \(-2\) \(-2\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1+\beta )q^{5}+q^{9}+(1-3\beta )q^{11}+\cdots\)
7644.2.a.n 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{33}) \) None 1092.2.a.g \(0\) \(-2\) \(-1\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta q^{5}+q^{9}+2q^{11}+q^{13}+\cdots\)
7644.2.a.o 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{2}) \) None 1092.2.q.a \(0\) \(-2\) \(0\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2\beta q^{5}+q^{9}+(-1-\beta )q^{11}+\cdots\)
7644.2.a.p 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{5}) \) None 1092.2.a.f \(0\) \(2\) \(-2\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{5}+q^{9}+(1-\beta )q^{11}+\cdots\)
7644.2.a.q 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{2}) \) None 1092.2.q.a \(0\) \(2\) \(0\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2\beta q^{5}+q^{9}+(-1+\beta )q^{11}+\cdots\)
7644.2.a.r 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{7}) \) None 7644.2.a.l \(0\) \(2\) \(2\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1+\beta )q^{5}+q^{9}+(-3-\beta )q^{11}+\cdots\)
7644.2.a.s 7644.a 1.a $2$ $61.038$ \(\Q(\sqrt{3}) \) None 7644.2.a.m \(0\) \(2\) \(2\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(1+\beta )q^{5}+q^{9}+(1+3\beta )q^{11}+\cdots\)
7644.2.a.t 7644.a 1.a $3$ $61.038$ 3.3.1373.1 None 1092.2.a.h \(0\) \(-3\) \(-1\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{2}q^{5}+q^{9}+\beta _{1}q^{11}-q^{13}+\cdots\)
7644.2.a.u 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.b \(0\) \(-3\) \(-1\) \(0\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{2}q^{5}+q^{9}+(1+\beta _{1}-\beta _{2})q^{11}+\cdots\)
7644.2.a.v 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.c \(0\) \(-3\) \(1\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{1}q^{5}+q^{9}+(2\beta _{1}+\beta _{2})q^{11}+\cdots\)
7644.2.a.w 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.d \(0\) \(-3\) \(5\) \(0\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(2-\beta _{1})q^{5}+q^{9}-\beta _{2}q^{11}+\cdots\)
7644.2.a.x 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.d \(0\) \(3\) \(-5\) \(0\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-2+\beta _{1})q^{5}+q^{9}-\beta _{2}q^{11}+\cdots\)
7644.2.a.y 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.c \(0\) \(3\) \(-1\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{1}q^{5}+q^{9}+(2\beta _{1}+\beta _{2})q^{11}+\cdots\)
7644.2.a.z 7644.a 1.a $3$ $61.038$ 3.3.321.1 None 1092.2.q.b \(0\) \(3\) \(1\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{2}q^{5}+q^{9}+(1+\beta _{1}-\beta _{2})q^{11}+\cdots\)
7644.2.a.ba 7644.a 1.a $5$ $61.038$ 5.5.20094696.1 None 1092.2.q.e \(0\) \(-5\) \(-1\) \(0\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{1}q^{5}+q^{9}+(\beta _{1}-\beta _{4})q^{11}+\cdots\)
7644.2.a.bb 7644.a 1.a $5$ $61.038$ 5.5.20094696.1 None 1092.2.q.e \(0\) \(5\) \(1\) \(0\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta _{1}q^{5}+q^{9}+(\beta _{1}-\beta _{4})q^{11}+\cdots\)
7644.2.a.bc 7644.a 1.a $6$ $61.038$ 6.6.566222848.1 None 7644.2.a.bc \(0\) \(-6\) \(-2\) \(0\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{1}q^{5}+q^{9}+(2-\beta _{1}+\beta _{3}+\cdots)q^{11}+\cdots\)
7644.2.a.bd 7644.a 1.a $6$ $61.038$ 6.6.71950336.1 None 7644.2.a.bd \(0\) \(-6\) \(2\) \(0\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{3}q^{5}+q^{9}+(-2-\beta _{2}-\beta _{3}+\cdots)q^{11}+\cdots\)
7644.2.a.be 7644.a 1.a $6$ $61.038$ 6.6.71950336.1 None 7644.2.a.bd \(0\) \(6\) \(-2\) \(0\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta _{3}q^{5}+q^{9}+(-2-\beta _{2}-\beta _{3}+\cdots)q^{11}+\cdots\)
7644.2.a.bf 7644.a 1.a $6$ $61.038$ 6.6.566222848.1 None 7644.2.a.bc \(0\) \(6\) \(2\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta _{1}q^{5}+q^{9}+(2-\beta _{1}+\beta _{3}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7644))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(7644)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1274))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2548))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3822))\)\(^{\oplus 2}\)