Properties

Label 7616.2.a.bt.1.4
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7616,2,Mod(1,7616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7616.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,2,0,0,0,-5,0,11,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.609440\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82084 q^{3} -2.51889 q^{5} -1.00000 q^{7} +4.95716 q^{9} +5.25717 q^{11} +4.20342 q^{13} -7.10539 q^{15} +1.00000 q^{17} -0.781120 q^{19} -2.82084 q^{21} +2.42281 q^{23} +1.34480 q^{25} +5.52084 q^{27} -3.42230 q^{29} +6.94170 q^{31} +14.8296 q^{33} +2.51889 q^{35} +7.02282 q^{37} +11.8572 q^{39} +1.83631 q^{41} -8.63974 q^{43} -12.4865 q^{45} -1.34285 q^{47} +1.00000 q^{49} +2.82084 q^{51} +1.95716 q^{53} -13.2422 q^{55} -2.20342 q^{57} -2.43776 q^{59} -6.16369 q^{61} -4.95716 q^{63} -10.5879 q^{65} -1.53435 q^{67} +6.83436 q^{69} -1.65664 q^{71} -14.3197 q^{73} +3.79346 q^{75} -5.25717 q^{77} +12.6262 q^{79} +0.701939 q^{81} +11.8451 q^{83} -2.51889 q^{85} -9.65376 q^{87} +4.49202 q^{89} -4.20342 q^{91} +19.5814 q^{93} +1.96755 q^{95} +12.9267 q^{97} +26.0606 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} - 5 q^{7} + 11 q^{9} + 2 q^{11} - 2 q^{13} + 8 q^{15} + 5 q^{17} - 6 q^{19} - 2 q^{21} - 10 q^{23} + 21 q^{25} + 26 q^{27} + 8 q^{29} + 6 q^{33} - 8 q^{37} + 14 q^{39} + 18 q^{41} - 8 q^{43}+ \cdots + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.82084 1.62861 0.814307 0.580434i \(-0.197117\pi\)
0.814307 + 0.580434i \(0.197117\pi\)
\(4\) 0 0
\(5\) −2.51889 −1.12648 −0.563241 0.826293i \(-0.690446\pi\)
−0.563241 + 0.826293i \(0.690446\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 4.95716 1.65239
\(10\) 0 0
\(11\) 5.25717 1.58510 0.792548 0.609810i \(-0.208754\pi\)
0.792548 + 0.609810i \(0.208754\pi\)
\(12\) 0 0
\(13\) 4.20342 1.16582 0.582909 0.812537i \(-0.301914\pi\)
0.582909 + 0.812537i \(0.301914\pi\)
\(14\) 0 0
\(15\) −7.10539 −1.83460
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −0.781120 −0.179201 −0.0896006 0.995978i \(-0.528559\pi\)
−0.0896006 + 0.995978i \(0.528559\pi\)
\(20\) 0 0
\(21\) −2.82084 −0.615559
\(22\) 0 0
\(23\) 2.42281 0.505190 0.252595 0.967572i \(-0.418716\pi\)
0.252595 + 0.967572i \(0.418716\pi\)
\(24\) 0 0
\(25\) 1.34480 0.268960
\(26\) 0 0
\(27\) 5.52084 1.06249
\(28\) 0 0
\(29\) −3.42230 −0.635505 −0.317752 0.948174i \(-0.602928\pi\)
−0.317752 + 0.948174i \(0.602928\pi\)
\(30\) 0 0
\(31\) 6.94170 1.24677 0.623383 0.781917i \(-0.285758\pi\)
0.623383 + 0.781917i \(0.285758\pi\)
\(32\) 0 0
\(33\) 14.8296 2.58151
\(34\) 0 0
\(35\) 2.51889 0.425770
\(36\) 0 0
\(37\) 7.02282 1.15455 0.577273 0.816552i \(-0.304117\pi\)
0.577273 + 0.816552i \(0.304117\pi\)
\(38\) 0 0
\(39\) 11.8572 1.89867
\(40\) 0 0
\(41\) 1.83631 0.286783 0.143391 0.989666i \(-0.454199\pi\)
0.143391 + 0.989666i \(0.454199\pi\)
\(42\) 0 0
\(43\) −8.63974 −1.31755 −0.658774 0.752341i \(-0.728925\pi\)
−0.658774 + 0.752341i \(0.728925\pi\)
\(44\) 0 0
\(45\) −12.4865 −1.86138
\(46\) 0 0
\(47\) −1.34285 −0.195875 −0.0979374 0.995193i \(-0.531225\pi\)
−0.0979374 + 0.995193i \(0.531225\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.82084 0.394997
\(52\) 0 0
\(53\) 1.95716 0.268836 0.134418 0.990925i \(-0.457083\pi\)
0.134418 + 0.990925i \(0.457083\pi\)
\(54\) 0 0
\(55\) −13.2422 −1.78558
\(56\) 0 0
\(57\) −2.20342 −0.291850
\(58\) 0 0
\(59\) −2.43776 −0.317369 −0.158685 0.987329i \(-0.550725\pi\)
−0.158685 + 0.987329i \(0.550725\pi\)
\(60\) 0 0
\(61\) −6.16369 −0.789180 −0.394590 0.918857i \(-0.629113\pi\)
−0.394590 + 0.918857i \(0.629113\pi\)
\(62\) 0 0
\(63\) −4.95716 −0.624543
\(64\) 0 0
\(65\) −10.5879 −1.31327
\(66\) 0 0
\(67\) −1.53435 −0.187451 −0.0937254 0.995598i \(-0.529878\pi\)
−0.0937254 + 0.995598i \(0.529878\pi\)
\(68\) 0 0
\(69\) 6.83436 0.822760
\(70\) 0 0
\(71\) −1.65664 −0.196607 −0.0983035 0.995156i \(-0.531342\pi\)
−0.0983035 + 0.995156i \(0.531342\pi\)
\(72\) 0 0
\(73\) −14.3197 −1.67600 −0.837998 0.545674i \(-0.816274\pi\)
−0.837998 + 0.545674i \(0.816274\pi\)
\(74\) 0 0
\(75\) 3.79346 0.438031
\(76\) 0 0
\(77\) −5.25717 −0.599110
\(78\) 0 0
\(79\) 12.6262 1.42056 0.710281 0.703919i \(-0.248568\pi\)
0.710281 + 0.703919i \(0.248568\pi\)
\(80\) 0 0
\(81\) 0.701939 0.0779932
\(82\) 0 0
\(83\) 11.8451 1.30017 0.650085 0.759862i \(-0.274733\pi\)
0.650085 + 0.759862i \(0.274733\pi\)
\(84\) 0 0
\(85\) −2.51889 −0.273212
\(86\) 0 0
\(87\) −9.65376 −1.03499
\(88\) 0 0
\(89\) 4.49202 0.476153 0.238076 0.971246i \(-0.423483\pi\)
0.238076 + 0.971246i \(0.423483\pi\)
\(90\) 0 0
\(91\) −4.20342 −0.440638
\(92\) 0 0
\(93\) 19.5814 2.03050
\(94\) 0 0
\(95\) 1.96755 0.201867
\(96\) 0 0
\(97\) 12.9267 1.31251 0.656256 0.754538i \(-0.272139\pi\)
0.656256 + 0.754538i \(0.272139\pi\)
\(98\) 0 0
\(99\) 26.0606 2.61919
\(100\) 0 0
\(101\) 1.82279 0.181374 0.0906872 0.995879i \(-0.471094\pi\)
0.0906872 + 0.995879i \(0.471094\pi\)
\(102\) 0 0
\(103\) 1.40734 0.138670 0.0693349 0.997593i \(-0.477912\pi\)
0.0693349 + 0.997593i \(0.477912\pi\)
\(104\) 0 0
\(105\) 7.10539 0.693415
\(106\) 0 0
\(107\) 16.0074 1.54749 0.773745 0.633497i \(-0.218381\pi\)
0.773745 + 0.633497i \(0.218381\pi\)
\(108\) 0 0
\(109\) −16.5143 −1.58179 −0.790893 0.611954i \(-0.790384\pi\)
−0.790893 + 0.611954i \(0.790384\pi\)
\(110\) 0 0
\(111\) 19.8103 1.88031
\(112\) 0 0
\(113\) −1.61548 −0.151971 −0.0759857 0.997109i \(-0.524210\pi\)
−0.0759857 + 0.997109i \(0.524210\pi\)
\(114\) 0 0
\(115\) −6.10278 −0.569087
\(116\) 0 0
\(117\) 20.8370 1.92638
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 16.6378 1.51253
\(122\) 0 0
\(123\) 5.17993 0.467059
\(124\) 0 0
\(125\) 9.20705 0.823503
\(126\) 0 0
\(127\) 11.4177 1.01316 0.506580 0.862193i \(-0.330909\pi\)
0.506580 + 0.862193i \(0.330909\pi\)
\(128\) 0 0
\(129\) −24.3714 −2.14578
\(130\) 0 0
\(131\) 9.96907 0.871002 0.435501 0.900188i \(-0.356571\pi\)
0.435501 + 0.900188i \(0.356571\pi\)
\(132\) 0 0
\(133\) 0.781120 0.0677317
\(134\) 0 0
\(135\) −13.9064 −1.19687
\(136\) 0 0
\(137\) −19.3454 −1.65279 −0.826395 0.563091i \(-0.809612\pi\)
−0.826395 + 0.563091i \(0.809612\pi\)
\(138\) 0 0
\(139\) 6.31075 0.535271 0.267636 0.963520i \(-0.413758\pi\)
0.267636 + 0.963520i \(0.413758\pi\)
\(140\) 0 0
\(141\) −3.78797 −0.319005
\(142\) 0 0
\(143\) 22.0981 1.84793
\(144\) 0 0
\(145\) 8.62038 0.715884
\(146\) 0 0
\(147\) 2.82084 0.232659
\(148\) 0 0
\(149\) −7.73465 −0.633647 −0.316824 0.948484i \(-0.602616\pi\)
−0.316824 + 0.948484i \(0.602616\pi\)
\(150\) 0 0
\(151\) 13.4088 1.09119 0.545596 0.838049i \(-0.316303\pi\)
0.545596 + 0.838049i \(0.316303\pi\)
\(152\) 0 0
\(153\) 4.95716 0.400762
\(154\) 0 0
\(155\) −17.4854 −1.40446
\(156\) 0 0
\(157\) 12.3806 0.988082 0.494041 0.869439i \(-0.335519\pi\)
0.494041 + 0.869439i \(0.335519\pi\)
\(158\) 0 0
\(159\) 5.52084 0.437831
\(160\) 0 0
\(161\) −2.42281 −0.190944
\(162\) 0 0
\(163\) −10.7487 −0.841901 −0.420951 0.907084i \(-0.638303\pi\)
−0.420951 + 0.907084i \(0.638303\pi\)
\(164\) 0 0
\(165\) −37.3542 −2.90802
\(166\) 0 0
\(167\) −10.4586 −0.809314 −0.404657 0.914469i \(-0.632609\pi\)
−0.404657 + 0.914469i \(0.632609\pi\)
\(168\) 0 0
\(169\) 4.66872 0.359132
\(170\) 0 0
\(171\) −3.87214 −0.296110
\(172\) 0 0
\(173\) −3.83241 −0.291373 −0.145686 0.989331i \(-0.546539\pi\)
−0.145686 + 0.989331i \(0.546539\pi\)
\(174\) 0 0
\(175\) −1.34480 −0.101657
\(176\) 0 0
\(177\) −6.87654 −0.516872
\(178\) 0 0
\(179\) 17.5918 1.31488 0.657438 0.753509i \(-0.271640\pi\)
0.657438 + 0.753509i \(0.271640\pi\)
\(180\) 0 0
\(181\) 16.9212 1.25774 0.628870 0.777510i \(-0.283518\pi\)
0.628870 + 0.777510i \(0.283518\pi\)
\(182\) 0 0
\(183\) −17.3868 −1.28527
\(184\) 0 0
\(185\) −17.6897 −1.30057
\(186\) 0 0
\(187\) 5.25717 0.384442
\(188\) 0 0
\(189\) −5.52084 −0.401582
\(190\) 0 0
\(191\) −4.97998 −0.360339 −0.180169 0.983636i \(-0.557665\pi\)
−0.180169 + 0.983636i \(0.557665\pi\)
\(192\) 0 0
\(193\) 18.1725 1.30808 0.654042 0.756458i \(-0.273072\pi\)
0.654042 + 0.756458i \(0.273072\pi\)
\(194\) 0 0
\(195\) −29.8669 −2.13881
\(196\) 0 0
\(197\) −4.33864 −0.309116 −0.154558 0.987984i \(-0.549395\pi\)
−0.154558 + 0.987984i \(0.549395\pi\)
\(198\) 0 0
\(199\) −16.8964 −1.19775 −0.598877 0.800841i \(-0.704386\pi\)
−0.598877 + 0.800841i \(0.704386\pi\)
\(200\) 0 0
\(201\) −4.32816 −0.305285
\(202\) 0 0
\(203\) 3.42230 0.240198
\(204\) 0 0
\(205\) −4.62545 −0.323055
\(206\) 0 0
\(207\) 12.0102 0.834769
\(208\) 0 0
\(209\) −4.10648 −0.284051
\(210\) 0 0
\(211\) 23.7938 1.63803 0.819017 0.573770i \(-0.194520\pi\)
0.819017 + 0.573770i \(0.194520\pi\)
\(212\) 0 0
\(213\) −4.67312 −0.320197
\(214\) 0 0
\(215\) 21.7625 1.48419
\(216\) 0 0
\(217\) −6.94170 −0.471233
\(218\) 0 0
\(219\) −40.3937 −2.72955
\(220\) 0 0
\(221\) 4.20342 0.282752
\(222\) 0 0
\(223\) −1.14333 −0.0765629 −0.0382814 0.999267i \(-0.512188\pi\)
−0.0382814 + 0.999267i \(0.512188\pi\)
\(224\) 0 0
\(225\) 6.66637 0.444425
\(226\) 0 0
\(227\) −13.4560 −0.893108 −0.446554 0.894757i \(-0.647349\pi\)
−0.446554 + 0.894757i \(0.647349\pi\)
\(228\) 0 0
\(229\) 5.86006 0.387243 0.193622 0.981076i \(-0.437977\pi\)
0.193622 + 0.981076i \(0.437977\pi\)
\(230\) 0 0
\(231\) −14.8296 −0.975719
\(232\) 0 0
\(233\) 2.41891 0.158468 0.0792341 0.996856i \(-0.474753\pi\)
0.0792341 + 0.996856i \(0.474753\pi\)
\(234\) 0 0
\(235\) 3.38249 0.220649
\(236\) 0 0
\(237\) 35.6166 2.31355
\(238\) 0 0
\(239\) −8.20587 −0.530794 −0.265397 0.964139i \(-0.585503\pi\)
−0.265397 + 0.964139i \(0.585503\pi\)
\(240\) 0 0
\(241\) 26.1567 1.68490 0.842450 0.538775i \(-0.181113\pi\)
0.842450 + 0.538775i \(0.181113\pi\)
\(242\) 0 0
\(243\) −14.5824 −0.935464
\(244\) 0 0
\(245\) −2.51889 −0.160926
\(246\) 0 0
\(247\) −3.28337 −0.208916
\(248\) 0 0
\(249\) 33.4132 2.11747
\(250\) 0 0
\(251\) −7.98792 −0.504193 −0.252097 0.967702i \(-0.581120\pi\)
−0.252097 + 0.967702i \(0.581120\pi\)
\(252\) 0 0
\(253\) 12.7371 0.800774
\(254\) 0 0
\(255\) −7.10539 −0.444957
\(256\) 0 0
\(257\) 9.29833 0.580014 0.290007 0.957025i \(-0.406342\pi\)
0.290007 + 0.957025i \(0.406342\pi\)
\(258\) 0 0
\(259\) −7.02282 −0.436377
\(260\) 0 0
\(261\) −16.9649 −1.05010
\(262\) 0 0
\(263\) 3.59317 0.221564 0.110782 0.993845i \(-0.464664\pi\)
0.110782 + 0.993845i \(0.464664\pi\)
\(264\) 0 0
\(265\) −4.92986 −0.302839
\(266\) 0 0
\(267\) 12.6713 0.775470
\(268\) 0 0
\(269\) −6.51331 −0.397124 −0.198562 0.980088i \(-0.563627\pi\)
−0.198562 + 0.980088i \(0.563627\pi\)
\(270\) 0 0
\(271\) 1.29935 0.0789296 0.0394648 0.999221i \(-0.487435\pi\)
0.0394648 + 0.999221i \(0.487435\pi\)
\(272\) 0 0
\(273\) −11.8572 −0.717629
\(274\) 0 0
\(275\) 7.06982 0.426326
\(276\) 0 0
\(277\) 12.0668 0.725026 0.362513 0.931979i \(-0.381919\pi\)
0.362513 + 0.931979i \(0.381919\pi\)
\(278\) 0 0
\(279\) 34.4111 2.06014
\(280\) 0 0
\(281\) 1.77411 0.105834 0.0529172 0.998599i \(-0.483148\pi\)
0.0529172 + 0.998599i \(0.483148\pi\)
\(282\) 0 0
\(283\) −10.8859 −0.647101 −0.323550 0.946211i \(-0.604876\pi\)
−0.323550 + 0.946211i \(0.604876\pi\)
\(284\) 0 0
\(285\) 5.55016 0.328763
\(286\) 0 0
\(287\) −1.83631 −0.108394
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 36.4643 2.13758
\(292\) 0 0
\(293\) −23.7828 −1.38940 −0.694702 0.719298i \(-0.744464\pi\)
−0.694702 + 0.719298i \(0.744464\pi\)
\(294\) 0 0
\(295\) 6.14044 0.357511
\(296\) 0 0
\(297\) 29.0239 1.68414
\(298\) 0 0
\(299\) 10.1841 0.588960
\(300\) 0 0
\(301\) 8.63974 0.497986
\(302\) 0 0
\(303\) 5.14181 0.295389
\(304\) 0 0
\(305\) 15.5257 0.888996
\(306\) 0 0
\(307\) −17.4011 −0.993134 −0.496567 0.867999i \(-0.665406\pi\)
−0.496567 + 0.867999i \(0.665406\pi\)
\(308\) 0 0
\(309\) 3.96990 0.225840
\(310\) 0 0
\(311\) −14.1485 −0.802288 −0.401144 0.916015i \(-0.631387\pi\)
−0.401144 + 0.916015i \(0.631387\pi\)
\(312\) 0 0
\(313\) 4.04918 0.228873 0.114437 0.993431i \(-0.463494\pi\)
0.114437 + 0.993431i \(0.463494\pi\)
\(314\) 0 0
\(315\) 12.4865 0.703536
\(316\) 0 0
\(317\) 32.6583 1.83427 0.917136 0.398575i \(-0.130495\pi\)
0.917136 + 0.398575i \(0.130495\pi\)
\(318\) 0 0
\(319\) −17.9916 −1.00734
\(320\) 0 0
\(321\) 45.1543 2.52026
\(322\) 0 0
\(323\) −0.781120 −0.0434627
\(324\) 0 0
\(325\) 5.65275 0.313558
\(326\) 0 0
\(327\) −46.5843 −2.57612
\(328\) 0 0
\(329\) 1.34285 0.0740338
\(330\) 0 0
\(331\) −14.3272 −0.787496 −0.393748 0.919219i \(-0.628822\pi\)
−0.393748 + 0.919219i \(0.628822\pi\)
\(332\) 0 0
\(333\) 34.8132 1.90775
\(334\) 0 0
\(335\) 3.86486 0.211160
\(336\) 0 0
\(337\) 21.9938 1.19808 0.599038 0.800720i \(-0.295550\pi\)
0.599038 + 0.800720i \(0.295550\pi\)
\(338\) 0 0
\(339\) −4.55701 −0.247503
\(340\) 0 0
\(341\) 36.4936 1.97624
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −17.2150 −0.926824
\(346\) 0 0
\(347\) 18.2108 0.977606 0.488803 0.872394i \(-0.337434\pi\)
0.488803 + 0.872394i \(0.337434\pi\)
\(348\) 0 0
\(349\) −13.6621 −0.731313 −0.365657 0.930750i \(-0.619156\pi\)
−0.365657 + 0.930750i \(0.619156\pi\)
\(350\) 0 0
\(351\) 23.2064 1.23866
\(352\) 0 0
\(353\) −7.82913 −0.416703 −0.208351 0.978054i \(-0.566810\pi\)
−0.208351 + 0.978054i \(0.566810\pi\)
\(354\) 0 0
\(355\) 4.17289 0.221474
\(356\) 0 0
\(357\) −2.82084 −0.149295
\(358\) 0 0
\(359\) 36.9947 1.95251 0.976253 0.216634i \(-0.0695079\pi\)
0.976253 + 0.216634i \(0.0695079\pi\)
\(360\) 0 0
\(361\) −18.3899 −0.967887
\(362\) 0 0
\(363\) 46.9326 2.46332
\(364\) 0 0
\(365\) 36.0698 1.88798
\(366\) 0 0
\(367\) −31.6345 −1.65131 −0.825654 0.564177i \(-0.809194\pi\)
−0.825654 + 0.564177i \(0.809194\pi\)
\(368\) 0 0
\(369\) 9.10286 0.473876
\(370\) 0 0
\(371\) −1.95716 −0.101611
\(372\) 0 0
\(373\) 28.3894 1.46995 0.734974 0.678095i \(-0.237194\pi\)
0.734974 + 0.678095i \(0.237194\pi\)
\(374\) 0 0
\(375\) 25.9716 1.34117
\(376\) 0 0
\(377\) −14.3853 −0.740883
\(378\) 0 0
\(379\) 21.6022 1.10963 0.554814 0.831974i \(-0.312789\pi\)
0.554814 + 0.831974i \(0.312789\pi\)
\(380\) 0 0
\(381\) 32.2077 1.65005
\(382\) 0 0
\(383\) 17.4402 0.891153 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)
\(384\) 0 0
\(385\) 13.2422 0.674886
\(386\) 0 0
\(387\) −42.8286 −2.17710
\(388\) 0 0
\(389\) −30.6552 −1.55428 −0.777141 0.629326i \(-0.783331\pi\)
−0.777141 + 0.629326i \(0.783331\pi\)
\(390\) 0 0
\(391\) 2.42281 0.122527
\(392\) 0 0
\(393\) 28.1212 1.41853
\(394\) 0 0
\(395\) −31.8040 −1.60024
\(396\) 0 0
\(397\) −11.0023 −0.552189 −0.276095 0.961130i \(-0.589040\pi\)
−0.276095 + 0.961130i \(0.589040\pi\)
\(398\) 0 0
\(399\) 2.20342 0.110309
\(400\) 0 0
\(401\) 3.98115 0.198809 0.0994046 0.995047i \(-0.468306\pi\)
0.0994046 + 0.995047i \(0.468306\pi\)
\(402\) 0 0
\(403\) 29.1788 1.45350
\(404\) 0 0
\(405\) −1.76811 −0.0878579
\(406\) 0 0
\(407\) 36.9201 1.83006
\(408\) 0 0
\(409\) 21.0687 1.04178 0.520890 0.853624i \(-0.325600\pi\)
0.520890 + 0.853624i \(0.325600\pi\)
\(410\) 0 0
\(411\) −54.5704 −2.69176
\(412\) 0 0
\(413\) 2.43776 0.119954
\(414\) 0 0
\(415\) −29.8365 −1.46462
\(416\) 0 0
\(417\) 17.8016 0.871750
\(418\) 0 0
\(419\) −15.8730 −0.775446 −0.387723 0.921776i \(-0.626738\pi\)
−0.387723 + 0.921776i \(0.626738\pi\)
\(420\) 0 0
\(421\) −12.7787 −0.622794 −0.311397 0.950280i \(-0.600797\pi\)
−0.311397 + 0.950280i \(0.600797\pi\)
\(422\) 0 0
\(423\) −6.65672 −0.323661
\(424\) 0 0
\(425\) 1.34480 0.0652323
\(426\) 0 0
\(427\) 6.16369 0.298282
\(428\) 0 0
\(429\) 62.3352 3.00957
\(430\) 0 0
\(431\) −39.1793 −1.88720 −0.943601 0.331084i \(-0.892586\pi\)
−0.943601 + 0.331084i \(0.892586\pi\)
\(432\) 0 0
\(433\) −16.2650 −0.781648 −0.390824 0.920465i \(-0.627810\pi\)
−0.390824 + 0.920465i \(0.627810\pi\)
\(434\) 0 0
\(435\) 24.3168 1.16590
\(436\) 0 0
\(437\) −1.89250 −0.0905307
\(438\) 0 0
\(439\) −1.97235 −0.0941354 −0.0470677 0.998892i \(-0.514988\pi\)
−0.0470677 + 0.998892i \(0.514988\pi\)
\(440\) 0 0
\(441\) 4.95716 0.236055
\(442\) 0 0
\(443\) −34.1280 −1.62147 −0.810734 0.585414i \(-0.800932\pi\)
−0.810734 + 0.585414i \(0.800932\pi\)
\(444\) 0 0
\(445\) −11.3149 −0.536377
\(446\) 0 0
\(447\) −21.8182 −1.03197
\(448\) 0 0
\(449\) −6.09912 −0.287835 −0.143918 0.989590i \(-0.545970\pi\)
−0.143918 + 0.989590i \(0.545970\pi\)
\(450\) 0 0
\(451\) 9.65376 0.454578
\(452\) 0 0
\(453\) 37.8241 1.77713
\(454\) 0 0
\(455\) 10.5879 0.496370
\(456\) 0 0
\(457\) −14.9650 −0.700034 −0.350017 0.936743i \(-0.613824\pi\)
−0.350017 + 0.936743i \(0.613824\pi\)
\(458\) 0 0
\(459\) 5.52084 0.257691
\(460\) 0 0
\(461\) 25.9096 1.20673 0.603365 0.797465i \(-0.293826\pi\)
0.603365 + 0.797465i \(0.293826\pi\)
\(462\) 0 0
\(463\) 19.7323 0.917037 0.458518 0.888685i \(-0.348380\pi\)
0.458518 + 0.888685i \(0.348380\pi\)
\(464\) 0 0
\(465\) −49.3234 −2.28732
\(466\) 0 0
\(467\) 10.7158 0.495868 0.247934 0.968777i \(-0.420248\pi\)
0.247934 + 0.968777i \(0.420248\pi\)
\(468\) 0 0
\(469\) 1.53435 0.0708497
\(470\) 0 0
\(471\) 34.9238 1.60920
\(472\) 0 0
\(473\) −45.4205 −2.08844
\(474\) 0 0
\(475\) −1.05045 −0.0481979
\(476\) 0 0
\(477\) 9.70194 0.444221
\(478\) 0 0
\(479\) 6.99221 0.319482 0.159741 0.987159i \(-0.448934\pi\)
0.159741 + 0.987159i \(0.448934\pi\)
\(480\) 0 0
\(481\) 29.5199 1.34599
\(482\) 0 0
\(483\) −6.83436 −0.310974
\(484\) 0 0
\(485\) −32.5610 −1.47852
\(486\) 0 0
\(487\) 11.2113 0.508032 0.254016 0.967200i \(-0.418248\pi\)
0.254016 + 0.967200i \(0.418248\pi\)
\(488\) 0 0
\(489\) −30.3203 −1.37113
\(490\) 0 0
\(491\) −26.1467 −1.17999 −0.589993 0.807408i \(-0.700870\pi\)
−0.589993 + 0.807408i \(0.700870\pi\)
\(492\) 0 0
\(493\) −3.42230 −0.154133
\(494\) 0 0
\(495\) −65.6437 −2.95047
\(496\) 0 0
\(497\) 1.65664 0.0743105
\(498\) 0 0
\(499\) 0.887794 0.0397431 0.0198716 0.999803i \(-0.493674\pi\)
0.0198716 + 0.999803i \(0.493674\pi\)
\(500\) 0 0
\(501\) −29.5022 −1.31806
\(502\) 0 0
\(503\) 23.2662 1.03739 0.518694 0.854960i \(-0.326418\pi\)
0.518694 + 0.854960i \(0.326418\pi\)
\(504\) 0 0
\(505\) −4.59141 −0.204315
\(506\) 0 0
\(507\) 13.1697 0.584888
\(508\) 0 0
\(509\) 1.45906 0.0646718 0.0323359 0.999477i \(-0.489705\pi\)
0.0323359 + 0.999477i \(0.489705\pi\)
\(510\) 0 0
\(511\) 14.3197 0.633467
\(512\) 0 0
\(513\) −4.31244 −0.190399
\(514\) 0 0
\(515\) −3.54494 −0.156209
\(516\) 0 0
\(517\) −7.05959 −0.310480
\(518\) 0 0
\(519\) −10.8106 −0.474534
\(520\) 0 0
\(521\) −42.0865 −1.84384 −0.921921 0.387377i \(-0.873381\pi\)
−0.921921 + 0.387377i \(0.873381\pi\)
\(522\) 0 0
\(523\) −17.2674 −0.755051 −0.377525 0.925999i \(-0.623225\pi\)
−0.377525 + 0.925999i \(0.623225\pi\)
\(524\) 0 0
\(525\) −3.79346 −0.165560
\(526\) 0 0
\(527\) 6.94170 0.302385
\(528\) 0 0
\(529\) −17.1300 −0.744783
\(530\) 0 0
\(531\) −12.0844 −0.524417
\(532\) 0 0
\(533\) 7.71876 0.334337
\(534\) 0 0
\(535\) −40.3208 −1.74322
\(536\) 0 0
\(537\) 49.6238 2.14143
\(538\) 0 0
\(539\) 5.25717 0.226442
\(540\) 0 0
\(541\) 24.7411 1.06370 0.531851 0.846838i \(-0.321497\pi\)
0.531851 + 0.846838i \(0.321497\pi\)
\(542\) 0 0
\(543\) 47.7320 2.04837
\(544\) 0 0
\(545\) 41.5978 1.78185
\(546\) 0 0
\(547\) −4.66104 −0.199292 −0.0996459 0.995023i \(-0.531771\pi\)
−0.0996459 + 0.995023i \(0.531771\pi\)
\(548\) 0 0
\(549\) −30.5544 −1.30403
\(550\) 0 0
\(551\) 2.67323 0.113883
\(552\) 0 0
\(553\) −12.6262 −0.536922
\(554\) 0 0
\(555\) −49.8999 −2.11813
\(556\) 0 0
\(557\) 13.1120 0.555573 0.277787 0.960643i \(-0.410399\pi\)
0.277787 + 0.960643i \(0.410399\pi\)
\(558\) 0 0
\(559\) −36.3164 −1.53602
\(560\) 0 0
\(561\) 14.8296 0.626108
\(562\) 0 0
\(563\) 27.6650 1.16594 0.582971 0.812493i \(-0.301890\pi\)
0.582971 + 0.812493i \(0.301890\pi\)
\(564\) 0 0
\(565\) 4.06921 0.171193
\(566\) 0 0
\(567\) −0.701939 −0.0294787
\(568\) 0 0
\(569\) 10.8911 0.456578 0.228289 0.973593i \(-0.426687\pi\)
0.228289 + 0.973593i \(0.426687\pi\)
\(570\) 0 0
\(571\) −40.3446 −1.68837 −0.844184 0.536053i \(-0.819915\pi\)
−0.844184 + 0.536053i \(0.819915\pi\)
\(572\) 0 0
\(573\) −14.0477 −0.586853
\(574\) 0 0
\(575\) 3.25819 0.135876
\(576\) 0 0
\(577\) 30.0190 1.24971 0.624855 0.780741i \(-0.285158\pi\)
0.624855 + 0.780741i \(0.285158\pi\)
\(578\) 0 0
\(579\) 51.2618 2.13037
\(580\) 0 0
\(581\) −11.8451 −0.491418
\(582\) 0 0
\(583\) 10.2891 0.426131
\(584\) 0 0
\(585\) −52.4861 −2.17003
\(586\) 0 0
\(587\) −38.3982 −1.58486 −0.792432 0.609960i \(-0.791185\pi\)
−0.792432 + 0.609960i \(0.791185\pi\)
\(588\) 0 0
\(589\) −5.42230 −0.223422
\(590\) 0 0
\(591\) −12.2386 −0.503430
\(592\) 0 0
\(593\) 5.71631 0.234741 0.117370 0.993088i \(-0.462554\pi\)
0.117370 + 0.993088i \(0.462554\pi\)
\(594\) 0 0
\(595\) 2.51889 0.103264
\(596\) 0 0
\(597\) −47.6621 −1.95068
\(598\) 0 0
\(599\) −29.9765 −1.22481 −0.612404 0.790545i \(-0.709798\pi\)
−0.612404 + 0.790545i \(0.709798\pi\)
\(600\) 0 0
\(601\) 28.2586 1.15269 0.576346 0.817206i \(-0.304478\pi\)
0.576346 + 0.817206i \(0.304478\pi\)
\(602\) 0 0
\(603\) −7.60602 −0.309741
\(604\) 0 0
\(605\) −41.9087 −1.70383
\(606\) 0 0
\(607\) −43.1772 −1.75251 −0.876253 0.481851i \(-0.839965\pi\)
−0.876253 + 0.481851i \(0.839965\pi\)
\(608\) 0 0
\(609\) 9.65376 0.391190
\(610\) 0 0
\(611\) −5.64456 −0.228355
\(612\) 0 0
\(613\) 12.1412 0.490380 0.245190 0.969475i \(-0.421150\pi\)
0.245190 + 0.969475i \(0.421150\pi\)
\(614\) 0 0
\(615\) −13.0477 −0.526133
\(616\) 0 0
\(617\) 23.0826 0.929270 0.464635 0.885502i \(-0.346185\pi\)
0.464635 + 0.885502i \(0.346185\pi\)
\(618\) 0 0
\(619\) −7.86057 −0.315943 −0.157972 0.987444i \(-0.550495\pi\)
−0.157972 + 0.987444i \(0.550495\pi\)
\(620\) 0 0
\(621\) 13.3759 0.536757
\(622\) 0 0
\(623\) −4.49202 −0.179969
\(624\) 0 0
\(625\) −29.9155 −1.19662
\(626\) 0 0
\(627\) −11.5837 −0.462610
\(628\) 0 0
\(629\) 7.02282 0.280018
\(630\) 0 0
\(631\) 35.8212 1.42602 0.713010 0.701154i \(-0.247331\pi\)
0.713010 + 0.701154i \(0.247331\pi\)
\(632\) 0 0
\(633\) 67.1186 2.66773
\(634\) 0 0
\(635\) −28.7600 −1.14131
\(636\) 0 0
\(637\) 4.20342 0.166545
\(638\) 0 0
\(639\) −8.21222 −0.324871
\(640\) 0 0
\(641\) −5.24743 −0.207261 −0.103631 0.994616i \(-0.533046\pi\)
−0.103631 + 0.994616i \(0.533046\pi\)
\(642\) 0 0
\(643\) −32.1828 −1.26917 −0.634583 0.772855i \(-0.718828\pi\)
−0.634583 + 0.772855i \(0.718828\pi\)
\(644\) 0 0
\(645\) 61.3887 2.41718
\(646\) 0 0
\(647\) −16.6171 −0.653286 −0.326643 0.945148i \(-0.605917\pi\)
−0.326643 + 0.945148i \(0.605917\pi\)
\(648\) 0 0
\(649\) −12.8157 −0.503061
\(650\) 0 0
\(651\) −19.5814 −0.767457
\(652\) 0 0
\(653\) −0.159913 −0.00625786 −0.00312893 0.999995i \(-0.500996\pi\)
−0.00312893 + 0.999995i \(0.500996\pi\)
\(654\) 0 0
\(655\) −25.1110 −0.981167
\(656\) 0 0
\(657\) −70.9851 −2.76939
\(658\) 0 0
\(659\) −32.4256 −1.26312 −0.631561 0.775326i \(-0.717586\pi\)
−0.631561 + 0.775326i \(0.717586\pi\)
\(660\) 0 0
\(661\) 31.9068 1.24103 0.620516 0.784194i \(-0.286923\pi\)
0.620516 + 0.784194i \(0.286923\pi\)
\(662\) 0 0
\(663\) 11.8572 0.460495
\(664\) 0 0
\(665\) −1.96755 −0.0762985
\(666\) 0 0
\(667\) −8.29157 −0.321051
\(668\) 0 0
\(669\) −3.22515 −0.124691
\(670\) 0 0
\(671\) −32.4036 −1.25093
\(672\) 0 0
\(673\) 31.4641 1.21285 0.606425 0.795141i \(-0.292603\pi\)
0.606425 + 0.795141i \(0.292603\pi\)
\(674\) 0 0
\(675\) 7.42441 0.285766
\(676\) 0 0
\(677\) −24.6433 −0.947120 −0.473560 0.880762i \(-0.657031\pi\)
−0.473560 + 0.880762i \(0.657031\pi\)
\(678\) 0 0
\(679\) −12.9267 −0.496083
\(680\) 0 0
\(681\) −37.9573 −1.45453
\(682\) 0 0
\(683\) 24.5793 0.940502 0.470251 0.882533i \(-0.344163\pi\)
0.470251 + 0.882533i \(0.344163\pi\)
\(684\) 0 0
\(685\) 48.7289 1.86184
\(686\) 0 0
\(687\) 16.5303 0.630670
\(688\) 0 0
\(689\) 8.22675 0.313414
\(690\) 0 0
\(691\) −30.5847 −1.16350 −0.581749 0.813368i \(-0.697632\pi\)
−0.581749 + 0.813368i \(0.697632\pi\)
\(692\) 0 0
\(693\) −26.0606 −0.989960
\(694\) 0 0
\(695\) −15.8961 −0.602973
\(696\) 0 0
\(697\) 1.83631 0.0695550
\(698\) 0 0
\(699\) 6.82337 0.258084
\(700\) 0 0
\(701\) 39.8182 1.50391 0.751956 0.659213i \(-0.229111\pi\)
0.751956 + 0.659213i \(0.229111\pi\)
\(702\) 0 0
\(703\) −5.48567 −0.206896
\(704\) 0 0
\(705\) 9.54148 0.359353
\(706\) 0 0
\(707\) −1.82279 −0.0685531
\(708\) 0 0
\(709\) 1.22040 0.0458331 0.0229166 0.999737i \(-0.492705\pi\)
0.0229166 + 0.999737i \(0.492705\pi\)
\(710\) 0 0
\(711\) 62.5902 2.34732
\(712\) 0 0
\(713\) 16.8184 0.629854
\(714\) 0 0
\(715\) −55.6625 −2.08166
\(716\) 0 0
\(717\) −23.1475 −0.864459
\(718\) 0 0
\(719\) −14.9740 −0.558435 −0.279218 0.960228i \(-0.590075\pi\)
−0.279218 + 0.960228i \(0.590075\pi\)
\(720\) 0 0
\(721\) −1.40734 −0.0524122
\(722\) 0 0
\(723\) 73.7839 2.74405
\(724\) 0 0
\(725\) −4.60230 −0.170925
\(726\) 0 0
\(727\) −24.6970 −0.915959 −0.457980 0.888963i \(-0.651427\pi\)
−0.457980 + 0.888963i \(0.651427\pi\)
\(728\) 0 0
\(729\) −43.2406 −1.60150
\(730\) 0 0
\(731\) −8.63974 −0.319552
\(732\) 0 0
\(733\) 5.36434 0.198136 0.0990682 0.995081i \(-0.468414\pi\)
0.0990682 + 0.995081i \(0.468414\pi\)
\(734\) 0 0
\(735\) −7.10539 −0.262086
\(736\) 0 0
\(737\) −8.06634 −0.297127
\(738\) 0 0
\(739\) −20.4094 −0.750772 −0.375386 0.926869i \(-0.622490\pi\)
−0.375386 + 0.926869i \(0.622490\pi\)
\(740\) 0 0
\(741\) −9.26188 −0.340244
\(742\) 0 0
\(743\) −16.9780 −0.622861 −0.311431 0.950269i \(-0.600808\pi\)
−0.311431 + 0.950269i \(0.600808\pi\)
\(744\) 0 0
\(745\) 19.4827 0.713791
\(746\) 0 0
\(747\) 58.7180 2.14838
\(748\) 0 0
\(749\) −16.0074 −0.584896
\(750\) 0 0
\(751\) −8.99611 −0.328273 −0.164136 0.986438i \(-0.552484\pi\)
−0.164136 + 0.986438i \(0.552484\pi\)
\(752\) 0 0
\(753\) −22.5327 −0.821136
\(754\) 0 0
\(755\) −33.7752 −1.22921
\(756\) 0 0
\(757\) −8.75655 −0.318262 −0.159131 0.987257i \(-0.550869\pi\)
−0.159131 + 0.987257i \(0.550869\pi\)
\(758\) 0 0
\(759\) 35.9294 1.30415
\(760\) 0 0
\(761\) −51.5596 −1.86903 −0.934517 0.355920i \(-0.884168\pi\)
−0.934517 + 0.355920i \(0.884168\pi\)
\(762\) 0 0
\(763\) 16.5143 0.597859
\(764\) 0 0
\(765\) −12.4865 −0.451451
\(766\) 0 0
\(767\) −10.2469 −0.369995
\(768\) 0 0
\(769\) 1.84214 0.0664292 0.0332146 0.999448i \(-0.489426\pi\)
0.0332146 + 0.999448i \(0.489426\pi\)
\(770\) 0 0
\(771\) 26.2291 0.944619
\(772\) 0 0
\(773\) −54.9320 −1.97577 −0.987884 0.155196i \(-0.950399\pi\)
−0.987884 + 0.155196i \(0.950399\pi\)
\(774\) 0 0
\(775\) 9.33518 0.335329
\(776\) 0 0
\(777\) −19.8103 −0.710690
\(778\) 0 0
\(779\) −1.43438 −0.0513918
\(780\) 0 0
\(781\) −8.70923 −0.311641
\(782\) 0 0
\(783\) −18.8939 −0.675214
\(784\) 0 0
\(785\) −31.1854 −1.11306
\(786\) 0 0
\(787\) 5.34624 0.190573 0.0952865 0.995450i \(-0.469623\pi\)
0.0952865 + 0.995450i \(0.469623\pi\)
\(788\) 0 0
\(789\) 10.1358 0.360842
\(790\) 0 0
\(791\) 1.61548 0.0574398
\(792\) 0 0
\(793\) −25.9086 −0.920041
\(794\) 0 0
\(795\) −13.9064 −0.493208
\(796\) 0 0
\(797\) −47.0419 −1.66631 −0.833156 0.553039i \(-0.813468\pi\)
−0.833156 + 0.553039i \(0.813468\pi\)
\(798\) 0 0
\(799\) −1.34285 −0.0475066
\(800\) 0 0
\(801\) 22.2676 0.786788
\(802\) 0 0
\(803\) −75.2811 −2.65661
\(804\) 0 0
\(805\) 6.10278 0.215095
\(806\) 0 0
\(807\) −18.3730 −0.646761
\(808\) 0 0
\(809\) 27.2918 0.959527 0.479763 0.877398i \(-0.340722\pi\)
0.479763 + 0.877398i \(0.340722\pi\)
\(810\) 0 0
\(811\) 31.6841 1.11258 0.556289 0.830989i \(-0.312225\pi\)
0.556289 + 0.830989i \(0.312225\pi\)
\(812\) 0 0
\(813\) 3.66525 0.128546
\(814\) 0 0
\(815\) 27.0747 0.948386
\(816\) 0 0
\(817\) 6.74867 0.236106
\(818\) 0 0
\(819\) −20.8370 −0.728104
\(820\) 0 0
\(821\) −13.2126 −0.461124 −0.230562 0.973058i \(-0.574057\pi\)
−0.230562 + 0.973058i \(0.574057\pi\)
\(822\) 0 0
\(823\) 8.52446 0.297144 0.148572 0.988902i \(-0.452532\pi\)
0.148572 + 0.988902i \(0.452532\pi\)
\(824\) 0 0
\(825\) 19.9429 0.694322
\(826\) 0 0
\(827\) −2.47994 −0.0862360 −0.0431180 0.999070i \(-0.513729\pi\)
−0.0431180 + 0.999070i \(0.513729\pi\)
\(828\) 0 0
\(829\) −47.4995 −1.64972 −0.824862 0.565333i \(-0.808748\pi\)
−0.824862 + 0.565333i \(0.808748\pi\)
\(830\) 0 0
\(831\) 34.0387 1.18079
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 26.3441 0.911676
\(836\) 0 0
\(837\) 38.3240 1.32467
\(838\) 0 0
\(839\) −32.9427 −1.13731 −0.568653 0.822577i \(-0.692535\pi\)
−0.568653 + 0.822577i \(0.692535\pi\)
\(840\) 0 0
\(841\) −17.2879 −0.596134
\(842\) 0 0
\(843\) 5.00448 0.172363
\(844\) 0 0
\(845\) −11.7600 −0.404556
\(846\) 0 0
\(847\) −16.6378 −0.571681
\(848\) 0 0
\(849\) −30.7075 −1.05388
\(850\) 0 0
\(851\) 17.0149 0.583265
\(852\) 0 0
\(853\) −47.5645 −1.62858 −0.814288 0.580460i \(-0.802873\pi\)
−0.814288 + 0.580460i \(0.802873\pi\)
\(854\) 0 0
\(855\) 9.75348 0.333562
\(856\) 0 0
\(857\) −34.0918 −1.16455 −0.582277 0.812991i \(-0.697838\pi\)
−0.582277 + 0.812991i \(0.697838\pi\)
\(858\) 0 0
\(859\) −13.1715 −0.449405 −0.224703 0.974427i \(-0.572141\pi\)
−0.224703 + 0.974427i \(0.572141\pi\)
\(860\) 0 0
\(861\) −5.17993 −0.176532
\(862\) 0 0
\(863\) −5.24872 −0.178668 −0.0893342 0.996002i \(-0.528474\pi\)
−0.0893342 + 0.996002i \(0.528474\pi\)
\(864\) 0 0
\(865\) 9.65342 0.328226
\(866\) 0 0
\(867\) 2.82084 0.0958009
\(868\) 0 0
\(869\) 66.3782 2.25172
\(870\) 0 0
\(871\) −6.44952 −0.218534
\(872\) 0 0
\(873\) 64.0799 2.16878
\(874\) 0 0
\(875\) −9.20705 −0.311255
\(876\) 0 0
\(877\) −45.7500 −1.54487 −0.772434 0.635096i \(-0.780961\pi\)
−0.772434 + 0.635096i \(0.780961\pi\)
\(878\) 0 0
\(879\) −67.0874 −2.26280
\(880\) 0 0
\(881\) 0.719858 0.0242526 0.0121263 0.999926i \(-0.496140\pi\)
0.0121263 + 0.999926i \(0.496140\pi\)
\(882\) 0 0
\(883\) 36.3191 1.22224 0.611118 0.791539i \(-0.290720\pi\)
0.611118 + 0.791539i \(0.290720\pi\)
\(884\) 0 0
\(885\) 17.3212 0.582247
\(886\) 0 0
\(887\) −12.7805 −0.429126 −0.214563 0.976710i \(-0.568833\pi\)
−0.214563 + 0.976710i \(0.568833\pi\)
\(888\) 0 0
\(889\) −11.4177 −0.382939
\(890\) 0 0
\(891\) 3.69021 0.123627
\(892\) 0 0
\(893\) 1.04893 0.0351010
\(894\) 0 0
\(895\) −44.3119 −1.48118
\(896\) 0 0
\(897\) 28.7277 0.959189
\(898\) 0 0
\(899\) −23.7565 −0.792325
\(900\) 0 0
\(901\) 1.95716 0.0652024
\(902\) 0 0
\(903\) 24.3714 0.811028
\(904\) 0 0
\(905\) −42.6225 −1.41682
\(906\) 0 0
\(907\) −27.1387 −0.901126 −0.450563 0.892745i \(-0.648777\pi\)
−0.450563 + 0.892745i \(0.648777\pi\)
\(908\) 0 0
\(909\) 9.03586 0.299701
\(910\) 0 0
\(911\) 34.9889 1.15923 0.579616 0.814890i \(-0.303202\pi\)
0.579616 + 0.814890i \(0.303202\pi\)
\(912\) 0 0
\(913\) 62.2717 2.06089
\(914\) 0 0
\(915\) 43.7954 1.44783
\(916\) 0 0
\(917\) −9.96907 −0.329208
\(918\) 0 0
\(919\) −19.0980 −0.629984 −0.314992 0.949094i \(-0.602002\pi\)
−0.314992 + 0.949094i \(0.602002\pi\)
\(920\) 0 0
\(921\) −49.0858 −1.61743
\(922\) 0 0
\(923\) −6.96355 −0.229208
\(924\) 0 0
\(925\) 9.44428 0.310526
\(926\) 0 0
\(927\) 6.97643 0.229136
\(928\) 0 0
\(929\) 38.5323 1.26420 0.632102 0.774885i \(-0.282193\pi\)
0.632102 + 0.774885i \(0.282193\pi\)
\(930\) 0 0
\(931\) −0.781120 −0.0256002
\(932\) 0 0
\(933\) −39.9107 −1.30662
\(934\) 0 0
\(935\) −13.2422 −0.433067
\(936\) 0 0
\(937\) 40.9170 1.33670 0.668350 0.743847i \(-0.267001\pi\)
0.668350 + 0.743847i \(0.267001\pi\)
\(938\) 0 0
\(939\) 11.4221 0.372747
\(940\) 0 0
\(941\) −14.9176 −0.486298 −0.243149 0.969989i \(-0.578180\pi\)
−0.243149 + 0.969989i \(0.578180\pi\)
\(942\) 0 0
\(943\) 4.44901 0.144880
\(944\) 0 0
\(945\) 13.9064 0.452374
\(946\) 0 0
\(947\) 54.3712 1.76683 0.883413 0.468595i \(-0.155240\pi\)
0.883413 + 0.468595i \(0.155240\pi\)
\(948\) 0 0
\(949\) −60.1917 −1.95391
\(950\) 0 0
\(951\) 92.1239 2.98732
\(952\) 0 0
\(953\) −33.1263 −1.07306 −0.536532 0.843880i \(-0.680266\pi\)
−0.536532 + 0.843880i \(0.680266\pi\)
\(954\) 0 0
\(955\) 12.5440 0.405915
\(956\) 0 0
\(957\) −50.7514 −1.64056
\(958\) 0 0
\(959\) 19.3454 0.624696
\(960\) 0 0
\(961\) 17.1871 0.554424
\(962\) 0 0
\(963\) 79.3510 2.55705
\(964\) 0 0
\(965\) −45.7745 −1.47353
\(966\) 0 0
\(967\) −54.0452 −1.73798 −0.868988 0.494834i \(-0.835229\pi\)
−0.868988 + 0.494834i \(0.835229\pi\)
\(968\) 0 0
\(969\) −2.20342 −0.0707840
\(970\) 0 0
\(971\) 40.0719 1.28597 0.642984 0.765880i \(-0.277696\pi\)
0.642984 + 0.765880i \(0.277696\pi\)
\(972\) 0 0
\(973\) −6.31075 −0.202313
\(974\) 0 0
\(975\) 15.9455 0.510665
\(976\) 0 0
\(977\) 37.2405 1.19143 0.595715 0.803196i \(-0.296869\pi\)
0.595715 + 0.803196i \(0.296869\pi\)
\(978\) 0 0
\(979\) 23.6153 0.754748
\(980\) 0 0
\(981\) −81.8641 −2.61372
\(982\) 0 0
\(983\) 12.0729 0.385067 0.192534 0.981290i \(-0.438330\pi\)
0.192534 + 0.981290i \(0.438330\pi\)
\(984\) 0 0
\(985\) 10.9286 0.348213
\(986\) 0 0
\(987\) 3.78797 0.120572
\(988\) 0 0
\(989\) −20.9324 −0.665612
\(990\) 0 0
\(991\) −6.66778 −0.211809 −0.105905 0.994376i \(-0.533774\pi\)
−0.105905 + 0.994376i \(0.533774\pi\)
\(992\) 0 0
\(993\) −40.4149 −1.28253
\(994\) 0 0
\(995\) 42.5601 1.34925
\(996\) 0 0
\(997\) −13.2321 −0.419064 −0.209532 0.977802i \(-0.567194\pi\)
−0.209532 + 0.977802i \(0.567194\pi\)
\(998\) 0 0
\(999\) 38.7719 1.22669
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bt.1.4 5
4.3 odd 2 7616.2.a.bq.1.2 5
8.3 odd 2 1904.2.a.t.1.4 5
8.5 even 2 119.2.a.b.1.5 5
24.5 odd 2 1071.2.a.m.1.1 5
40.29 even 2 2975.2.a.m.1.1 5
56.5 odd 6 833.2.e.h.18.1 10
56.13 odd 2 833.2.a.g.1.5 5
56.37 even 6 833.2.e.i.18.1 10
56.45 odd 6 833.2.e.h.324.1 10
56.53 even 6 833.2.e.i.324.1 10
136.101 even 2 2023.2.a.j.1.5 5
168.125 even 2 7497.2.a.br.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.5 5 8.5 even 2
833.2.a.g.1.5 5 56.13 odd 2
833.2.e.h.18.1 10 56.5 odd 6
833.2.e.h.324.1 10 56.45 odd 6
833.2.e.i.18.1 10 56.37 even 6
833.2.e.i.324.1 10 56.53 even 6
1071.2.a.m.1.1 5 24.5 odd 2
1904.2.a.t.1.4 5 8.3 odd 2
2023.2.a.j.1.5 5 136.101 even 2
2975.2.a.m.1.1 5 40.29 even 2
7497.2.a.br.1.1 5 168.125 even 2
7616.2.a.bq.1.2 5 4.3 odd 2
7616.2.a.bt.1.4 5 1.1 even 1 trivial