Properties

Label 119.2.a.b.1.5
Level $119$
Weight $2$
Character 119.1
Self dual yes
Analytic conductor $0.950$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [119,2,Mod(1,119)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("119.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.950219784053\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.609440\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49227 q^{2} -2.82084 q^{3} +4.21140 q^{4} +2.51889 q^{5} -7.03030 q^{6} -1.00000 q^{7} +5.51141 q^{8} +4.95716 q^{9} +6.27775 q^{10} -5.25717 q^{11} -11.8797 q^{12} -4.20342 q^{13} -2.49227 q^{14} -7.10539 q^{15} +5.31311 q^{16} +1.00000 q^{17} +12.3546 q^{18} +0.781120 q^{19} +10.6081 q^{20} +2.82084 q^{21} -13.1023 q^{22} +2.42281 q^{23} -15.5468 q^{24} +1.34480 q^{25} -10.4760 q^{26} -5.52084 q^{27} -4.21140 q^{28} +3.42230 q^{29} -17.7085 q^{30} +6.94170 q^{31} +2.21888 q^{32} +14.8296 q^{33} +2.49227 q^{34} -2.51889 q^{35} +20.8766 q^{36} -7.02282 q^{37} +1.94676 q^{38} +11.8572 q^{39} +13.8826 q^{40} +1.83631 q^{41} +7.03030 q^{42} +8.63974 q^{43} -22.1400 q^{44} +12.4865 q^{45} +6.03829 q^{46} -1.34285 q^{47} -14.9875 q^{48} +1.00000 q^{49} +3.35160 q^{50} -2.82084 q^{51} -17.7023 q^{52} -1.95716 q^{53} -13.7594 q^{54} -13.2422 q^{55} -5.51141 q^{56} -2.20342 q^{57} +8.52928 q^{58} +2.43776 q^{59} -29.9237 q^{60} +6.16369 q^{61} +17.3006 q^{62} -4.95716 q^{63} -5.09618 q^{64} -10.5879 q^{65} +36.9595 q^{66} +1.53435 q^{67} +4.21140 q^{68} -6.83436 q^{69} -6.27775 q^{70} -1.65664 q^{71} +27.3209 q^{72} -14.3197 q^{73} -17.5028 q^{74} -3.79346 q^{75} +3.28961 q^{76} +5.25717 q^{77} +29.5513 q^{78} +12.6262 q^{79} +13.3831 q^{80} +0.701939 q^{81} +4.57657 q^{82} -11.8451 q^{83} +11.8797 q^{84} +2.51889 q^{85} +21.5326 q^{86} -9.65376 q^{87} -28.9744 q^{88} +4.49202 q^{89} +31.1198 q^{90} +4.20342 q^{91} +10.2034 q^{92} -19.5814 q^{93} -3.34674 q^{94} +1.96755 q^{95} -6.25911 q^{96} +12.9267 q^{97} +2.49227 q^{98} -26.0606 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 2 q^{3} + 10 q^{4} - q^{6} - 5 q^{7} + 6 q^{8} + 11 q^{9} + 4 q^{10} - 2 q^{11} - 22 q^{12} + 2 q^{13} - 2 q^{14} + 8 q^{15} + 4 q^{16} + 5 q^{17} - 18 q^{18} + 6 q^{19} - 19 q^{20} + 2 q^{21}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.49227 1.76230 0.881150 0.472837i \(-0.156770\pi\)
0.881150 + 0.472837i \(0.156770\pi\)
\(3\) −2.82084 −1.62861 −0.814307 0.580434i \(-0.802883\pi\)
−0.814307 + 0.580434i \(0.802883\pi\)
\(4\) 4.21140 2.10570
\(5\) 2.51889 1.12648 0.563241 0.826293i \(-0.309554\pi\)
0.563241 + 0.826293i \(0.309554\pi\)
\(6\) −7.03030 −2.87011
\(7\) −1.00000 −0.377964
\(8\) 5.51141 1.94858
\(9\) 4.95716 1.65239
\(10\) 6.27775 1.98520
\(11\) −5.25717 −1.58510 −0.792548 0.609810i \(-0.791246\pi\)
−0.792548 + 0.609810i \(0.791246\pi\)
\(12\) −11.8797 −3.42938
\(13\) −4.20342 −1.16582 −0.582909 0.812537i \(-0.698086\pi\)
−0.582909 + 0.812537i \(0.698086\pi\)
\(14\) −2.49227 −0.666087
\(15\) −7.10539 −1.83460
\(16\) 5.31311 1.32828
\(17\) 1.00000 0.242536
\(18\) 12.3546 2.91200
\(19\) 0.781120 0.179201 0.0896006 0.995978i \(-0.471441\pi\)
0.0896006 + 0.995978i \(0.471441\pi\)
\(20\) 10.6081 2.37203
\(21\) 2.82084 0.615559
\(22\) −13.1023 −2.79341
\(23\) 2.42281 0.505190 0.252595 0.967572i \(-0.418716\pi\)
0.252595 + 0.967572i \(0.418716\pi\)
\(24\) −15.5468 −3.17348
\(25\) 1.34480 0.268960
\(26\) −10.4760 −2.05452
\(27\) −5.52084 −1.06249
\(28\) −4.21140 −0.795880
\(29\) 3.42230 0.635505 0.317752 0.948174i \(-0.397072\pi\)
0.317752 + 0.948174i \(0.397072\pi\)
\(30\) −17.7085 −3.23312
\(31\) 6.94170 1.24677 0.623383 0.781917i \(-0.285758\pi\)
0.623383 + 0.781917i \(0.285758\pi\)
\(32\) 2.21888 0.392246
\(33\) 14.8296 2.58151
\(34\) 2.49227 0.427421
\(35\) −2.51889 −0.425770
\(36\) 20.8766 3.47943
\(37\) −7.02282 −1.15455 −0.577273 0.816552i \(-0.695883\pi\)
−0.577273 + 0.816552i \(0.695883\pi\)
\(38\) 1.94676 0.315806
\(39\) 11.8572 1.89867
\(40\) 13.8826 2.19504
\(41\) 1.83631 0.286783 0.143391 0.989666i \(-0.454199\pi\)
0.143391 + 0.989666i \(0.454199\pi\)
\(42\) 7.03030 1.08480
\(43\) 8.63974 1.31755 0.658774 0.752341i \(-0.271075\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(44\) −22.1400 −3.33774
\(45\) 12.4865 1.86138
\(46\) 6.03829 0.890297
\(47\) −1.34285 −0.195875 −0.0979374 0.995193i \(-0.531225\pi\)
−0.0979374 + 0.995193i \(0.531225\pi\)
\(48\) −14.9875 −2.16325
\(49\) 1.00000 0.142857
\(50\) 3.35160 0.473987
\(51\) −2.82084 −0.394997
\(52\) −17.7023 −2.45487
\(53\) −1.95716 −0.268836 −0.134418 0.990925i \(-0.542917\pi\)
−0.134418 + 0.990925i \(0.542917\pi\)
\(54\) −13.7594 −1.87242
\(55\) −13.2422 −1.78558
\(56\) −5.51141 −0.736493
\(57\) −2.20342 −0.291850
\(58\) 8.52928 1.11995
\(59\) 2.43776 0.317369 0.158685 0.987329i \(-0.449275\pi\)
0.158685 + 0.987329i \(0.449275\pi\)
\(60\) −29.9237 −3.86313
\(61\) 6.16369 0.789180 0.394590 0.918857i \(-0.370887\pi\)
0.394590 + 0.918857i \(0.370887\pi\)
\(62\) 17.3006 2.19717
\(63\) −4.95716 −0.624543
\(64\) −5.09618 −0.637022
\(65\) −10.5879 −1.31327
\(66\) 36.9595 4.54939
\(67\) 1.53435 0.187451 0.0937254 0.995598i \(-0.470122\pi\)
0.0937254 + 0.995598i \(0.470122\pi\)
\(68\) 4.21140 0.510708
\(69\) −6.83436 −0.822760
\(70\) −6.27775 −0.750334
\(71\) −1.65664 −0.196607 −0.0983035 0.995156i \(-0.531342\pi\)
−0.0983035 + 0.995156i \(0.531342\pi\)
\(72\) 27.3209 3.21980
\(73\) −14.3197 −1.67600 −0.837998 0.545674i \(-0.816274\pi\)
−0.837998 + 0.545674i \(0.816274\pi\)
\(74\) −17.5028 −2.03465
\(75\) −3.79346 −0.438031
\(76\) 3.28961 0.377344
\(77\) 5.25717 0.599110
\(78\) 29.5513 3.34602
\(79\) 12.6262 1.42056 0.710281 0.703919i \(-0.248568\pi\)
0.710281 + 0.703919i \(0.248568\pi\)
\(80\) 13.3831 1.49628
\(81\) 0.701939 0.0779932
\(82\) 4.57657 0.505397
\(83\) −11.8451 −1.30017 −0.650085 0.759862i \(-0.725267\pi\)
−0.650085 + 0.759862i \(0.725267\pi\)
\(84\) 11.8797 1.29618
\(85\) 2.51889 0.273212
\(86\) 21.5326 2.32191
\(87\) −9.65376 −1.03499
\(88\) −28.9744 −3.08868
\(89\) 4.49202 0.476153 0.238076 0.971246i \(-0.423483\pi\)
0.238076 + 0.971246i \(0.423483\pi\)
\(90\) 31.1198 3.28031
\(91\) 4.20342 0.440638
\(92\) 10.2034 1.06378
\(93\) −19.5814 −2.03050
\(94\) −3.34674 −0.345190
\(95\) 1.96755 0.201867
\(96\) −6.25911 −0.638818
\(97\) 12.9267 1.31251 0.656256 0.754538i \(-0.272139\pi\)
0.656256 + 0.754538i \(0.272139\pi\)
\(98\) 2.49227 0.251757
\(99\) −26.0606 −2.61919
\(100\) 5.66349 0.566349
\(101\) −1.82279 −0.181374 −0.0906872 0.995879i \(-0.528906\pi\)
−0.0906872 + 0.995879i \(0.528906\pi\)
\(102\) −7.03030 −0.696103
\(103\) 1.40734 0.138670 0.0693349 0.997593i \(-0.477912\pi\)
0.0693349 + 0.997593i \(0.477912\pi\)
\(104\) −23.1668 −2.27169
\(105\) 7.10539 0.693415
\(106\) −4.87776 −0.473770
\(107\) −16.0074 −1.54749 −0.773745 0.633497i \(-0.781619\pi\)
−0.773745 + 0.633497i \(0.781619\pi\)
\(108\) −23.2505 −2.23728
\(109\) 16.5143 1.58179 0.790893 0.611954i \(-0.209616\pi\)
0.790893 + 0.611954i \(0.209616\pi\)
\(110\) −33.0032 −3.14673
\(111\) 19.8103 1.88031
\(112\) −5.31311 −0.502042
\(113\) −1.61548 −0.151971 −0.0759857 0.997109i \(-0.524210\pi\)
−0.0759857 + 0.997109i \(0.524210\pi\)
\(114\) −5.49151 −0.514327
\(115\) 6.10278 0.569087
\(116\) 14.4127 1.33818
\(117\) −20.8370 −1.92638
\(118\) 6.07555 0.559300
\(119\) −1.00000 −0.0916698
\(120\) −39.1607 −3.57487
\(121\) 16.6378 1.51253
\(122\) 15.3616 1.39077
\(123\) −5.17993 −0.467059
\(124\) 29.2343 2.62532
\(125\) −9.20705 −0.823503
\(126\) −12.3546 −1.10063
\(127\) 11.4177 1.01316 0.506580 0.862193i \(-0.330909\pi\)
0.506580 + 0.862193i \(0.330909\pi\)
\(128\) −17.1388 −1.51487
\(129\) −24.3714 −2.14578
\(130\) −26.3880 −2.31438
\(131\) −9.96907 −0.871002 −0.435501 0.900188i \(-0.643429\pi\)
−0.435501 + 0.900188i \(0.643429\pi\)
\(132\) 62.4536 5.43589
\(133\) −0.781120 −0.0677317
\(134\) 3.82401 0.330345
\(135\) −13.9064 −1.19687
\(136\) 5.51141 0.472600
\(137\) −19.3454 −1.65279 −0.826395 0.563091i \(-0.809612\pi\)
−0.826395 + 0.563091i \(0.809612\pi\)
\(138\) −17.0331 −1.44995
\(139\) −6.31075 −0.535271 −0.267636 0.963520i \(-0.586242\pi\)
−0.267636 + 0.963520i \(0.586242\pi\)
\(140\) −10.6081 −0.896544
\(141\) 3.78797 0.319005
\(142\) −4.12879 −0.346480
\(143\) 22.0981 1.84793
\(144\) 26.3379 2.19483
\(145\) 8.62038 0.715884
\(146\) −35.6886 −2.95361
\(147\) −2.82084 −0.232659
\(148\) −29.5759 −2.43113
\(149\) 7.73465 0.633647 0.316824 0.948484i \(-0.397384\pi\)
0.316824 + 0.948484i \(0.397384\pi\)
\(150\) −9.45433 −0.771943
\(151\) 13.4088 1.09119 0.545596 0.838049i \(-0.316303\pi\)
0.545596 + 0.838049i \(0.316303\pi\)
\(152\) 4.30507 0.349188
\(153\) 4.95716 0.400762
\(154\) 13.1023 1.05581
\(155\) 17.4854 1.40446
\(156\) 49.9354 3.99803
\(157\) −12.3806 −0.988082 −0.494041 0.869439i \(-0.664481\pi\)
−0.494041 + 0.869439i \(0.664481\pi\)
\(158\) 31.4679 2.50346
\(159\) 5.52084 0.437831
\(160\) 5.58911 0.441858
\(161\) −2.42281 −0.190944
\(162\) 1.74942 0.137447
\(163\) 10.7487 0.841901 0.420951 0.907084i \(-0.361697\pi\)
0.420951 + 0.907084i \(0.361697\pi\)
\(164\) 7.73343 0.603879
\(165\) 37.3542 2.90802
\(166\) −29.5212 −2.29129
\(167\) −10.4586 −0.809314 −0.404657 0.914469i \(-0.632609\pi\)
−0.404657 + 0.914469i \(0.632609\pi\)
\(168\) 15.5468 1.19946
\(169\) 4.66872 0.359132
\(170\) 6.27775 0.481481
\(171\) 3.87214 0.296110
\(172\) 36.3854 2.77436
\(173\) 3.83241 0.291373 0.145686 0.989331i \(-0.453461\pi\)
0.145686 + 0.989331i \(0.453461\pi\)
\(174\) −24.0598 −1.82397
\(175\) −1.34480 −0.101657
\(176\) −27.9319 −2.10545
\(177\) −6.87654 −0.516872
\(178\) 11.1953 0.839124
\(179\) −17.5918 −1.31488 −0.657438 0.753509i \(-0.728360\pi\)
−0.657438 + 0.753509i \(0.728360\pi\)
\(180\) 52.5858 3.91951
\(181\) −16.9212 −1.25774 −0.628870 0.777510i \(-0.716482\pi\)
−0.628870 + 0.777510i \(0.716482\pi\)
\(182\) 10.4760 0.776536
\(183\) −17.3868 −1.28527
\(184\) 13.3531 0.984403
\(185\) −17.6897 −1.30057
\(186\) −48.8022 −3.57835
\(187\) −5.25717 −0.384442
\(188\) −5.65529 −0.412454
\(189\) 5.52084 0.401582
\(190\) 4.90367 0.355750
\(191\) −4.97998 −0.360339 −0.180169 0.983636i \(-0.557665\pi\)
−0.180169 + 0.983636i \(0.557665\pi\)
\(192\) 14.3755 1.03746
\(193\) 18.1725 1.30808 0.654042 0.756458i \(-0.273072\pi\)
0.654042 + 0.756458i \(0.273072\pi\)
\(194\) 32.2169 2.31304
\(195\) 29.8669 2.13881
\(196\) 4.21140 0.300815
\(197\) 4.33864 0.309116 0.154558 0.987984i \(-0.450605\pi\)
0.154558 + 0.987984i \(0.450605\pi\)
\(198\) −64.9500 −4.61580
\(199\) −16.8964 −1.19775 −0.598877 0.800841i \(-0.704386\pi\)
−0.598877 + 0.800841i \(0.704386\pi\)
\(200\) 7.41173 0.524089
\(201\) −4.32816 −0.305285
\(202\) −4.54288 −0.319636
\(203\) −3.42230 −0.240198
\(204\) −11.8797 −0.831746
\(205\) 4.62545 0.323055
\(206\) 3.50748 0.244378
\(207\) 12.0102 0.834769
\(208\) −22.3332 −1.54853
\(209\) −4.10648 −0.284051
\(210\) 17.7085 1.22201
\(211\) −23.7938 −1.63803 −0.819017 0.573770i \(-0.805480\pi\)
−0.819017 + 0.573770i \(0.805480\pi\)
\(212\) −8.24238 −0.566089
\(213\) 4.67312 0.320197
\(214\) −39.8946 −2.72714
\(215\) 21.7625 1.48419
\(216\) −30.4276 −2.07034
\(217\) −6.94170 −0.471233
\(218\) 41.1582 2.78758
\(219\) 40.3937 2.72955
\(220\) −55.7683 −3.75990
\(221\) −4.20342 −0.282752
\(222\) 49.3726 3.31367
\(223\) −1.14333 −0.0765629 −0.0382814 0.999267i \(-0.512188\pi\)
−0.0382814 + 0.999267i \(0.512188\pi\)
\(224\) −2.21888 −0.148255
\(225\) 6.66637 0.444425
\(226\) −4.02621 −0.267819
\(227\) 13.4560 0.893108 0.446554 0.894757i \(-0.352651\pi\)
0.446554 + 0.894757i \(0.352651\pi\)
\(228\) −9.27948 −0.614549
\(229\) −5.86006 −0.387243 −0.193622 0.981076i \(-0.562023\pi\)
−0.193622 + 0.981076i \(0.562023\pi\)
\(230\) 15.2098 1.00290
\(231\) −14.8296 −0.975719
\(232\) 18.8617 1.23833
\(233\) 2.41891 0.158468 0.0792341 0.996856i \(-0.474753\pi\)
0.0792341 + 0.996856i \(0.474753\pi\)
\(234\) −51.9314 −3.39486
\(235\) −3.38249 −0.220649
\(236\) 10.2664 0.668285
\(237\) −35.6166 −2.31355
\(238\) −2.49227 −0.161550
\(239\) −8.20587 −0.530794 −0.265397 0.964139i \(-0.585503\pi\)
−0.265397 + 0.964139i \(0.585503\pi\)
\(240\) −37.7517 −2.43686
\(241\) 26.1567 1.68490 0.842450 0.538775i \(-0.181113\pi\)
0.842450 + 0.538775i \(0.181113\pi\)
\(242\) 41.4659 2.66553
\(243\) 14.5824 0.935464
\(244\) 25.9578 1.66178
\(245\) 2.51889 0.160926
\(246\) −12.9098 −0.823098
\(247\) −3.28337 −0.208916
\(248\) 38.2585 2.42942
\(249\) 33.4132 2.11747
\(250\) −22.9464 −1.45126
\(251\) 7.98792 0.504193 0.252097 0.967702i \(-0.418880\pi\)
0.252097 + 0.967702i \(0.418880\pi\)
\(252\) −20.8766 −1.31510
\(253\) −12.7371 −0.800774
\(254\) 28.4561 1.78549
\(255\) −7.10539 −0.444957
\(256\) −32.5222 −2.03263
\(257\) 9.29833 0.580014 0.290007 0.957025i \(-0.406342\pi\)
0.290007 + 0.957025i \(0.406342\pi\)
\(258\) −60.7400 −3.78150
\(259\) 7.02282 0.436377
\(260\) −44.5901 −2.76536
\(261\) 16.9649 1.05010
\(262\) −24.8456 −1.53497
\(263\) 3.59317 0.221564 0.110782 0.993845i \(-0.464664\pi\)
0.110782 + 0.993845i \(0.464664\pi\)
\(264\) 81.7323 5.03027
\(265\) −4.92986 −0.302839
\(266\) −1.94676 −0.119364
\(267\) −12.6713 −0.775470
\(268\) 6.46177 0.394715
\(269\) 6.51331 0.397124 0.198562 0.980088i \(-0.436373\pi\)
0.198562 + 0.980088i \(0.436373\pi\)
\(270\) −34.6584 −2.10924
\(271\) 1.29935 0.0789296 0.0394648 0.999221i \(-0.487435\pi\)
0.0394648 + 0.999221i \(0.487435\pi\)
\(272\) 5.31311 0.322155
\(273\) −11.8572 −0.717629
\(274\) −48.2140 −2.91271
\(275\) −7.06982 −0.426326
\(276\) −28.7822 −1.73249
\(277\) −12.0668 −0.725026 −0.362513 0.931979i \(-0.618081\pi\)
−0.362513 + 0.931979i \(0.618081\pi\)
\(278\) −15.7281 −0.943308
\(279\) 34.4111 2.06014
\(280\) −13.8826 −0.829646
\(281\) 1.77411 0.105834 0.0529172 0.998599i \(-0.483148\pi\)
0.0529172 + 0.998599i \(0.483148\pi\)
\(282\) 9.44064 0.562182
\(283\) 10.8859 0.647101 0.323550 0.946211i \(-0.395124\pi\)
0.323550 + 0.946211i \(0.395124\pi\)
\(284\) −6.97678 −0.413996
\(285\) −5.55016 −0.328763
\(286\) 55.0743 3.25661
\(287\) −1.83631 −0.108394
\(288\) 10.9993 0.648142
\(289\) 1.00000 0.0588235
\(290\) 21.4843 1.26160
\(291\) −36.4643 −2.13758
\(292\) −60.3061 −3.52915
\(293\) 23.7828 1.38940 0.694702 0.719298i \(-0.255536\pi\)
0.694702 + 0.719298i \(0.255536\pi\)
\(294\) −7.03030 −0.410015
\(295\) 6.14044 0.357511
\(296\) −38.7057 −2.24972
\(297\) 29.0239 1.68414
\(298\) 19.2768 1.11668
\(299\) −10.1841 −0.588960
\(300\) −15.9758 −0.922364
\(301\) −8.63974 −0.497986
\(302\) 33.4183 1.92301
\(303\) 5.14181 0.295389
\(304\) 4.15018 0.238029
\(305\) 15.5257 0.888996
\(306\) 12.3546 0.706264
\(307\) 17.4011 0.993134 0.496567 0.867999i \(-0.334594\pi\)
0.496567 + 0.867999i \(0.334594\pi\)
\(308\) 22.1400 1.26155
\(309\) −3.96990 −0.225840
\(310\) 43.5782 2.47508
\(311\) −14.1485 −0.802288 −0.401144 0.916015i \(-0.631387\pi\)
−0.401144 + 0.916015i \(0.631387\pi\)
\(312\) 65.3498 3.69970
\(313\) 4.04918 0.228873 0.114437 0.993431i \(-0.463494\pi\)
0.114437 + 0.993431i \(0.463494\pi\)
\(314\) −30.8558 −1.74130
\(315\) −12.4865 −0.703536
\(316\) 53.1741 2.99128
\(317\) −32.6583 −1.83427 −0.917136 0.398575i \(-0.869505\pi\)
−0.917136 + 0.398575i \(0.869505\pi\)
\(318\) 13.7594 0.771589
\(319\) −17.9916 −1.00734
\(320\) −12.8367 −0.717594
\(321\) 45.1543 2.52026
\(322\) −6.03829 −0.336501
\(323\) 0.781120 0.0434627
\(324\) 2.95615 0.164230
\(325\) −5.65275 −0.313558
\(326\) 26.7886 1.48368
\(327\) −46.5843 −2.57612
\(328\) 10.1206 0.558819
\(329\) 1.34285 0.0740338
\(330\) 93.0967 5.12481
\(331\) 14.3272 0.787496 0.393748 0.919219i \(-0.371178\pi\)
0.393748 + 0.919219i \(0.371178\pi\)
\(332\) −49.8845 −2.73777
\(333\) −34.8132 −1.90775
\(334\) −26.0657 −1.42625
\(335\) 3.86486 0.211160
\(336\) 14.9875 0.817633
\(337\) 21.9938 1.19808 0.599038 0.800720i \(-0.295550\pi\)
0.599038 + 0.800720i \(0.295550\pi\)
\(338\) 11.6357 0.632899
\(339\) 4.55701 0.247503
\(340\) 10.6081 0.575303
\(341\) −36.4936 −1.97624
\(342\) 9.65040 0.521834
\(343\) −1.00000 −0.0539949
\(344\) 47.6172 2.56735
\(345\) −17.2150 −0.926824
\(346\) 9.55140 0.513486
\(347\) −18.2108 −0.977606 −0.488803 0.872394i \(-0.662566\pi\)
−0.488803 + 0.872394i \(0.662566\pi\)
\(348\) −40.6559 −2.17938
\(349\) 13.6621 0.731313 0.365657 0.930750i \(-0.380844\pi\)
0.365657 + 0.930750i \(0.380844\pi\)
\(350\) −3.35160 −0.179150
\(351\) 23.2064 1.23866
\(352\) −11.6650 −0.621748
\(353\) −7.82913 −0.416703 −0.208351 0.978054i \(-0.566810\pi\)
−0.208351 + 0.978054i \(0.566810\pi\)
\(354\) −17.1382 −0.910884
\(355\) −4.17289 −0.221474
\(356\) 18.9177 1.00264
\(357\) 2.82084 0.149295
\(358\) −43.8436 −2.31720
\(359\) 36.9947 1.95251 0.976253 0.216634i \(-0.0695079\pi\)
0.976253 + 0.216634i \(0.0695079\pi\)
\(360\) 68.8184 3.62705
\(361\) −18.3899 −0.967887
\(362\) −42.1721 −2.21652
\(363\) −46.9326 −2.46332
\(364\) 17.7023 0.927852
\(365\) −36.0698 −1.88798
\(366\) −43.3326 −2.26503
\(367\) −31.6345 −1.65131 −0.825654 0.564177i \(-0.809194\pi\)
−0.825654 + 0.564177i \(0.809194\pi\)
\(368\) 12.8726 0.671033
\(369\) 9.10286 0.473876
\(370\) −44.0875 −2.29200
\(371\) 1.95716 0.101611
\(372\) −82.4653 −4.27563
\(373\) −28.3894 −1.46995 −0.734974 0.678095i \(-0.762806\pi\)
−0.734974 + 0.678095i \(0.762806\pi\)
\(374\) −13.1023 −0.677502
\(375\) 25.9716 1.34117
\(376\) −7.40100 −0.381678
\(377\) −14.3853 −0.740883
\(378\) 13.7594 0.707707
\(379\) −21.6022 −1.10963 −0.554814 0.831974i \(-0.687211\pi\)
−0.554814 + 0.831974i \(0.687211\pi\)
\(380\) 8.28616 0.425071
\(381\) −32.2077 −1.65005
\(382\) −12.4115 −0.635025
\(383\) 17.4402 0.891153 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)
\(384\) 48.3459 2.46714
\(385\) 13.2422 0.674886
\(386\) 45.2907 2.30524
\(387\) 42.8286 2.17710
\(388\) 54.4397 2.76376
\(389\) 30.6552 1.55428 0.777141 0.629326i \(-0.216669\pi\)
0.777141 + 0.629326i \(0.216669\pi\)
\(390\) 74.4364 3.76923
\(391\) 2.42281 0.122527
\(392\) 5.51141 0.278368
\(393\) 28.1212 1.41853
\(394\) 10.8131 0.544754
\(395\) 31.8040 1.60024
\(396\) −109.752 −5.51523
\(397\) 11.0023 0.552189 0.276095 0.961130i \(-0.410960\pi\)
0.276095 + 0.961130i \(0.410960\pi\)
\(398\) −42.1104 −2.11080
\(399\) 2.20342 0.110309
\(400\) 7.14506 0.357253
\(401\) 3.98115 0.198809 0.0994046 0.995047i \(-0.468306\pi\)
0.0994046 + 0.995047i \(0.468306\pi\)
\(402\) −10.7869 −0.538004
\(403\) −29.1788 −1.45350
\(404\) −7.67651 −0.381920
\(405\) 1.76811 0.0878579
\(406\) −8.52928 −0.423301
\(407\) 36.9201 1.83006
\(408\) −15.5468 −0.769683
\(409\) 21.0687 1.04178 0.520890 0.853624i \(-0.325600\pi\)
0.520890 + 0.853624i \(0.325600\pi\)
\(410\) 11.5279 0.569321
\(411\) 54.5704 2.69176
\(412\) 5.92690 0.291997
\(413\) −2.43776 −0.119954
\(414\) 29.9327 1.47111
\(415\) −29.8365 −1.46462
\(416\) −9.32688 −0.457288
\(417\) 17.8016 0.871750
\(418\) −10.2344 −0.500583
\(419\) 15.8730 0.775446 0.387723 0.921776i \(-0.373262\pi\)
0.387723 + 0.921776i \(0.373262\pi\)
\(420\) 29.9237 1.46013
\(421\) 12.7787 0.622794 0.311397 0.950280i \(-0.399203\pi\)
0.311397 + 0.950280i \(0.399203\pi\)
\(422\) −59.3006 −2.88671
\(423\) −6.65672 −0.323661
\(424\) −10.7867 −0.523849
\(425\) 1.34480 0.0652323
\(426\) 11.6467 0.564283
\(427\) −6.16369 −0.298282
\(428\) −67.4135 −3.25855
\(429\) −62.3352 −3.00957
\(430\) 54.2381 2.61559
\(431\) −39.1793 −1.88720 −0.943601 0.331084i \(-0.892586\pi\)
−0.943601 + 0.331084i \(0.892586\pi\)
\(432\) −29.3328 −1.41128
\(433\) −16.2650 −0.781648 −0.390824 0.920465i \(-0.627810\pi\)
−0.390824 + 0.920465i \(0.627810\pi\)
\(434\) −17.3006 −0.830454
\(435\) −24.3168 −1.16590
\(436\) 69.5485 3.33077
\(437\) 1.89250 0.0905307
\(438\) 100.672 4.81029
\(439\) −1.97235 −0.0941354 −0.0470677 0.998892i \(-0.514988\pi\)
−0.0470677 + 0.998892i \(0.514988\pi\)
\(440\) −72.9833 −3.47934
\(441\) 4.95716 0.236055
\(442\) −10.4760 −0.498295
\(443\) 34.1280 1.62147 0.810734 0.585414i \(-0.199068\pi\)
0.810734 + 0.585414i \(0.199068\pi\)
\(444\) 83.4291 3.95937
\(445\) 11.3149 0.536377
\(446\) −2.84948 −0.134927
\(447\) −21.8182 −1.03197
\(448\) 5.09618 0.240772
\(449\) −6.09912 −0.287835 −0.143918 0.989590i \(-0.545970\pi\)
−0.143918 + 0.989590i \(0.545970\pi\)
\(450\) 16.6144 0.783210
\(451\) −9.65376 −0.454578
\(452\) −6.80343 −0.320007
\(453\) −37.8241 −1.77713
\(454\) 33.5360 1.57392
\(455\) 10.5879 0.496370
\(456\) −12.1439 −0.568692
\(457\) −14.9650 −0.700034 −0.350017 0.936743i \(-0.613824\pi\)
−0.350017 + 0.936743i \(0.613824\pi\)
\(458\) −14.6048 −0.682439
\(459\) −5.52084 −0.257691
\(460\) 25.7013 1.19833
\(461\) −25.9096 −1.20673 −0.603365 0.797465i \(-0.706174\pi\)
−0.603365 + 0.797465i \(0.706174\pi\)
\(462\) −36.9595 −1.71951
\(463\) 19.7323 0.917037 0.458518 0.888685i \(-0.348380\pi\)
0.458518 + 0.888685i \(0.348380\pi\)
\(464\) 18.1830 0.844127
\(465\) −49.3234 −2.28732
\(466\) 6.02858 0.279269
\(467\) −10.7158 −0.495868 −0.247934 0.968777i \(-0.579752\pi\)
−0.247934 + 0.968777i \(0.579752\pi\)
\(468\) −87.7530 −4.05639
\(469\) −1.53435 −0.0708497
\(470\) −8.43008 −0.388850
\(471\) 34.9238 1.60920
\(472\) 13.4355 0.618419
\(473\) −45.4205 −2.08844
\(474\) −88.7661 −4.07716
\(475\) 1.05045 0.0481979
\(476\) −4.21140 −0.193029
\(477\) −9.70194 −0.444221
\(478\) −20.4512 −0.935418
\(479\) 6.99221 0.319482 0.159741 0.987159i \(-0.448934\pi\)
0.159741 + 0.987159i \(0.448934\pi\)
\(480\) −15.7660 −0.719616
\(481\) 29.5199 1.34599
\(482\) 65.1895 2.96930
\(483\) 6.83436 0.310974
\(484\) 70.0685 3.18493
\(485\) 32.5610 1.47852
\(486\) 36.3434 1.64857
\(487\) 11.2113 0.508032 0.254016 0.967200i \(-0.418248\pi\)
0.254016 + 0.967200i \(0.418248\pi\)
\(488\) 33.9707 1.53778
\(489\) −30.3203 −1.37113
\(490\) 6.27775 0.283600
\(491\) 26.1467 1.17999 0.589993 0.807408i \(-0.299130\pi\)
0.589993 + 0.807408i \(0.299130\pi\)
\(492\) −21.8148 −0.983486
\(493\) 3.42230 0.154133
\(494\) −8.18305 −0.368173
\(495\) −65.6437 −2.95047
\(496\) 36.8820 1.65605
\(497\) 1.65664 0.0743105
\(498\) 83.2746 3.73163
\(499\) −0.887794 −0.0397431 −0.0198716 0.999803i \(-0.506326\pi\)
−0.0198716 + 0.999803i \(0.506326\pi\)
\(500\) −38.7746 −1.73405
\(501\) 29.5022 1.31806
\(502\) 19.9080 0.888540
\(503\) 23.2662 1.03739 0.518694 0.854960i \(-0.326418\pi\)
0.518694 + 0.854960i \(0.326418\pi\)
\(504\) −27.3209 −1.21697
\(505\) −4.59141 −0.204315
\(506\) −31.7443 −1.41120
\(507\) −13.1697 −0.584888
\(508\) 48.0847 2.13341
\(509\) −1.45906 −0.0646718 −0.0323359 0.999477i \(-0.510295\pi\)
−0.0323359 + 0.999477i \(0.510295\pi\)
\(510\) −17.7085 −0.784147
\(511\) 14.3197 0.633467
\(512\) −46.7763 −2.06724
\(513\) −4.31244 −0.190399
\(514\) 23.1739 1.02216
\(515\) 3.54494 0.156209
\(516\) −102.638 −4.51837
\(517\) 7.05959 0.310480
\(518\) 17.5028 0.769027
\(519\) −10.8106 −0.474534
\(520\) −58.3545 −2.55901
\(521\) −42.0865 −1.84384 −0.921921 0.387377i \(-0.873381\pi\)
−0.921921 + 0.387377i \(0.873381\pi\)
\(522\) 42.2810 1.85059
\(523\) 17.2674 0.755051 0.377525 0.925999i \(-0.376775\pi\)
0.377525 + 0.925999i \(0.376775\pi\)
\(524\) −41.9838 −1.83407
\(525\) 3.79346 0.165560
\(526\) 8.95513 0.390462
\(527\) 6.94170 0.302385
\(528\) 78.7915 3.42896
\(529\) −17.1300 −0.744783
\(530\) −12.2865 −0.533693
\(531\) 12.0844 0.524417
\(532\) −3.28961 −0.142623
\(533\) −7.71876 −0.334337
\(534\) −31.5802 −1.36661
\(535\) −40.3208 −1.74322
\(536\) 8.45644 0.365263
\(537\) 49.6238 2.14143
\(538\) 16.2329 0.699851
\(539\) −5.25717 −0.226442
\(540\) −58.5653 −2.52025
\(541\) −24.7411 −1.06370 −0.531851 0.846838i \(-0.678503\pi\)
−0.531851 + 0.846838i \(0.678503\pi\)
\(542\) 3.23832 0.139098
\(543\) 47.7320 2.04837
\(544\) 2.21888 0.0951337
\(545\) 41.5978 1.78185
\(546\) −29.5513 −1.26468
\(547\) 4.66104 0.199292 0.0996459 0.995023i \(-0.468229\pi\)
0.0996459 + 0.995023i \(0.468229\pi\)
\(548\) −81.4713 −3.48028
\(549\) 30.5544 1.30403
\(550\) −17.6199 −0.751315
\(551\) 2.67323 0.113883
\(552\) −37.6670 −1.60321
\(553\) −12.6262 −0.536922
\(554\) −30.0738 −1.27771
\(555\) 49.8999 2.11813
\(556\) −26.5771 −1.12712
\(557\) −13.1120 −0.555573 −0.277787 0.960643i \(-0.589601\pi\)
−0.277787 + 0.960643i \(0.589601\pi\)
\(558\) 85.7617 3.63058
\(559\) −36.3164 −1.53602
\(560\) −13.3831 −0.565541
\(561\) 14.8296 0.626108
\(562\) 4.42155 0.186512
\(563\) −27.6650 −1.16594 −0.582971 0.812493i \(-0.698110\pi\)
−0.582971 + 0.812493i \(0.698110\pi\)
\(564\) 15.9527 0.671729
\(565\) −4.06921 −0.171193
\(566\) 27.1306 1.14039
\(567\) −0.701939 −0.0294787
\(568\) −9.13042 −0.383104
\(569\) 10.8911 0.456578 0.228289 0.973593i \(-0.426687\pi\)
0.228289 + 0.973593i \(0.426687\pi\)
\(570\) −13.8325 −0.579379
\(571\) 40.3446 1.68837 0.844184 0.536053i \(-0.180085\pi\)
0.844184 + 0.536053i \(0.180085\pi\)
\(572\) 93.0639 3.89120
\(573\) 14.0477 0.586853
\(574\) −4.57657 −0.191022
\(575\) 3.25819 0.135876
\(576\) −25.2626 −1.05261
\(577\) 30.0190 1.24971 0.624855 0.780741i \(-0.285158\pi\)
0.624855 + 0.780741i \(0.285158\pi\)
\(578\) 2.49227 0.103665
\(579\) −51.2618 −2.13037
\(580\) 36.3039 1.50744
\(581\) 11.8451 0.491418
\(582\) −90.8789 −3.76705
\(583\) 10.2891 0.426131
\(584\) −78.9218 −3.26581
\(585\) −52.4861 −2.17003
\(586\) 59.2730 2.44855
\(587\) 38.3982 1.58486 0.792432 0.609960i \(-0.208815\pi\)
0.792432 + 0.609960i \(0.208815\pi\)
\(588\) −11.8797 −0.489911
\(589\) 5.42230 0.223422
\(590\) 15.3036 0.630041
\(591\) −12.2386 −0.503430
\(592\) −37.3130 −1.53356
\(593\) 5.71631 0.234741 0.117370 0.993088i \(-0.462554\pi\)
0.117370 + 0.993088i \(0.462554\pi\)
\(594\) 72.3355 2.96796
\(595\) −2.51889 −0.103264
\(596\) 32.5737 1.33427
\(597\) 47.6621 1.95068
\(598\) −25.3814 −1.03792
\(599\) −29.9765 −1.22481 −0.612404 0.790545i \(-0.709798\pi\)
−0.612404 + 0.790545i \(0.709798\pi\)
\(600\) −20.9073 −0.853539
\(601\) 28.2586 1.15269 0.576346 0.817206i \(-0.304478\pi\)
0.576346 + 0.817206i \(0.304478\pi\)
\(602\) −21.5326 −0.877601
\(603\) 7.60602 0.309741
\(604\) 56.4698 2.29772
\(605\) 41.9087 1.70383
\(606\) 12.8148 0.520564
\(607\) −43.1772 −1.75251 −0.876253 0.481851i \(-0.839965\pi\)
−0.876253 + 0.481851i \(0.839965\pi\)
\(608\) 1.73321 0.0702910
\(609\) 9.65376 0.391190
\(610\) 38.6941 1.56668
\(611\) 5.64456 0.228355
\(612\) 20.8766 0.843886
\(613\) −12.1412 −0.490380 −0.245190 0.969475i \(-0.578850\pi\)
−0.245190 + 0.969475i \(0.578850\pi\)
\(614\) 43.3682 1.75020
\(615\) −13.0477 −0.526133
\(616\) 28.9744 1.16741
\(617\) 23.0826 0.929270 0.464635 0.885502i \(-0.346185\pi\)
0.464635 + 0.885502i \(0.346185\pi\)
\(618\) −9.89405 −0.397997
\(619\) 7.86057 0.315943 0.157972 0.987444i \(-0.449505\pi\)
0.157972 + 0.987444i \(0.449505\pi\)
\(620\) 73.6379 2.95737
\(621\) −13.3759 −0.536757
\(622\) −35.2619 −1.41387
\(623\) −4.49202 −0.179969
\(624\) 62.9985 2.52196
\(625\) −29.9155 −1.19662
\(626\) 10.0917 0.403344
\(627\) 11.5837 0.462610
\(628\) −52.1398 −2.08061
\(629\) −7.02282 −0.280018
\(630\) −31.1198 −1.23984
\(631\) 35.8212 1.42602 0.713010 0.701154i \(-0.247331\pi\)
0.713010 + 0.701154i \(0.247331\pi\)
\(632\) 69.5883 2.76807
\(633\) 67.1186 2.66773
\(634\) −81.3932 −3.23254
\(635\) 28.7600 1.14131
\(636\) 23.2505 0.921941
\(637\) −4.20342 −0.166545
\(638\) −44.8399 −1.77523
\(639\) −8.21222 −0.324871
\(640\) −43.1707 −1.70647
\(641\) −5.24743 −0.207261 −0.103631 0.994616i \(-0.533046\pi\)
−0.103631 + 0.994616i \(0.533046\pi\)
\(642\) 112.537 4.44146
\(643\) 32.1828 1.26917 0.634583 0.772855i \(-0.281172\pi\)
0.634583 + 0.772855i \(0.281172\pi\)
\(644\) −10.2034 −0.402071
\(645\) −61.3887 −2.41718
\(646\) 1.94676 0.0765943
\(647\) −16.6171 −0.653286 −0.326643 0.945148i \(-0.605917\pi\)
−0.326643 + 0.945148i \(0.605917\pi\)
\(648\) 3.86867 0.151976
\(649\) −12.8157 −0.503061
\(650\) −14.0882 −0.552583
\(651\) 19.5814 0.767457
\(652\) 45.2670 1.77279
\(653\) 0.159913 0.00625786 0.00312893 0.999995i \(-0.499004\pi\)
0.00312893 + 0.999995i \(0.499004\pi\)
\(654\) −116.101 −4.53990
\(655\) −25.1110 −0.981167
\(656\) 9.75650 0.380927
\(657\) −70.9851 −2.76939
\(658\) 3.34674 0.130470
\(659\) 32.4256 1.26312 0.631561 0.775326i \(-0.282414\pi\)
0.631561 + 0.775326i \(0.282414\pi\)
\(660\) 157.314 6.12343
\(661\) −31.9068 −1.24103 −0.620516 0.784194i \(-0.713077\pi\)
−0.620516 + 0.784194i \(0.713077\pi\)
\(662\) 35.7073 1.38780
\(663\) 11.8572 0.460495
\(664\) −65.2832 −2.53348
\(665\) −1.96755 −0.0762985
\(666\) −86.7640 −3.36203
\(667\) 8.29157 0.321051
\(668\) −44.0455 −1.70417
\(669\) 3.22515 0.124691
\(670\) 9.63226 0.372127
\(671\) −32.4036 −1.25093
\(672\) 6.25911 0.241451
\(673\) 31.4641 1.21285 0.606425 0.795141i \(-0.292603\pi\)
0.606425 + 0.795141i \(0.292603\pi\)
\(674\) 54.8144 2.11137
\(675\) −7.42441 −0.285766
\(676\) 19.6619 0.756225
\(677\) 24.6433 0.947120 0.473560 0.880762i \(-0.342969\pi\)
0.473560 + 0.880762i \(0.342969\pi\)
\(678\) 11.3573 0.436175
\(679\) −12.9267 −0.496083
\(680\) 13.8826 0.532375
\(681\) −37.9573 −1.45453
\(682\) −90.9520 −3.48273
\(683\) −24.5793 −0.940502 −0.470251 0.882533i \(-0.655837\pi\)
−0.470251 + 0.882533i \(0.655837\pi\)
\(684\) 16.3071 0.623518
\(685\) −48.7289 −1.86184
\(686\) −2.49227 −0.0951553
\(687\) 16.5303 0.630670
\(688\) 45.9039 1.75007
\(689\) 8.22675 0.313414
\(690\) −42.9044 −1.63334
\(691\) 30.5847 1.16350 0.581749 0.813368i \(-0.302368\pi\)
0.581749 + 0.813368i \(0.302368\pi\)
\(692\) 16.1398 0.613544
\(693\) 26.0606 0.989960
\(694\) −45.3862 −1.72283
\(695\) −15.8961 −0.602973
\(696\) −53.2059 −2.01676
\(697\) 1.83631 0.0695550
\(698\) 34.0495 1.28879
\(699\) −6.82337 −0.258084
\(700\) −5.66349 −0.214060
\(701\) −39.8182 −1.50391 −0.751956 0.659213i \(-0.770889\pi\)
−0.751956 + 0.659213i \(0.770889\pi\)
\(702\) 57.8365 2.18290
\(703\) −5.48567 −0.206896
\(704\) 26.7915 1.00974
\(705\) 9.54148 0.359353
\(706\) −19.5123 −0.734355
\(707\) 1.82279 0.0685531
\(708\) −28.9599 −1.08838
\(709\) −1.22040 −0.0458331 −0.0229166 0.999737i \(-0.507295\pi\)
−0.0229166 + 0.999737i \(0.507295\pi\)
\(710\) −10.4000 −0.390304
\(711\) 62.5902 2.34732
\(712\) 24.7574 0.927821
\(713\) 16.8184 0.629854
\(714\) 7.03030 0.263102
\(715\) 55.6625 2.08166
\(716\) −74.0863 −2.76874
\(717\) 23.1475 0.864459
\(718\) 92.2007 3.44090
\(719\) −14.9740 −0.558435 −0.279218 0.960228i \(-0.590075\pi\)
−0.279218 + 0.960228i \(0.590075\pi\)
\(720\) 66.3423 2.47243
\(721\) −1.40734 −0.0524122
\(722\) −45.8325 −1.70571
\(723\) −73.7839 −2.74405
\(724\) −71.2619 −2.64843
\(725\) 4.60230 0.170925
\(726\) −116.969 −4.34111
\(727\) −24.6970 −0.915959 −0.457980 0.888963i \(-0.651427\pi\)
−0.457980 + 0.888963i \(0.651427\pi\)
\(728\) 23.1668 0.858617
\(729\) −43.2406 −1.60150
\(730\) −89.8955 −3.32718
\(731\) 8.63974 0.319552
\(732\) −73.2229 −2.70640
\(733\) −5.36434 −0.198136 −0.0990682 0.995081i \(-0.531586\pi\)
−0.0990682 + 0.995081i \(0.531586\pi\)
\(734\) −78.8417 −2.91010
\(735\) −7.10539 −0.262086
\(736\) 5.37592 0.198159
\(737\) −8.06634 −0.297127
\(738\) 22.6868 0.835111
\(739\) 20.4094 0.750772 0.375386 0.926869i \(-0.377510\pi\)
0.375386 + 0.926869i \(0.377510\pi\)
\(740\) −74.4985 −2.73862
\(741\) 9.26188 0.340244
\(742\) 4.87776 0.179068
\(743\) −16.9780 −0.622861 −0.311431 0.950269i \(-0.600808\pi\)
−0.311431 + 0.950269i \(0.600808\pi\)
\(744\) −107.921 −3.95659
\(745\) 19.4827 0.713791
\(746\) −70.7541 −2.59049
\(747\) −58.7180 −2.14838
\(748\) −22.1400 −0.809520
\(749\) 16.0074 0.584896
\(750\) 64.7283 2.36354
\(751\) −8.99611 −0.328273 −0.164136 0.986438i \(-0.552484\pi\)
−0.164136 + 0.986438i \(0.552484\pi\)
\(752\) −7.13472 −0.260176
\(753\) −22.5327 −0.821136
\(754\) −35.8521 −1.30566
\(755\) 33.7752 1.22921
\(756\) 23.2505 0.845611
\(757\) 8.75655 0.318262 0.159131 0.987257i \(-0.449131\pi\)
0.159131 + 0.987257i \(0.449131\pi\)
\(758\) −53.8384 −1.95550
\(759\) 35.9294 1.30415
\(760\) 10.8440 0.393353
\(761\) −51.5596 −1.86903 −0.934517 0.355920i \(-0.884168\pi\)
−0.934517 + 0.355920i \(0.884168\pi\)
\(762\) −80.2701 −2.90788
\(763\) −16.5143 −0.597859
\(764\) −20.9727 −0.758766
\(765\) 12.4865 0.451451
\(766\) 43.4657 1.57048
\(767\) −10.2469 −0.369995
\(768\) 91.7399 3.31038
\(769\) 1.84214 0.0664292 0.0332146 0.999448i \(-0.489426\pi\)
0.0332146 + 0.999448i \(0.489426\pi\)
\(770\) 33.0032 1.18935
\(771\) −26.2291 −0.944619
\(772\) 76.5317 2.75444
\(773\) 54.9320 1.97577 0.987884 0.155196i \(-0.0496007\pi\)
0.987884 + 0.155196i \(0.0496007\pi\)
\(774\) 106.740 3.83670
\(775\) 9.33518 0.335329
\(776\) 71.2446 2.55753
\(777\) −19.8103 −0.710690
\(778\) 76.4011 2.73911
\(779\) 1.43438 0.0513918
\(780\) 125.782 4.50370
\(781\) 8.70923 0.311641
\(782\) 6.03829 0.215929
\(783\) −18.8939 −0.675214
\(784\) 5.31311 0.189754
\(785\) −31.1854 −1.11306
\(786\) 70.0856 2.49987
\(787\) −5.34624 −0.190573 −0.0952865 0.995450i \(-0.530377\pi\)
−0.0952865 + 0.995450i \(0.530377\pi\)
\(788\) 18.2718 0.650905
\(789\) −10.1358 −0.360842
\(790\) 79.2642 2.82009
\(791\) 1.61548 0.0574398
\(792\) −143.631 −5.10369
\(793\) −25.9086 −0.920041
\(794\) 27.4207 0.973123
\(795\) 13.9064 0.493208
\(796\) −71.1575 −2.52211
\(797\) 47.0419 1.66631 0.833156 0.553039i \(-0.186532\pi\)
0.833156 + 0.553039i \(0.186532\pi\)
\(798\) 5.49151 0.194397
\(799\) −1.34285 −0.0475066
\(800\) 2.98394 0.105498
\(801\) 22.2676 0.786788
\(802\) 9.92210 0.350362
\(803\) 75.2811 2.65661
\(804\) −18.2276 −0.642839
\(805\) −6.10278 −0.215095
\(806\) −72.7215 −2.56151
\(807\) −18.3730 −0.646761
\(808\) −10.0461 −0.353422
\(809\) 27.2918 0.959527 0.479763 0.877398i \(-0.340722\pi\)
0.479763 + 0.877398i \(0.340722\pi\)
\(810\) 4.40659 0.154832
\(811\) −31.6841 −1.11258 −0.556289 0.830989i \(-0.687775\pi\)
−0.556289 + 0.830989i \(0.687775\pi\)
\(812\) −14.4127 −0.505786
\(813\) −3.66525 −0.128546
\(814\) 92.0149 3.22512
\(815\) 27.0747 0.948386
\(816\) −14.9875 −0.524666
\(817\) 6.74867 0.236106
\(818\) 52.5089 1.83593
\(819\) 20.8370 0.728104
\(820\) 19.4796 0.680258
\(821\) 13.2126 0.461124 0.230562 0.973058i \(-0.425943\pi\)
0.230562 + 0.973058i \(0.425943\pi\)
\(822\) 136.004 4.74369
\(823\) 8.52446 0.297144 0.148572 0.988902i \(-0.452532\pi\)
0.148572 + 0.988902i \(0.452532\pi\)
\(824\) 7.75645 0.270209
\(825\) 19.9429 0.694322
\(826\) −6.07555 −0.211396
\(827\) 2.47994 0.0862360 0.0431180 0.999070i \(-0.486271\pi\)
0.0431180 + 0.999070i \(0.486271\pi\)
\(828\) 50.5799 1.75777
\(829\) 47.4995 1.64972 0.824862 0.565333i \(-0.191252\pi\)
0.824862 + 0.565333i \(0.191252\pi\)
\(830\) −74.3606 −2.58109
\(831\) 34.0387 1.18079
\(832\) 21.4214 0.742652
\(833\) 1.00000 0.0346479
\(834\) 44.3665 1.53629
\(835\) −26.3441 −0.911676
\(836\) −17.2940 −0.598127
\(837\) −38.3240 −1.32467
\(838\) 39.5598 1.36657
\(839\) −32.9427 −1.13731 −0.568653 0.822577i \(-0.692535\pi\)
−0.568653 + 0.822577i \(0.692535\pi\)
\(840\) 39.1607 1.35117
\(841\) −17.2879 −0.596134
\(842\) 31.8479 1.09755
\(843\) −5.00448 −0.172363
\(844\) −100.205 −3.44921
\(845\) 11.7600 0.404556
\(846\) −16.5903 −0.570388
\(847\) −16.6378 −0.571681
\(848\) −10.3986 −0.357089
\(849\) −30.7075 −1.05388
\(850\) 3.35160 0.114959
\(851\) −17.0149 −0.583265
\(852\) 19.6804 0.674239
\(853\) 47.5645 1.62858 0.814288 0.580460i \(-0.197127\pi\)
0.814288 + 0.580460i \(0.197127\pi\)
\(854\) −15.3616 −0.525663
\(855\) 9.75348 0.333562
\(856\) −88.2232 −3.01541
\(857\) −34.0918 −1.16455 −0.582277 0.812991i \(-0.697838\pi\)
−0.582277 + 0.812991i \(0.697838\pi\)
\(858\) −155.356 −5.30377
\(859\) 13.1715 0.449405 0.224703 0.974427i \(-0.427859\pi\)
0.224703 + 0.974427i \(0.427859\pi\)
\(860\) 91.6508 3.12527
\(861\) 5.17993 0.176532
\(862\) −97.6455 −3.32582
\(863\) −5.24872 −0.178668 −0.0893342 0.996002i \(-0.528474\pi\)
−0.0893342 + 0.996002i \(0.528474\pi\)
\(864\) −12.2501 −0.416756
\(865\) 9.65342 0.328226
\(866\) −40.5368 −1.37750
\(867\) −2.82084 −0.0958009
\(868\) −29.2343 −0.992276
\(869\) −66.3782 −2.25172
\(870\) −60.6039 −2.05466
\(871\) −6.44952 −0.218534
\(872\) 91.0173 3.08223
\(873\) 64.0799 2.16878
\(874\) 4.71663 0.159542
\(875\) 9.20705 0.311255
\(876\) 170.114 5.74762
\(877\) 45.7500 1.54487 0.772434 0.635096i \(-0.219039\pi\)
0.772434 + 0.635096i \(0.219039\pi\)
\(878\) −4.91564 −0.165895
\(879\) −67.0874 −2.26280
\(880\) −70.3574 −2.37175
\(881\) 0.719858 0.0242526 0.0121263 0.999926i \(-0.496140\pi\)
0.0121263 + 0.999926i \(0.496140\pi\)
\(882\) 12.3546 0.416000
\(883\) −36.3191 −1.22224 −0.611118 0.791539i \(-0.709280\pi\)
−0.611118 + 0.791539i \(0.709280\pi\)
\(884\) −17.7023 −0.595392
\(885\) −17.3212 −0.582247
\(886\) 85.0561 2.85751
\(887\) −12.7805 −0.429126 −0.214563 0.976710i \(-0.568833\pi\)
−0.214563 + 0.976710i \(0.568833\pi\)
\(888\) 109.183 3.66393
\(889\) −11.4177 −0.382939
\(890\) 28.1997 0.945258
\(891\) −3.69021 −0.123627
\(892\) −4.81501 −0.161219
\(893\) −1.04893 −0.0351010
\(894\) −54.3769 −1.81864
\(895\) −44.3119 −1.48118
\(896\) 17.1388 0.572567
\(897\) 28.7277 0.959189
\(898\) −15.2006 −0.507252
\(899\) 23.7565 0.792325
\(900\) 28.0748 0.935826
\(901\) −1.95716 −0.0652024
\(902\) −24.0598 −0.801103
\(903\) 24.3714 0.811028
\(904\) −8.90357 −0.296128
\(905\) −42.6225 −1.41682
\(906\) −94.2678 −3.13184
\(907\) 27.1387 0.901126 0.450563 0.892745i \(-0.351223\pi\)
0.450563 + 0.892745i \(0.351223\pi\)
\(908\) 56.6688 1.88062
\(909\) −9.03586 −0.299701
\(910\) 26.3880 0.874753
\(911\) 34.9889 1.15923 0.579616 0.814890i \(-0.303202\pi\)
0.579616 + 0.814890i \(0.303202\pi\)
\(912\) −11.7070 −0.387658
\(913\) 62.2717 2.06089
\(914\) −37.2969 −1.23367
\(915\) −43.7954 −1.44783
\(916\) −24.6791 −0.815419
\(917\) 9.96907 0.329208
\(918\) −13.7594 −0.454128
\(919\) −19.0980 −0.629984 −0.314992 0.949094i \(-0.602002\pi\)
−0.314992 + 0.949094i \(0.602002\pi\)
\(920\) 33.6349 1.10891
\(921\) −49.0858 −1.61743
\(922\) −64.5737 −2.12662
\(923\) 6.96355 0.229208
\(924\) −62.4536 −2.05457
\(925\) −9.44428 −0.310526
\(926\) 49.1781 1.61609
\(927\) 6.97643 0.229136
\(928\) 7.59367 0.249274
\(929\) 38.5323 1.26420 0.632102 0.774885i \(-0.282193\pi\)
0.632102 + 0.774885i \(0.282193\pi\)
\(930\) −122.927 −4.03094
\(931\) 0.781120 0.0256002
\(932\) 10.1870 0.333687
\(933\) 39.9107 1.30662
\(934\) −26.7067 −0.873869
\(935\) −13.2422 −0.433067
\(936\) −114.841 −3.75371
\(937\) 40.9170 1.33670 0.668350 0.743847i \(-0.267001\pi\)
0.668350 + 0.743847i \(0.267001\pi\)
\(938\) −3.82401 −0.124858
\(939\) −11.4221 −0.372747
\(940\) −14.2450 −0.464622
\(941\) 14.9176 0.486298 0.243149 0.969989i \(-0.421820\pi\)
0.243149 + 0.969989i \(0.421820\pi\)
\(942\) 87.0395 2.83590
\(943\) 4.44901 0.144880
\(944\) 12.9521 0.421555
\(945\) 13.9064 0.452374
\(946\) −113.200 −3.68046
\(947\) −54.3712 −1.76683 −0.883413 0.468595i \(-0.844760\pi\)
−0.883413 + 0.468595i \(0.844760\pi\)
\(948\) −149.996 −4.87164
\(949\) 60.1917 1.95391
\(950\) 2.61800 0.0849391
\(951\) 92.1239 2.98732
\(952\) −5.51141 −0.178626
\(953\) −33.1263 −1.07306 −0.536532 0.843880i \(-0.680266\pi\)
−0.536532 + 0.843880i \(0.680266\pi\)
\(954\) −24.1798 −0.782851
\(955\) −12.5440 −0.405915
\(956\) −34.5582 −1.11769
\(957\) 50.7514 1.64056
\(958\) 17.4265 0.563024
\(959\) 19.3454 0.624696
\(960\) 36.2103 1.16868
\(961\) 17.1871 0.554424
\(962\) 73.5714 2.37204
\(963\) −79.3510 −2.55705
\(964\) 110.156 3.54790
\(965\) 45.7745 1.47353
\(966\) 17.0331 0.548030
\(967\) −54.0452 −1.73798 −0.868988 0.494834i \(-0.835229\pi\)
−0.868988 + 0.494834i \(0.835229\pi\)
\(968\) 91.6977 2.94728
\(969\) −2.20342 −0.0707840
\(970\) 81.1508 2.60560
\(971\) −40.0719 −1.28597 −0.642984 0.765880i \(-0.722304\pi\)
−0.642984 + 0.765880i \(0.722304\pi\)
\(972\) 61.4126 1.96981
\(973\) 6.31075 0.202313
\(974\) 27.9415 0.895305
\(975\) 15.9455 0.510665
\(976\) 32.7484 1.04825
\(977\) 37.2405 1.19143 0.595715 0.803196i \(-0.296869\pi\)
0.595715 + 0.803196i \(0.296869\pi\)
\(978\) −75.5664 −2.41635
\(979\) −23.6153 −0.754748
\(980\) 10.6081 0.338862
\(981\) 81.8641 2.61372
\(982\) 65.1647 2.07949
\(983\) 12.0729 0.385067 0.192534 0.981290i \(-0.438330\pi\)
0.192534 + 0.981290i \(0.438330\pi\)
\(984\) −28.5487 −0.910100
\(985\) 10.9286 0.348213
\(986\) 8.52928 0.271628
\(987\) −3.78797 −0.120572
\(988\) −13.8276 −0.439915
\(989\) 20.9324 0.665612
\(990\) −163.602 −5.19961
\(991\) −6.66778 −0.211809 −0.105905 0.994376i \(-0.533774\pi\)
−0.105905 + 0.994376i \(0.533774\pi\)
\(992\) 15.4028 0.489039
\(993\) −40.4149 −1.28253
\(994\) 4.12879 0.130957
\(995\) −42.5601 −1.34925
\(996\) 140.716 4.45877
\(997\) 13.2321 0.419064 0.209532 0.977802i \(-0.432806\pi\)
0.209532 + 0.977802i \(0.432806\pi\)
\(998\) −2.21262 −0.0700393
\(999\) 38.7719 1.22669
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.2.a.b.1.5 5
3.2 odd 2 1071.2.a.m.1.1 5
4.3 odd 2 1904.2.a.t.1.4 5
5.4 even 2 2975.2.a.m.1.1 5
7.2 even 3 833.2.e.i.18.1 10
7.3 odd 6 833.2.e.h.324.1 10
7.4 even 3 833.2.e.i.324.1 10
7.5 odd 6 833.2.e.h.18.1 10
7.6 odd 2 833.2.a.g.1.5 5
8.3 odd 2 7616.2.a.bq.1.2 5
8.5 even 2 7616.2.a.bt.1.4 5
17.16 even 2 2023.2.a.j.1.5 5
21.20 even 2 7497.2.a.br.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.5 5 1.1 even 1 trivial
833.2.a.g.1.5 5 7.6 odd 2
833.2.e.h.18.1 10 7.5 odd 6
833.2.e.h.324.1 10 7.3 odd 6
833.2.e.i.18.1 10 7.2 even 3
833.2.e.i.324.1 10 7.4 even 3
1071.2.a.m.1.1 5 3.2 odd 2
1904.2.a.t.1.4 5 4.3 odd 2
2023.2.a.j.1.5 5 17.16 even 2
2975.2.a.m.1.1 5 5.4 even 2
7497.2.a.br.1.1 5 21.20 even 2
7616.2.a.bq.1.2 5 8.3 odd 2
7616.2.a.bt.1.4 5 8.5 even 2