Properties

Label 7616.2.a.bt.1.2
Level $7616$
Weight $2$
Character 7616.1
Self dual yes
Analytic conductor $60.814$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7616,2,Mod(1,7616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7616 = 2^{6} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8140661794\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.32183\) of defining polynomial
Character \(\chi\) \(=\) 7616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.907578 q^{3} -3.03818 q^{5} -1.00000 q^{7} -2.17630 q^{9} +O(q^{10})\) \(q-0.907578 q^{3} -3.03818 q^{5} -1.00000 q^{7} -2.17630 q^{9} -4.78178 q^{11} +4.39933 q^{13} +2.75739 q^{15} +1.00000 q^{17} +2.64366 q^{19} +0.907578 q^{21} -8.45881 q^{23} +4.23054 q^{25} +4.69790 q^{27} -7.04298 q^{29} -3.42063 q^{31} +4.33984 q^{33} +3.03818 q^{35} -9.66977 q^{37} -3.99273 q^{39} +1.33675 q^{41} -2.52513 q^{43} +6.61200 q^{45} -5.57082 q^{47} +1.00000 q^{49} -0.907578 q^{51} -5.17630 q^{53} +14.5279 q^{55} -2.39933 q^{57} -9.28732 q^{59} -6.66325 q^{61} +2.17630 q^{63} -13.3659 q^{65} -5.28251 q^{67} +7.67704 q^{69} -11.9310 q^{71} +12.7155 q^{73} -3.83955 q^{75} +4.78178 q^{77} +1.94051 q^{79} +2.26519 q^{81} +4.58417 q^{83} -3.03818 q^{85} +6.39206 q^{87} -13.3956 q^{89} -4.39933 q^{91} +3.10449 q^{93} -8.03191 q^{95} -15.1668 q^{97} +10.4066 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} - 5 q^{7} + 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 2 q^{3} - 5 q^{7} + 11 q^{9} + 2 q^{11} - 2 q^{13} + 8 q^{15} + 5 q^{17} - 6 q^{19} - 2 q^{21} - 10 q^{23} + 21 q^{25} + 26 q^{27} + 8 q^{29} + 6 q^{33} - 8 q^{37} + 14 q^{39} + 18 q^{41} - 8 q^{43} - 10 q^{47} + 5 q^{49} + 2 q^{51} - 4 q^{53} - 24 q^{55} + 12 q^{57} - 8 q^{59} - 22 q^{61} - 11 q^{63} - 30 q^{65} - 16 q^{67} + 32 q^{69} - 2 q^{71} + 10 q^{73} + 14 q^{75} - 2 q^{77} + 18 q^{79} + 25 q^{81} + 12 q^{83} - 26 q^{87} + 20 q^{89} + 2 q^{91} + 28 q^{93} - 22 q^{95} + 12 q^{97} + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.907578 −0.523991 −0.261995 0.965069i \(-0.584380\pi\)
−0.261995 + 0.965069i \(0.584380\pi\)
\(4\) 0 0
\(5\) −3.03818 −1.35872 −0.679358 0.733807i \(-0.737742\pi\)
−0.679358 + 0.733807i \(0.737742\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.17630 −0.725434
\(10\) 0 0
\(11\) −4.78178 −1.44176 −0.720880 0.693060i \(-0.756262\pi\)
−0.720880 + 0.693060i \(0.756262\pi\)
\(12\) 0 0
\(13\) 4.39933 1.22015 0.610077 0.792342i \(-0.291139\pi\)
0.610077 + 0.792342i \(0.291139\pi\)
\(14\) 0 0
\(15\) 2.75739 0.711954
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 2.64366 0.606497 0.303248 0.952912i \(-0.401929\pi\)
0.303248 + 0.952912i \(0.401929\pi\)
\(20\) 0 0
\(21\) 0.907578 0.198050
\(22\) 0 0
\(23\) −8.45881 −1.76378 −0.881892 0.471451i \(-0.843730\pi\)
−0.881892 + 0.471451i \(0.843730\pi\)
\(24\) 0 0
\(25\) 4.23054 0.846109
\(26\) 0 0
\(27\) 4.69790 0.904111
\(28\) 0 0
\(29\) −7.04298 −1.30785 −0.653925 0.756560i \(-0.726879\pi\)
−0.653925 + 0.756560i \(0.726879\pi\)
\(30\) 0 0
\(31\) −3.42063 −0.614364 −0.307182 0.951651i \(-0.599386\pi\)
−0.307182 + 0.951651i \(0.599386\pi\)
\(32\) 0 0
\(33\) 4.33984 0.755469
\(34\) 0 0
\(35\) 3.03818 0.513546
\(36\) 0 0
\(37\) −9.66977 −1.58970 −0.794850 0.606806i \(-0.792451\pi\)
−0.794850 + 0.606806i \(0.792451\pi\)
\(38\) 0 0
\(39\) −3.99273 −0.639349
\(40\) 0 0
\(41\) 1.33675 0.208766 0.104383 0.994537i \(-0.466713\pi\)
0.104383 + 0.994537i \(0.466713\pi\)
\(42\) 0 0
\(43\) −2.52513 −0.385078 −0.192539 0.981289i \(-0.561672\pi\)
−0.192539 + 0.981289i \(0.561672\pi\)
\(44\) 0 0
\(45\) 6.61200 0.985659
\(46\) 0 0
\(47\) −5.57082 −0.812588 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.907578 −0.127086
\(52\) 0 0
\(53\) −5.17630 −0.711020 −0.355510 0.934673i \(-0.615693\pi\)
−0.355510 + 0.934673i \(0.615693\pi\)
\(54\) 0 0
\(55\) 14.5279 1.95894
\(56\) 0 0
\(57\) −2.39933 −0.317799
\(58\) 0 0
\(59\) −9.28732 −1.20911 −0.604553 0.796565i \(-0.706648\pi\)
−0.604553 + 0.796565i \(0.706648\pi\)
\(60\) 0 0
\(61\) −6.66325 −0.853141 −0.426571 0.904454i \(-0.640278\pi\)
−0.426571 + 0.904454i \(0.640278\pi\)
\(62\) 0 0
\(63\) 2.17630 0.274188
\(64\) 0 0
\(65\) −13.3659 −1.65784
\(66\) 0 0
\(67\) −5.28251 −0.645362 −0.322681 0.946508i \(-0.604584\pi\)
−0.322681 + 0.946508i \(0.604584\pi\)
\(68\) 0 0
\(69\) 7.67704 0.924206
\(70\) 0 0
\(71\) −11.9310 −1.41595 −0.707973 0.706239i \(-0.750390\pi\)
−0.707973 + 0.706239i \(0.750390\pi\)
\(72\) 0 0
\(73\) 12.7155 1.48823 0.744116 0.668050i \(-0.232871\pi\)
0.744116 + 0.668050i \(0.232871\pi\)
\(74\) 0 0
\(75\) −3.83955 −0.443353
\(76\) 0 0
\(77\) 4.78178 0.544934
\(78\) 0 0
\(79\) 1.94051 0.218325 0.109162 0.994024i \(-0.465183\pi\)
0.109162 + 0.994024i \(0.465183\pi\)
\(80\) 0 0
\(81\) 2.26519 0.251688
\(82\) 0 0
\(83\) 4.58417 0.503178 0.251589 0.967834i \(-0.419047\pi\)
0.251589 + 0.967834i \(0.419047\pi\)
\(84\) 0 0
\(85\) −3.03818 −0.329537
\(86\) 0 0
\(87\) 6.39206 0.685301
\(88\) 0 0
\(89\) −13.3956 −1.41993 −0.709965 0.704237i \(-0.751289\pi\)
−0.709965 + 0.704237i \(0.751289\pi\)
\(90\) 0 0
\(91\) −4.39933 −0.461175
\(92\) 0 0
\(93\) 3.10449 0.321921
\(94\) 0 0
\(95\) −8.03191 −0.824057
\(96\) 0 0
\(97\) −15.1668 −1.53995 −0.769976 0.638073i \(-0.779732\pi\)
−0.769976 + 0.638073i \(0.779732\pi\)
\(98\) 0 0
\(99\) 10.4066 1.04590
\(100\) 0 0
\(101\) −3.24786 −0.323174 −0.161587 0.986858i \(-0.551661\pi\)
−0.161587 + 0.986858i \(0.551661\pi\)
\(102\) 0 0
\(103\) −12.7031 −1.25168 −0.625839 0.779952i \(-0.715243\pi\)
−0.625839 + 0.779952i \(0.715243\pi\)
\(104\) 0 0
\(105\) −2.75739 −0.269093
\(106\) 0 0
\(107\) −3.91410 −0.378390 −0.189195 0.981940i \(-0.560588\pi\)
−0.189195 + 0.981940i \(0.560588\pi\)
\(108\) 0 0
\(109\) 3.56356 0.341327 0.170663 0.985329i \(-0.445409\pi\)
0.170663 + 0.985329i \(0.445409\pi\)
\(110\) 0 0
\(111\) 8.77607 0.832988
\(112\) 0 0
\(113\) 0.966622 0.0909322 0.0454661 0.998966i \(-0.485523\pi\)
0.0454661 + 0.998966i \(0.485523\pi\)
\(114\) 0 0
\(115\) 25.6994 2.39648
\(116\) 0 0
\(117\) −9.57426 −0.885141
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 11.8654 1.07867
\(122\) 0 0
\(123\) −1.21321 −0.109391
\(124\) 0 0
\(125\) 2.33775 0.209095
\(126\) 0 0
\(127\) −5.55875 −0.493260 −0.246630 0.969110i \(-0.579323\pi\)
−0.246630 + 0.969110i \(0.579323\pi\)
\(128\) 0 0
\(129\) 2.29175 0.201777
\(130\) 0 0
\(131\) 3.51134 0.306787 0.153393 0.988165i \(-0.450980\pi\)
0.153393 + 0.988165i \(0.450980\pi\)
\(132\) 0 0
\(133\) −2.64366 −0.229234
\(134\) 0 0
\(135\) −14.2731 −1.22843
\(136\) 0 0
\(137\) −1.93780 −0.165557 −0.0827786 0.996568i \(-0.526379\pi\)
−0.0827786 + 0.996568i \(0.526379\pi\)
\(138\) 0 0
\(139\) −4.69834 −0.398508 −0.199254 0.979948i \(-0.563852\pi\)
−0.199254 + 0.979948i \(0.563852\pi\)
\(140\) 0 0
\(141\) 5.05596 0.425789
\(142\) 0 0
\(143\) −21.0366 −1.75917
\(144\) 0 0
\(145\) 21.3979 1.77700
\(146\) 0 0
\(147\) −0.907578 −0.0748558
\(148\) 0 0
\(149\) −4.24162 −0.347487 −0.173743 0.984791i \(-0.555586\pi\)
−0.173743 + 0.984791i \(0.555586\pi\)
\(150\) 0 0
\(151\) 12.4584 1.01385 0.506924 0.861991i \(-0.330783\pi\)
0.506924 + 0.861991i \(0.330783\pi\)
\(152\) 0 0
\(153\) −2.17630 −0.175944
\(154\) 0 0
\(155\) 10.3925 0.834746
\(156\) 0 0
\(157\) 17.6472 1.40840 0.704199 0.710002i \(-0.251306\pi\)
0.704199 + 0.710002i \(0.251306\pi\)
\(158\) 0 0
\(159\) 4.69790 0.372568
\(160\) 0 0
\(161\) 8.45881 0.666648
\(162\) 0 0
\(163\) 2.67557 0.209567 0.104783 0.994495i \(-0.466585\pi\)
0.104783 + 0.994495i \(0.466585\pi\)
\(164\) 0 0
\(165\) −13.1852 −1.02647
\(166\) 0 0
\(167\) −1.95783 −0.151501 −0.0757507 0.997127i \(-0.524135\pi\)
−0.0757507 + 0.997127i \(0.524135\pi\)
\(168\) 0 0
\(169\) 6.35407 0.488775
\(170\) 0 0
\(171\) −5.75340 −0.439973
\(172\) 0 0
\(173\) −6.01732 −0.457488 −0.228744 0.973487i \(-0.573462\pi\)
−0.228744 + 0.973487i \(0.573462\pi\)
\(174\) 0 0
\(175\) −4.23054 −0.319799
\(176\) 0 0
\(177\) 8.42897 0.633560
\(178\) 0 0
\(179\) −1.75112 −0.130885 −0.0654423 0.997856i \(-0.520846\pi\)
−0.0654423 + 0.997856i \(0.520846\pi\)
\(180\) 0 0
\(181\) −2.76491 −0.205514 −0.102757 0.994707i \(-0.532766\pi\)
−0.102757 + 0.994707i \(0.532766\pi\)
\(182\) 0 0
\(183\) 6.04742 0.447038
\(184\) 0 0
\(185\) 29.3785 2.15995
\(186\) 0 0
\(187\) −4.78178 −0.349678
\(188\) 0 0
\(189\) −4.69790 −0.341722
\(190\) 0 0
\(191\) 18.8461 1.36365 0.681827 0.731514i \(-0.261186\pi\)
0.681827 + 0.731514i \(0.261186\pi\)
\(192\) 0 0
\(193\) 11.9107 0.857348 0.428674 0.903459i \(-0.358981\pi\)
0.428674 + 0.903459i \(0.358981\pi\)
\(194\) 0 0
\(195\) 12.1306 0.868693
\(196\) 0 0
\(197\) 17.2682 1.23031 0.615153 0.788408i \(-0.289094\pi\)
0.615153 + 0.788408i \(0.289094\pi\)
\(198\) 0 0
\(199\) −15.2451 −1.08070 −0.540350 0.841440i \(-0.681708\pi\)
−0.540350 + 0.841440i \(0.681708\pi\)
\(200\) 0 0
\(201\) 4.79429 0.338163
\(202\) 0 0
\(203\) 7.04298 0.494321
\(204\) 0 0
\(205\) −4.06130 −0.283653
\(206\) 0 0
\(207\) 18.4089 1.27951
\(208\) 0 0
\(209\) −12.6414 −0.874423
\(210\) 0 0
\(211\) −8.51331 −0.586080 −0.293040 0.956100i \(-0.594667\pi\)
−0.293040 + 0.956100i \(0.594667\pi\)
\(212\) 0 0
\(213\) 10.8283 0.741942
\(214\) 0 0
\(215\) 7.67179 0.523212
\(216\) 0 0
\(217\) 3.42063 0.232208
\(218\) 0 0
\(219\) −11.5403 −0.779820
\(220\) 0 0
\(221\) 4.39933 0.295931
\(222\) 0 0
\(223\) −2.49093 −0.166805 −0.0834027 0.996516i \(-0.526579\pi\)
−0.0834027 + 0.996516i \(0.526579\pi\)
\(224\) 0 0
\(225\) −9.20694 −0.613796
\(226\) 0 0
\(227\) 16.9842 1.12728 0.563640 0.826020i \(-0.309400\pi\)
0.563640 + 0.826020i \(0.309400\pi\)
\(228\) 0 0
\(229\) 16.3303 1.07914 0.539568 0.841942i \(-0.318587\pi\)
0.539568 + 0.841942i \(0.318587\pi\)
\(230\) 0 0
\(231\) −4.33984 −0.285540
\(232\) 0 0
\(233\) −5.77825 −0.378546 −0.189273 0.981925i \(-0.560613\pi\)
−0.189273 + 0.981925i \(0.560613\pi\)
\(234\) 0 0
\(235\) 16.9252 1.10408
\(236\) 0 0
\(237\) −1.76117 −0.114400
\(238\) 0 0
\(239\) 7.44275 0.481432 0.240716 0.970596i \(-0.422618\pi\)
0.240716 + 0.970596i \(0.422618\pi\)
\(240\) 0 0
\(241\) 21.9036 1.41093 0.705467 0.708743i \(-0.250737\pi\)
0.705467 + 0.708743i \(0.250737\pi\)
\(242\) 0 0
\(243\) −16.1495 −1.03599
\(244\) 0 0
\(245\) −3.03818 −0.194102
\(246\) 0 0
\(247\) 11.6303 0.740019
\(248\) 0 0
\(249\) −4.16049 −0.263661
\(250\) 0 0
\(251\) −16.5769 −1.04632 −0.523162 0.852233i \(-0.675248\pi\)
−0.523162 + 0.852233i \(0.675248\pi\)
\(252\) 0 0
\(253\) 40.4482 2.54296
\(254\) 0 0
\(255\) 2.75739 0.172674
\(256\) 0 0
\(257\) 12.1158 0.755764 0.377882 0.925854i \(-0.376653\pi\)
0.377882 + 0.925854i \(0.376653\pi\)
\(258\) 0 0
\(259\) 9.66977 0.600850
\(260\) 0 0
\(261\) 15.3277 0.948758
\(262\) 0 0
\(263\) 3.20135 0.197404 0.0987018 0.995117i \(-0.468531\pi\)
0.0987018 + 0.995117i \(0.468531\pi\)
\(264\) 0 0
\(265\) 15.7265 0.966074
\(266\) 0 0
\(267\) 12.1575 0.744030
\(268\) 0 0
\(269\) −15.4400 −0.941396 −0.470698 0.882294i \(-0.655998\pi\)
−0.470698 + 0.882294i \(0.655998\pi\)
\(270\) 0 0
\(271\) −24.8878 −1.51182 −0.755912 0.654673i \(-0.772806\pi\)
−0.755912 + 0.654673i \(0.772806\pi\)
\(272\) 0 0
\(273\) 3.99273 0.241651
\(274\) 0 0
\(275\) −20.2295 −1.21989
\(276\) 0 0
\(277\) 11.2870 0.678172 0.339086 0.940755i \(-0.389882\pi\)
0.339086 + 0.940755i \(0.389882\pi\)
\(278\) 0 0
\(279\) 7.44433 0.445680
\(280\) 0 0
\(281\) 13.0332 0.777495 0.388747 0.921344i \(-0.372908\pi\)
0.388747 + 0.921344i \(0.372908\pi\)
\(282\) 0 0
\(283\) −21.7190 −1.29106 −0.645531 0.763734i \(-0.723364\pi\)
−0.645531 + 0.763734i \(0.723364\pi\)
\(284\) 0 0
\(285\) 7.28959 0.431798
\(286\) 0 0
\(287\) −1.33675 −0.0789061
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 13.7650 0.806920
\(292\) 0 0
\(293\) 28.9400 1.69069 0.845346 0.534219i \(-0.179394\pi\)
0.845346 + 0.534219i \(0.179394\pi\)
\(294\) 0 0
\(295\) 28.2165 1.64283
\(296\) 0 0
\(297\) −22.4643 −1.30351
\(298\) 0 0
\(299\) −37.2131 −2.15209
\(300\) 0 0
\(301\) 2.52513 0.145546
\(302\) 0 0
\(303\) 2.94769 0.169340
\(304\) 0 0
\(305\) 20.2441 1.15918
\(306\) 0 0
\(307\) 11.5836 0.661110 0.330555 0.943787i \(-0.392764\pi\)
0.330555 + 0.943787i \(0.392764\pi\)
\(308\) 0 0
\(309\) 11.5291 0.655867
\(310\) 0 0
\(311\) −15.7999 −0.895932 −0.447966 0.894051i \(-0.647851\pi\)
−0.447966 + 0.894051i \(0.647851\pi\)
\(312\) 0 0
\(313\) 20.2658 1.14549 0.572745 0.819733i \(-0.305878\pi\)
0.572745 + 0.819733i \(0.305878\pi\)
\(314\) 0 0
\(315\) −6.61200 −0.372544
\(316\) 0 0
\(317\) −6.36537 −0.357515 −0.178757 0.983893i \(-0.557208\pi\)
−0.178757 + 0.983893i \(0.557208\pi\)
\(318\) 0 0
\(319\) 33.6780 1.88561
\(320\) 0 0
\(321\) 3.55235 0.198273
\(322\) 0 0
\(323\) 2.64366 0.147097
\(324\) 0 0
\(325\) 18.6115 1.03238
\(326\) 0 0
\(327\) −3.23421 −0.178852
\(328\) 0 0
\(329\) 5.57082 0.307130
\(330\) 0 0
\(331\) −24.5910 −1.35165 −0.675823 0.737064i \(-0.736212\pi\)
−0.675823 + 0.737064i \(0.736212\pi\)
\(332\) 0 0
\(333\) 21.0443 1.15322
\(334\) 0 0
\(335\) 16.0492 0.876863
\(336\) 0 0
\(337\) 7.11956 0.387827 0.193913 0.981019i \(-0.437882\pi\)
0.193913 + 0.981019i \(0.437882\pi\)
\(338\) 0 0
\(339\) −0.877285 −0.0476476
\(340\) 0 0
\(341\) 16.3567 0.885766
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −23.3242 −1.25573
\(346\) 0 0
\(347\) −1.51477 −0.0813173 −0.0406586 0.999173i \(-0.512946\pi\)
−0.0406586 + 0.999173i \(0.512946\pi\)
\(348\) 0 0
\(349\) −24.7937 −1.32717 −0.663587 0.748099i \(-0.730967\pi\)
−0.663587 + 0.748099i \(0.730967\pi\)
\(350\) 0 0
\(351\) 20.6676 1.10315
\(352\) 0 0
\(353\) −11.8416 −0.630267 −0.315133 0.949047i \(-0.602049\pi\)
−0.315133 + 0.949047i \(0.602049\pi\)
\(354\) 0 0
\(355\) 36.2485 1.92387
\(356\) 0 0
\(357\) 0.907578 0.0480341
\(358\) 0 0
\(359\) −26.6743 −1.40781 −0.703907 0.710292i \(-0.748563\pi\)
−0.703907 + 0.710292i \(0.748563\pi\)
\(360\) 0 0
\(361\) −12.0111 −0.632162
\(362\) 0 0
\(363\) −10.7688 −0.565215
\(364\) 0 0
\(365\) −38.6319 −2.02209
\(366\) 0 0
\(367\) −28.6897 −1.49759 −0.748796 0.662801i \(-0.769368\pi\)
−0.748796 + 0.662801i \(0.769368\pi\)
\(368\) 0 0
\(369\) −2.90918 −0.151446
\(370\) 0 0
\(371\) 5.17630 0.268740
\(372\) 0 0
\(373\) 26.8946 1.39255 0.696275 0.717775i \(-0.254839\pi\)
0.696275 + 0.717775i \(0.254839\pi\)
\(374\) 0 0
\(375\) −2.12169 −0.109564
\(376\) 0 0
\(377\) −30.9844 −1.59578
\(378\) 0 0
\(379\) −0.960453 −0.0493351 −0.0246676 0.999696i \(-0.507853\pi\)
−0.0246676 + 0.999696i \(0.507853\pi\)
\(380\) 0 0
\(381\) 5.04500 0.258463
\(382\) 0 0
\(383\) −10.9913 −0.561627 −0.280814 0.959762i \(-0.590604\pi\)
−0.280814 + 0.959762i \(0.590604\pi\)
\(384\) 0 0
\(385\) −14.5279 −0.740411
\(386\) 0 0
\(387\) 5.49544 0.279349
\(388\) 0 0
\(389\) 25.4239 1.28904 0.644520 0.764587i \(-0.277057\pi\)
0.644520 + 0.764587i \(0.277057\pi\)
\(390\) 0 0
\(391\) −8.45881 −0.427781
\(392\) 0 0
\(393\) −3.18681 −0.160753
\(394\) 0 0
\(395\) −5.89563 −0.296641
\(396\) 0 0
\(397\) 15.0140 0.753533 0.376767 0.926308i \(-0.377036\pi\)
0.376767 + 0.926308i \(0.377036\pi\)
\(398\) 0 0
\(399\) 2.39933 0.120117
\(400\) 0 0
\(401\) −11.0656 −0.552588 −0.276294 0.961073i \(-0.589106\pi\)
−0.276294 + 0.961073i \(0.589106\pi\)
\(402\) 0 0
\(403\) −15.0485 −0.749618
\(404\) 0 0
\(405\) −6.88207 −0.341973
\(406\) 0 0
\(407\) 46.2387 2.29197
\(408\) 0 0
\(409\) 28.5650 1.41245 0.706225 0.707988i \(-0.250397\pi\)
0.706225 + 0.707988i \(0.250397\pi\)
\(410\) 0 0
\(411\) 1.75870 0.0867504
\(412\) 0 0
\(413\) 9.28732 0.456999
\(414\) 0 0
\(415\) −13.9275 −0.683676
\(416\) 0 0
\(417\) 4.26411 0.208815
\(418\) 0 0
\(419\) 1.98566 0.0970057 0.0485029 0.998823i \(-0.484555\pi\)
0.0485029 + 0.998823i \(0.484555\pi\)
\(420\) 0 0
\(421\) −25.1984 −1.22810 −0.614048 0.789269i \(-0.710460\pi\)
−0.614048 + 0.789269i \(0.710460\pi\)
\(422\) 0 0
\(423\) 12.1238 0.589479
\(424\) 0 0
\(425\) 4.23054 0.205211
\(426\) 0 0
\(427\) 6.66325 0.322457
\(428\) 0 0
\(429\) 19.0924 0.921788
\(430\) 0 0
\(431\) −27.4984 −1.32455 −0.662275 0.749261i \(-0.730409\pi\)
−0.662275 + 0.749261i \(0.730409\pi\)
\(432\) 0 0
\(433\) 28.1977 1.35509 0.677547 0.735480i \(-0.263043\pi\)
0.677547 + 0.735480i \(0.263043\pi\)
\(434\) 0 0
\(435\) −19.4202 −0.931129
\(436\) 0 0
\(437\) −22.3622 −1.06973
\(438\) 0 0
\(439\) 6.31298 0.301302 0.150651 0.988587i \(-0.451863\pi\)
0.150651 + 0.988587i \(0.451863\pi\)
\(440\) 0 0
\(441\) −2.17630 −0.103633
\(442\) 0 0
\(443\) −26.4557 −1.25695 −0.628473 0.777831i \(-0.716320\pi\)
−0.628473 + 0.777831i \(0.716320\pi\)
\(444\) 0 0
\(445\) 40.6982 1.92928
\(446\) 0 0
\(447\) 3.84960 0.182080
\(448\) 0 0
\(449\) −34.5555 −1.63077 −0.815387 0.578916i \(-0.803476\pi\)
−0.815387 + 0.578916i \(0.803476\pi\)
\(450\) 0 0
\(451\) −6.39206 −0.300990
\(452\) 0 0
\(453\) −11.3069 −0.531247
\(454\) 0 0
\(455\) 13.3659 0.626605
\(456\) 0 0
\(457\) 26.5922 1.24393 0.621965 0.783045i \(-0.286334\pi\)
0.621965 + 0.783045i \(0.286334\pi\)
\(458\) 0 0
\(459\) 4.69790 0.219279
\(460\) 0 0
\(461\) 0.310199 0.0144474 0.00722371 0.999974i \(-0.497701\pi\)
0.00722371 + 0.999974i \(0.497701\pi\)
\(462\) 0 0
\(463\) 22.4654 1.04406 0.522028 0.852928i \(-0.325175\pi\)
0.522028 + 0.852928i \(0.325175\pi\)
\(464\) 0 0
\(465\) −9.43201 −0.437399
\(466\) 0 0
\(467\) 11.6126 0.537365 0.268682 0.963229i \(-0.413412\pi\)
0.268682 + 0.963229i \(0.413412\pi\)
\(468\) 0 0
\(469\) 5.28251 0.243924
\(470\) 0 0
\(471\) −16.0162 −0.737988
\(472\) 0 0
\(473\) 12.0746 0.555190
\(474\) 0 0
\(475\) 11.1841 0.513162
\(476\) 0 0
\(477\) 11.2652 0.515798
\(478\) 0 0
\(479\) 31.7976 1.45287 0.726435 0.687235i \(-0.241176\pi\)
0.726435 + 0.687235i \(0.241176\pi\)
\(480\) 0 0
\(481\) −42.5405 −1.93968
\(482\) 0 0
\(483\) −7.67704 −0.349317
\(484\) 0 0
\(485\) 46.0794 2.09236
\(486\) 0 0
\(487\) −23.0166 −1.04298 −0.521490 0.853257i \(-0.674624\pi\)
−0.521490 + 0.853257i \(0.674624\pi\)
\(488\) 0 0
\(489\) −2.42829 −0.109811
\(490\) 0 0
\(491\) 33.3176 1.50360 0.751802 0.659389i \(-0.229185\pi\)
0.751802 + 0.659389i \(0.229185\pi\)
\(492\) 0 0
\(493\) −7.04298 −0.317200
\(494\) 0 0
\(495\) −31.6171 −1.42108
\(496\) 0 0
\(497\) 11.9310 0.535177
\(498\) 0 0
\(499\) −37.0236 −1.65741 −0.828703 0.559689i \(-0.810921\pi\)
−0.828703 + 0.559689i \(0.810921\pi\)
\(500\) 0 0
\(501\) 1.77688 0.0793853
\(502\) 0 0
\(503\) −12.4172 −0.553654 −0.276827 0.960920i \(-0.589283\pi\)
−0.276827 + 0.960920i \(0.589283\pi\)
\(504\) 0 0
\(505\) 9.86759 0.439102
\(506\) 0 0
\(507\) −5.76682 −0.256113
\(508\) 0 0
\(509\) −11.9257 −0.528597 −0.264299 0.964441i \(-0.585140\pi\)
−0.264299 + 0.964441i \(0.585140\pi\)
\(510\) 0 0
\(511\) −12.7155 −0.562499
\(512\) 0 0
\(513\) 12.4196 0.548340
\(514\) 0 0
\(515\) 38.5945 1.70067
\(516\) 0 0
\(517\) 26.6385 1.17156
\(518\) 0 0
\(519\) 5.46119 0.239719
\(520\) 0 0
\(521\) 26.3980 1.15652 0.578259 0.815853i \(-0.303732\pi\)
0.578259 + 0.815853i \(0.303732\pi\)
\(522\) 0 0
\(523\) −13.6272 −0.595874 −0.297937 0.954586i \(-0.596299\pi\)
−0.297937 + 0.954586i \(0.596299\pi\)
\(524\) 0 0
\(525\) 3.83955 0.167572
\(526\) 0 0
\(527\) −3.42063 −0.149005
\(528\) 0 0
\(529\) 48.5515 2.11094
\(530\) 0 0
\(531\) 20.2120 0.877126
\(532\) 0 0
\(533\) 5.88081 0.254726
\(534\) 0 0
\(535\) 11.8917 0.514125
\(536\) 0 0
\(537\) 1.58927 0.0685823
\(538\) 0 0
\(539\) −4.78178 −0.205966
\(540\) 0 0
\(541\) −26.3358 −1.13226 −0.566132 0.824314i \(-0.691561\pi\)
−0.566132 + 0.824314i \(0.691561\pi\)
\(542\) 0 0
\(543\) 2.50937 0.107687
\(544\) 0 0
\(545\) −10.8267 −0.463766
\(546\) 0 0
\(547\) 2.25139 0.0962624 0.0481312 0.998841i \(-0.484673\pi\)
0.0481312 + 0.998841i \(0.484673\pi\)
\(548\) 0 0
\(549\) 14.5012 0.618898
\(550\) 0 0
\(551\) −18.6192 −0.793206
\(552\) 0 0
\(553\) −1.94051 −0.0825190
\(554\) 0 0
\(555\) −26.6633 −1.13179
\(556\) 0 0
\(557\) −30.3355 −1.28536 −0.642679 0.766136i \(-0.722177\pi\)
−0.642679 + 0.766136i \(0.722177\pi\)
\(558\) 0 0
\(559\) −11.1089 −0.469854
\(560\) 0 0
\(561\) 4.33984 0.183228
\(562\) 0 0
\(563\) −10.9867 −0.463035 −0.231518 0.972831i \(-0.574369\pi\)
−0.231518 + 0.972831i \(0.574369\pi\)
\(564\) 0 0
\(565\) −2.93677 −0.123551
\(566\) 0 0
\(567\) −2.26519 −0.0951292
\(568\) 0 0
\(569\) −28.8479 −1.20937 −0.604684 0.796465i \(-0.706701\pi\)
−0.604684 + 0.796465i \(0.706701\pi\)
\(570\) 0 0
\(571\) 10.5165 0.440100 0.220050 0.975489i \(-0.429378\pi\)
0.220050 + 0.975489i \(0.429378\pi\)
\(572\) 0 0
\(573\) −17.1043 −0.714542
\(574\) 0 0
\(575\) −35.7854 −1.49235
\(576\) 0 0
\(577\) −36.8288 −1.53320 −0.766601 0.642123i \(-0.778054\pi\)
−0.766601 + 0.642123i \(0.778054\pi\)
\(578\) 0 0
\(579\) −10.8099 −0.449242
\(580\) 0 0
\(581\) −4.58417 −0.190183
\(582\) 0 0
\(583\) 24.7519 1.02512
\(584\) 0 0
\(585\) 29.0883 1.20265
\(586\) 0 0
\(587\) −30.1420 −1.24409 −0.622047 0.782980i \(-0.713699\pi\)
−0.622047 + 0.782980i \(0.713699\pi\)
\(588\) 0 0
\(589\) −9.04298 −0.372610
\(590\) 0 0
\(591\) −15.6722 −0.644669
\(592\) 0 0
\(593\) −7.88925 −0.323973 −0.161986 0.986793i \(-0.551790\pi\)
−0.161986 + 0.986793i \(0.551790\pi\)
\(594\) 0 0
\(595\) 3.03818 0.124553
\(596\) 0 0
\(597\) 13.8362 0.566276
\(598\) 0 0
\(599\) 29.8059 1.21783 0.608917 0.793234i \(-0.291604\pi\)
0.608917 + 0.793234i \(0.291604\pi\)
\(600\) 0 0
\(601\) 11.9432 0.487175 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(602\) 0 0
\(603\) 11.4963 0.468167
\(604\) 0 0
\(605\) −36.0493 −1.46561
\(606\) 0 0
\(607\) −4.67281 −0.189664 −0.0948318 0.995493i \(-0.530231\pi\)
−0.0948318 + 0.995493i \(0.530231\pi\)
\(608\) 0 0
\(609\) −6.39206 −0.259019
\(610\) 0 0
\(611\) −24.5079 −0.991483
\(612\) 0 0
\(613\) −42.3894 −1.71209 −0.856046 0.516900i \(-0.827086\pi\)
−0.856046 + 0.516900i \(0.827086\pi\)
\(614\) 0 0
\(615\) 3.68595 0.148632
\(616\) 0 0
\(617\) −23.2809 −0.937255 −0.468628 0.883396i \(-0.655251\pi\)
−0.468628 + 0.883396i \(0.655251\pi\)
\(618\) 0 0
\(619\) 43.2201 1.73716 0.868582 0.495545i \(-0.165032\pi\)
0.868582 + 0.495545i \(0.165032\pi\)
\(620\) 0 0
\(621\) −39.7387 −1.59466
\(622\) 0 0
\(623\) 13.3956 0.536683
\(624\) 0 0
\(625\) −28.2552 −1.13021
\(626\) 0 0
\(627\) 11.4730 0.458189
\(628\) 0 0
\(629\) −9.66977 −0.385559
\(630\) 0 0
\(631\) 30.6825 1.22145 0.610725 0.791843i \(-0.290878\pi\)
0.610725 + 0.791843i \(0.290878\pi\)
\(632\) 0 0
\(633\) 7.72649 0.307100
\(634\) 0 0
\(635\) 16.8885 0.670200
\(636\) 0 0
\(637\) 4.39933 0.174308
\(638\) 0 0
\(639\) 25.9654 1.02718
\(640\) 0 0
\(641\) −21.3561 −0.843517 −0.421758 0.906708i \(-0.638587\pi\)
−0.421758 + 0.906708i \(0.638587\pi\)
\(642\) 0 0
\(643\) −22.7013 −0.895253 −0.447626 0.894221i \(-0.647731\pi\)
−0.447626 + 0.894221i \(0.647731\pi\)
\(644\) 0 0
\(645\) −6.96275 −0.274158
\(646\) 0 0
\(647\) 35.2630 1.38633 0.693165 0.720779i \(-0.256216\pi\)
0.693165 + 0.720779i \(0.256216\pi\)
\(648\) 0 0
\(649\) 44.4099 1.74324
\(650\) 0 0
\(651\) −3.10449 −0.121675
\(652\) 0 0
\(653\) 30.0593 1.17631 0.588155 0.808748i \(-0.299854\pi\)
0.588155 + 0.808748i \(0.299854\pi\)
\(654\) 0 0
\(655\) −10.6681 −0.416836
\(656\) 0 0
\(657\) −27.6727 −1.07961
\(658\) 0 0
\(659\) 18.9747 0.739148 0.369574 0.929201i \(-0.379504\pi\)
0.369574 + 0.929201i \(0.379504\pi\)
\(660\) 0 0
\(661\) −25.8038 −1.00365 −0.501825 0.864969i \(-0.667338\pi\)
−0.501825 + 0.864969i \(0.667338\pi\)
\(662\) 0 0
\(663\) −3.99273 −0.155065
\(664\) 0 0
\(665\) 8.03191 0.311464
\(666\) 0 0
\(667\) 59.5753 2.30676
\(668\) 0 0
\(669\) 2.26072 0.0874044
\(670\) 0 0
\(671\) 31.8622 1.23003
\(672\) 0 0
\(673\) 4.38401 0.168991 0.0844956 0.996424i \(-0.473072\pi\)
0.0844956 + 0.996424i \(0.473072\pi\)
\(674\) 0 0
\(675\) 19.8747 0.764976
\(676\) 0 0
\(677\) 32.1115 1.23415 0.617073 0.786906i \(-0.288318\pi\)
0.617073 + 0.786906i \(0.288318\pi\)
\(678\) 0 0
\(679\) 15.1668 0.582047
\(680\) 0 0
\(681\) −15.4145 −0.590684
\(682\) 0 0
\(683\) 18.7093 0.715892 0.357946 0.933742i \(-0.383477\pi\)
0.357946 + 0.933742i \(0.383477\pi\)
\(684\) 0 0
\(685\) 5.88738 0.224945
\(686\) 0 0
\(687\) −14.8210 −0.565457
\(688\) 0 0
\(689\) −22.7722 −0.867553
\(690\) 0 0
\(691\) 40.9131 1.55641 0.778205 0.628011i \(-0.216131\pi\)
0.778205 + 0.628011i \(0.216131\pi\)
\(692\) 0 0
\(693\) −10.4066 −0.395314
\(694\) 0 0
\(695\) 14.2744 0.541459
\(696\) 0 0
\(697\) 1.33675 0.0506331
\(698\) 0 0
\(699\) 5.24421 0.198354
\(700\) 0 0
\(701\) 17.6240 0.665649 0.332825 0.942989i \(-0.391998\pi\)
0.332825 + 0.942989i \(0.391998\pi\)
\(702\) 0 0
\(703\) −25.5636 −0.964148
\(704\) 0 0
\(705\) −15.3609 −0.578526
\(706\) 0 0
\(707\) 3.24786 0.122148
\(708\) 0 0
\(709\) 8.18690 0.307466 0.153733 0.988112i \(-0.450870\pi\)
0.153733 + 0.988112i \(0.450870\pi\)
\(710\) 0 0
\(711\) −4.22314 −0.158380
\(712\) 0 0
\(713\) 28.9345 1.08361
\(714\) 0 0
\(715\) 63.9130 2.39021
\(716\) 0 0
\(717\) −6.75488 −0.252266
\(718\) 0 0
\(719\) 42.6093 1.58906 0.794530 0.607225i \(-0.207717\pi\)
0.794530 + 0.607225i \(0.207717\pi\)
\(720\) 0 0
\(721\) 12.7031 0.473090
\(722\) 0 0
\(723\) −19.8792 −0.739316
\(724\) 0 0
\(725\) −29.7956 −1.10658
\(726\) 0 0
\(727\) −10.5470 −0.391166 −0.195583 0.980687i \(-0.562660\pi\)
−0.195583 + 0.980687i \(0.562660\pi\)
\(728\) 0 0
\(729\) 7.86138 0.291162
\(730\) 0 0
\(731\) −2.52513 −0.0933951
\(732\) 0 0
\(733\) −6.61491 −0.244327 −0.122164 0.992510i \(-0.538983\pi\)
−0.122164 + 0.992510i \(0.538983\pi\)
\(734\) 0 0
\(735\) 2.75739 0.101708
\(736\) 0 0
\(737\) 25.2598 0.930457
\(738\) 0 0
\(739\) 0.834376 0.0306930 0.0153465 0.999882i \(-0.495115\pi\)
0.0153465 + 0.999882i \(0.495115\pi\)
\(740\) 0 0
\(741\) −10.5554 −0.387763
\(742\) 0 0
\(743\) 52.9082 1.94101 0.970506 0.241077i \(-0.0775006\pi\)
0.970506 + 0.241077i \(0.0775006\pi\)
\(744\) 0 0
\(745\) 12.8868 0.472136
\(746\) 0 0
\(747\) −9.97654 −0.365022
\(748\) 0 0
\(749\) 3.91410 0.143018
\(750\) 0 0
\(751\) 35.3681 1.29060 0.645300 0.763929i \(-0.276732\pi\)
0.645300 + 0.763929i \(0.276732\pi\)
\(752\) 0 0
\(753\) 15.0448 0.548264
\(754\) 0 0
\(755\) −37.8508 −1.37753
\(756\) 0 0
\(757\) 19.6550 0.714372 0.357186 0.934033i \(-0.383736\pi\)
0.357186 + 0.934033i \(0.383736\pi\)
\(758\) 0 0
\(759\) −36.7099 −1.33248
\(760\) 0 0
\(761\) −6.80776 −0.246781 −0.123390 0.992358i \(-0.539377\pi\)
−0.123390 + 0.992358i \(0.539377\pi\)
\(762\) 0 0
\(763\) −3.56356 −0.129009
\(764\) 0 0
\(765\) 6.61200 0.239057
\(766\) 0 0
\(767\) −40.8579 −1.47529
\(768\) 0 0
\(769\) 44.3645 1.59983 0.799913 0.600116i \(-0.204879\pi\)
0.799913 + 0.600116i \(0.204879\pi\)
\(770\) 0 0
\(771\) −10.9961 −0.396013
\(772\) 0 0
\(773\) 25.6974 0.924270 0.462135 0.886810i \(-0.347084\pi\)
0.462135 + 0.886810i \(0.347084\pi\)
\(774\) 0 0
\(775\) −14.4711 −0.519819
\(776\) 0 0
\(777\) −8.77607 −0.314840
\(778\) 0 0
\(779\) 3.53392 0.126616
\(780\) 0 0
\(781\) 57.0513 2.04146
\(782\) 0 0
\(783\) −33.0872 −1.18244
\(784\) 0 0
\(785\) −53.6153 −1.91361
\(786\) 0 0
\(787\) −25.6566 −0.914558 −0.457279 0.889323i \(-0.651176\pi\)
−0.457279 + 0.889323i \(0.651176\pi\)
\(788\) 0 0
\(789\) −2.90547 −0.103438
\(790\) 0 0
\(791\) −0.966622 −0.0343691
\(792\) 0 0
\(793\) −29.3138 −1.04096
\(794\) 0 0
\(795\) −14.2731 −0.506213
\(796\) 0 0
\(797\) −20.3683 −0.721483 −0.360741 0.932666i \(-0.617476\pi\)
−0.360741 + 0.932666i \(0.617476\pi\)
\(798\) 0 0
\(799\) −5.57082 −0.197082
\(800\) 0 0
\(801\) 29.1528 1.03006
\(802\) 0 0
\(803\) −60.8026 −2.14568
\(804\) 0 0
\(805\) −25.6994 −0.905785
\(806\) 0 0
\(807\) 14.0130 0.493282
\(808\) 0 0
\(809\) −36.5480 −1.28496 −0.642480 0.766303i \(-0.722094\pi\)
−0.642480 + 0.766303i \(0.722094\pi\)
\(810\) 0 0
\(811\) −7.33037 −0.257404 −0.128702 0.991683i \(-0.541081\pi\)
−0.128702 + 0.991683i \(0.541081\pi\)
\(812\) 0 0
\(813\) 22.5876 0.792182
\(814\) 0 0
\(815\) −8.12886 −0.284742
\(816\) 0 0
\(817\) −6.67557 −0.233549
\(818\) 0 0
\(819\) 9.57426 0.334552
\(820\) 0 0
\(821\) −1.76321 −0.0615366 −0.0307683 0.999527i \(-0.509795\pi\)
−0.0307683 + 0.999527i \(0.509795\pi\)
\(822\) 0 0
\(823\) 0.636323 0.0221808 0.0110904 0.999938i \(-0.496470\pi\)
0.0110904 + 0.999938i \(0.496470\pi\)
\(824\) 0 0
\(825\) 18.3599 0.639209
\(826\) 0 0
\(827\) 6.81869 0.237109 0.118554 0.992948i \(-0.462174\pi\)
0.118554 + 0.992948i \(0.462174\pi\)
\(828\) 0 0
\(829\) −50.9480 −1.76950 −0.884749 0.466068i \(-0.845670\pi\)
−0.884749 + 0.466068i \(0.845670\pi\)
\(830\) 0 0
\(831\) −10.2439 −0.355356
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 5.94824 0.205847
\(836\) 0 0
\(837\) −16.0698 −0.555453
\(838\) 0 0
\(839\) 2.95064 0.101867 0.0509336 0.998702i \(-0.483780\pi\)
0.0509336 + 0.998702i \(0.483780\pi\)
\(840\) 0 0
\(841\) 20.6036 0.710470
\(842\) 0 0
\(843\) −11.8286 −0.407400
\(844\) 0 0
\(845\) −19.3048 −0.664106
\(846\) 0 0
\(847\) −11.8654 −0.407700
\(848\) 0 0
\(849\) 19.7117 0.676504
\(850\) 0 0
\(851\) 81.7948 2.80389
\(852\) 0 0
\(853\) 28.8764 0.988709 0.494355 0.869260i \(-0.335404\pi\)
0.494355 + 0.869260i \(0.335404\pi\)
\(854\) 0 0
\(855\) 17.4799 0.597799
\(856\) 0 0
\(857\) −9.83977 −0.336120 −0.168060 0.985777i \(-0.553750\pi\)
−0.168060 + 0.985777i \(0.553750\pi\)
\(858\) 0 0
\(859\) 11.1344 0.379900 0.189950 0.981794i \(-0.439167\pi\)
0.189950 + 0.981794i \(0.439167\pi\)
\(860\) 0 0
\(861\) 1.21321 0.0413460
\(862\) 0 0
\(863\) 22.7030 0.772818 0.386409 0.922328i \(-0.373715\pi\)
0.386409 + 0.922328i \(0.373715\pi\)
\(864\) 0 0
\(865\) 18.2817 0.621596
\(866\) 0 0
\(867\) −0.907578 −0.0308230
\(868\) 0 0
\(869\) −9.27910 −0.314772
\(870\) 0 0
\(871\) −23.2395 −0.787440
\(872\) 0 0
\(873\) 33.0075 1.11713
\(874\) 0 0
\(875\) −2.33775 −0.0790304
\(876\) 0 0
\(877\) −1.55717 −0.0525819 −0.0262910 0.999654i \(-0.508370\pi\)
−0.0262910 + 0.999654i \(0.508370\pi\)
\(878\) 0 0
\(879\) −26.2653 −0.885907
\(880\) 0 0
\(881\) −10.3326 −0.348113 −0.174056 0.984736i \(-0.555687\pi\)
−0.174056 + 0.984736i \(0.555687\pi\)
\(882\) 0 0
\(883\) −23.6160 −0.794743 −0.397371 0.917658i \(-0.630078\pi\)
−0.397371 + 0.917658i \(0.630078\pi\)
\(884\) 0 0
\(885\) −25.6087 −0.860828
\(886\) 0 0
\(887\) 13.9260 0.467588 0.233794 0.972286i \(-0.424886\pi\)
0.233794 + 0.972286i \(0.424886\pi\)
\(888\) 0 0
\(889\) 5.55875 0.186435
\(890\) 0 0
\(891\) −10.8317 −0.362874
\(892\) 0 0
\(893\) −14.7274 −0.492832
\(894\) 0 0
\(895\) 5.32021 0.177835
\(896\) 0 0
\(897\) 33.7738 1.12767
\(898\) 0 0
\(899\) 24.0915 0.803495
\(900\) 0 0
\(901\) −5.17630 −0.172448
\(902\) 0 0
\(903\) −2.29175 −0.0762646
\(904\) 0 0
\(905\) 8.40028 0.279235
\(906\) 0 0
\(907\) −11.3628 −0.377295 −0.188648 0.982045i \(-0.560410\pi\)
−0.188648 + 0.982045i \(0.560410\pi\)
\(908\) 0 0
\(909\) 7.06832 0.234442
\(910\) 0 0
\(911\) 4.75507 0.157543 0.0787713 0.996893i \(-0.474900\pi\)
0.0787713 + 0.996893i \(0.474900\pi\)
\(912\) 0 0
\(913\) −21.9205 −0.725462
\(914\) 0 0
\(915\) −18.3731 −0.607398
\(916\) 0 0
\(917\) −3.51134 −0.115955
\(918\) 0 0
\(919\) −32.6303 −1.07637 −0.538187 0.842825i \(-0.680891\pi\)
−0.538187 + 0.842825i \(0.680891\pi\)
\(920\) 0 0
\(921\) −10.5130 −0.346416
\(922\) 0 0
\(923\) −52.4882 −1.72767
\(924\) 0 0
\(925\) −40.9084 −1.34506
\(926\) 0 0
\(927\) 27.6459 0.908010
\(928\) 0 0
\(929\) −47.3546 −1.55365 −0.776827 0.629714i \(-0.783172\pi\)
−0.776827 + 0.629714i \(0.783172\pi\)
\(930\) 0 0
\(931\) 2.64366 0.0866424
\(932\) 0 0
\(933\) 14.3397 0.469460
\(934\) 0 0
\(935\) 14.5279 0.475113
\(936\) 0 0
\(937\) −51.6525 −1.68741 −0.843707 0.536803i \(-0.819632\pi\)
−0.843707 + 0.536803i \(0.819632\pi\)
\(938\) 0 0
\(939\) −18.3928 −0.600226
\(940\) 0 0
\(941\) 54.7240 1.78395 0.891975 0.452084i \(-0.149319\pi\)
0.891975 + 0.452084i \(0.149319\pi\)
\(942\) 0 0
\(943\) −11.3073 −0.368218
\(944\) 0 0
\(945\) 14.2731 0.464303
\(946\) 0 0
\(947\) 36.9728 1.20145 0.600727 0.799454i \(-0.294878\pi\)
0.600727 + 0.799454i \(0.294878\pi\)
\(948\) 0 0
\(949\) 55.9395 1.81587
\(950\) 0 0
\(951\) 5.77707 0.187334
\(952\) 0 0
\(953\) −7.91313 −0.256331 −0.128166 0.991753i \(-0.540909\pi\)
−0.128166 + 0.991753i \(0.540909\pi\)
\(954\) 0 0
\(955\) −57.2578 −1.85282
\(956\) 0 0
\(957\) −30.5654 −0.988039
\(958\) 0 0
\(959\) 1.93780 0.0625747
\(960\) 0 0
\(961\) −19.2993 −0.622557
\(962\) 0 0
\(963\) 8.51826 0.274497
\(964\) 0 0
\(965\) −36.1867 −1.16489
\(966\) 0 0
\(967\) 8.05906 0.259162 0.129581 0.991569i \(-0.458637\pi\)
0.129581 + 0.991569i \(0.458637\pi\)
\(968\) 0 0
\(969\) −2.39933 −0.0770775
\(970\) 0 0
\(971\) 1.81193 0.0581476 0.0290738 0.999577i \(-0.490744\pi\)
0.0290738 + 0.999577i \(0.490744\pi\)
\(972\) 0 0
\(973\) 4.69834 0.150622
\(974\) 0 0
\(975\) −16.8914 −0.540959
\(976\) 0 0
\(977\) 15.1934 0.486079 0.243040 0.970016i \(-0.421855\pi\)
0.243040 + 0.970016i \(0.421855\pi\)
\(978\) 0 0
\(979\) 64.0547 2.04720
\(980\) 0 0
\(981\) −7.75538 −0.247610
\(982\) 0 0
\(983\) 11.6472 0.371488 0.185744 0.982598i \(-0.440530\pi\)
0.185744 + 0.982598i \(0.440530\pi\)
\(984\) 0 0
\(985\) −52.4638 −1.67164
\(986\) 0 0
\(987\) −5.05596 −0.160933
\(988\) 0 0
\(989\) 21.3596 0.679195
\(990\) 0 0
\(991\) −47.1759 −1.49859 −0.749296 0.662235i \(-0.769608\pi\)
−0.749296 + 0.662235i \(0.769608\pi\)
\(992\) 0 0
\(993\) 22.3183 0.708249
\(994\) 0 0
\(995\) 46.3175 1.46836
\(996\) 0 0
\(997\) −39.7574 −1.25913 −0.629564 0.776949i \(-0.716766\pi\)
−0.629564 + 0.776949i \(0.716766\pi\)
\(998\) 0 0
\(999\) −45.4276 −1.43727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7616.2.a.bt.1.2 5
4.3 odd 2 7616.2.a.bq.1.4 5
8.3 odd 2 1904.2.a.t.1.2 5
8.5 even 2 119.2.a.b.1.3 5
24.5 odd 2 1071.2.a.m.1.3 5
40.29 even 2 2975.2.a.m.1.3 5
56.5 odd 6 833.2.e.h.18.3 10
56.13 odd 2 833.2.a.g.1.3 5
56.37 even 6 833.2.e.i.18.3 10
56.45 odd 6 833.2.e.h.324.3 10
56.53 even 6 833.2.e.i.324.3 10
136.101 even 2 2023.2.a.j.1.3 5
168.125 even 2 7497.2.a.br.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.3 5 8.5 even 2
833.2.a.g.1.3 5 56.13 odd 2
833.2.e.h.18.3 10 56.5 odd 6
833.2.e.h.324.3 10 56.45 odd 6
833.2.e.i.18.3 10 56.37 even 6
833.2.e.i.324.3 10 56.53 even 6
1071.2.a.m.1.3 5 24.5 odd 2
1904.2.a.t.1.2 5 8.3 odd 2
2023.2.a.j.1.3 5 136.101 even 2
2975.2.a.m.1.3 5 40.29 even 2
7497.2.a.br.1.3 5 168.125 even 2
7616.2.a.bq.1.4 5 4.3 odd 2
7616.2.a.bt.1.2 5 1.1 even 1 trivial