Properties

Label 119.2.a.b.1.3
Level $119$
Weight $2$
Character 119.1
Self dual yes
Analytic conductor $0.950$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [119,2,Mod(1,119)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("119.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.950219784053\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.32183\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.877834 q^{2} +0.907578 q^{3} -1.22941 q^{4} +3.03818 q^{5} +0.796703 q^{6} -1.00000 q^{7} -2.83488 q^{8} -2.17630 q^{9} +2.66702 q^{10} +4.78178 q^{11} -1.11578 q^{12} -4.39933 q^{13} -0.877834 q^{14} +2.75739 q^{15} -0.0297440 q^{16} +1.00000 q^{17} -1.91043 q^{18} -2.64366 q^{19} -3.73516 q^{20} -0.907578 q^{21} +4.19761 q^{22} -8.45881 q^{23} -2.57288 q^{24} +4.23054 q^{25} -3.86188 q^{26} -4.69790 q^{27} +1.22941 q^{28} +7.04298 q^{29} +2.42053 q^{30} -3.42063 q^{31} +5.64366 q^{32} +4.33984 q^{33} +0.877834 q^{34} -3.03818 q^{35} +2.67556 q^{36} +9.66977 q^{37} -2.32069 q^{38} -3.99273 q^{39} -8.61289 q^{40} +1.33675 q^{41} -0.796703 q^{42} +2.52513 q^{43} -5.87875 q^{44} -6.61200 q^{45} -7.42544 q^{46} -5.57082 q^{47} -0.0269950 q^{48} +1.00000 q^{49} +3.71372 q^{50} +0.907578 q^{51} +5.40856 q^{52} +5.17630 q^{53} -4.12398 q^{54} +14.5279 q^{55} +2.83488 q^{56} -2.39933 q^{57} +6.18257 q^{58} +9.28732 q^{59} -3.38995 q^{60} +6.66325 q^{61} -3.00275 q^{62} +2.17630 q^{63} +5.01368 q^{64} -13.3659 q^{65} +3.80966 q^{66} +5.28251 q^{67} -1.22941 q^{68} -7.67704 q^{69} -2.66702 q^{70} -11.9310 q^{71} +6.16956 q^{72} +12.7155 q^{73} +8.48845 q^{74} +3.83955 q^{75} +3.25013 q^{76} -4.78178 q^{77} -3.50496 q^{78} +1.94051 q^{79} -0.0903677 q^{80} +2.26519 q^{81} +1.17345 q^{82} -4.58417 q^{83} +1.11578 q^{84} +3.03818 q^{85} +2.21664 q^{86} +6.39206 q^{87} -13.5558 q^{88} -13.3956 q^{89} -5.80424 q^{90} +4.39933 q^{91} +10.3993 q^{92} -3.10449 q^{93} -4.89026 q^{94} -8.03191 q^{95} +5.12206 q^{96} -15.1668 q^{97} +0.877834 q^{98} -10.4066 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 2 q^{3} + 10 q^{4} - q^{6} - 5 q^{7} + 6 q^{8} + 11 q^{9} + 4 q^{10} - 2 q^{11} - 22 q^{12} + 2 q^{13} - 2 q^{14} + 8 q^{15} + 4 q^{16} + 5 q^{17} - 18 q^{18} + 6 q^{19} - 19 q^{20} + 2 q^{21}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.877834 0.620723 0.310361 0.950619i \(-0.399550\pi\)
0.310361 + 0.950619i \(0.399550\pi\)
\(3\) 0.907578 0.523991 0.261995 0.965069i \(-0.415620\pi\)
0.261995 + 0.965069i \(0.415620\pi\)
\(4\) −1.22941 −0.614704
\(5\) 3.03818 1.35872 0.679358 0.733807i \(-0.262258\pi\)
0.679358 + 0.733807i \(0.262258\pi\)
\(6\) 0.796703 0.325253
\(7\) −1.00000 −0.377964
\(8\) −2.83488 −1.00228
\(9\) −2.17630 −0.725434
\(10\) 2.66702 0.843385
\(11\) 4.78178 1.44176 0.720880 0.693060i \(-0.243738\pi\)
0.720880 + 0.693060i \(0.243738\pi\)
\(12\) −1.11578 −0.322099
\(13\) −4.39933 −1.22015 −0.610077 0.792342i \(-0.708861\pi\)
−0.610077 + 0.792342i \(0.708861\pi\)
\(14\) −0.877834 −0.234611
\(15\) 2.75739 0.711954
\(16\) −0.0297440 −0.00743600
\(17\) 1.00000 0.242536
\(18\) −1.91043 −0.450293
\(19\) −2.64366 −0.606497 −0.303248 0.952912i \(-0.598071\pi\)
−0.303248 + 0.952912i \(0.598071\pi\)
\(20\) −3.73516 −0.835207
\(21\) −0.907578 −0.198050
\(22\) 4.19761 0.894933
\(23\) −8.45881 −1.76378 −0.881892 0.471451i \(-0.843730\pi\)
−0.881892 + 0.471451i \(0.843730\pi\)
\(24\) −2.57288 −0.525187
\(25\) 4.23054 0.846109
\(26\) −3.86188 −0.757377
\(27\) −4.69790 −0.904111
\(28\) 1.22941 0.232336
\(29\) 7.04298 1.30785 0.653925 0.756560i \(-0.273121\pi\)
0.653925 + 0.756560i \(0.273121\pi\)
\(30\) 2.42053 0.441926
\(31\) −3.42063 −0.614364 −0.307182 0.951651i \(-0.599386\pi\)
−0.307182 + 0.951651i \(0.599386\pi\)
\(32\) 5.64366 0.997667
\(33\) 4.33984 0.755469
\(34\) 0.877834 0.150547
\(35\) −3.03818 −0.513546
\(36\) 2.67556 0.445927
\(37\) 9.66977 1.58970 0.794850 0.606806i \(-0.207549\pi\)
0.794850 + 0.606806i \(0.207549\pi\)
\(38\) −2.32069 −0.376466
\(39\) −3.99273 −0.639349
\(40\) −8.61289 −1.36182
\(41\) 1.33675 0.208766 0.104383 0.994537i \(-0.466713\pi\)
0.104383 + 0.994537i \(0.466713\pi\)
\(42\) −0.796703 −0.122934
\(43\) 2.52513 0.385078 0.192539 0.981289i \(-0.438328\pi\)
0.192539 + 0.981289i \(0.438328\pi\)
\(44\) −5.87875 −0.886255
\(45\) −6.61200 −0.985659
\(46\) −7.42544 −1.09482
\(47\) −5.57082 −0.812588 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(48\) −0.0269950 −0.00389639
\(49\) 1.00000 0.142857
\(50\) 3.71372 0.525199
\(51\) 0.907578 0.127086
\(52\) 5.40856 0.750033
\(53\) 5.17630 0.711020 0.355510 0.934673i \(-0.384307\pi\)
0.355510 + 0.934673i \(0.384307\pi\)
\(54\) −4.12398 −0.561202
\(55\) 14.5279 1.95894
\(56\) 2.83488 0.378827
\(57\) −2.39933 −0.317799
\(58\) 6.18257 0.811812
\(59\) 9.28732 1.20911 0.604553 0.796565i \(-0.293352\pi\)
0.604553 + 0.796565i \(0.293352\pi\)
\(60\) −3.38995 −0.437641
\(61\) 6.66325 0.853141 0.426571 0.904454i \(-0.359722\pi\)
0.426571 + 0.904454i \(0.359722\pi\)
\(62\) −3.00275 −0.381350
\(63\) 2.17630 0.274188
\(64\) 5.01368 0.626710
\(65\) −13.3659 −1.65784
\(66\) 3.80966 0.468937
\(67\) 5.28251 0.645362 0.322681 0.946508i \(-0.395416\pi\)
0.322681 + 0.946508i \(0.395416\pi\)
\(68\) −1.22941 −0.149088
\(69\) −7.67704 −0.924206
\(70\) −2.66702 −0.318770
\(71\) −11.9310 −1.41595 −0.707973 0.706239i \(-0.750390\pi\)
−0.707973 + 0.706239i \(0.750390\pi\)
\(72\) 6.16956 0.727090
\(73\) 12.7155 1.48823 0.744116 0.668050i \(-0.232871\pi\)
0.744116 + 0.668050i \(0.232871\pi\)
\(74\) 8.48845 0.986763
\(75\) 3.83955 0.443353
\(76\) 3.25013 0.372816
\(77\) −4.78178 −0.544934
\(78\) −3.50496 −0.396858
\(79\) 1.94051 0.218325 0.109162 0.994024i \(-0.465183\pi\)
0.109162 + 0.994024i \(0.465183\pi\)
\(80\) −0.0903677 −0.0101034
\(81\) 2.26519 0.251688
\(82\) 1.17345 0.129586
\(83\) −4.58417 −0.503178 −0.251589 0.967834i \(-0.580953\pi\)
−0.251589 + 0.967834i \(0.580953\pi\)
\(84\) 1.11578 0.121742
\(85\) 3.03818 0.329537
\(86\) 2.21664 0.239027
\(87\) 6.39206 0.685301
\(88\) −13.5558 −1.44505
\(89\) −13.3956 −1.41993 −0.709965 0.704237i \(-0.751289\pi\)
−0.709965 + 0.704237i \(0.751289\pi\)
\(90\) −5.80424 −0.611820
\(91\) 4.39933 0.461175
\(92\) 10.3993 1.08420
\(93\) −3.10449 −0.321921
\(94\) −4.89026 −0.504392
\(95\) −8.03191 −0.824057
\(96\) 5.12206 0.522768
\(97\) −15.1668 −1.53995 −0.769976 0.638073i \(-0.779732\pi\)
−0.769976 + 0.638073i \(0.779732\pi\)
\(98\) 0.877834 0.0886746
\(99\) −10.4066 −1.04590
\(100\) −5.20106 −0.520106
\(101\) 3.24786 0.323174 0.161587 0.986858i \(-0.448339\pi\)
0.161587 + 0.986858i \(0.448339\pi\)
\(102\) 0.796703 0.0788854
\(103\) −12.7031 −1.25168 −0.625839 0.779952i \(-0.715243\pi\)
−0.625839 + 0.779952i \(0.715243\pi\)
\(104\) 12.4716 1.22294
\(105\) −2.75739 −0.269093
\(106\) 4.54393 0.441346
\(107\) 3.91410 0.378390 0.189195 0.981940i \(-0.439412\pi\)
0.189195 + 0.981940i \(0.439412\pi\)
\(108\) 5.77563 0.555760
\(109\) −3.56356 −0.341327 −0.170663 0.985329i \(-0.554591\pi\)
−0.170663 + 0.985329i \(0.554591\pi\)
\(110\) 12.7531 1.21596
\(111\) 8.77607 0.832988
\(112\) 0.0297440 0.00281054
\(113\) 0.966622 0.0909322 0.0454661 0.998966i \(-0.485523\pi\)
0.0454661 + 0.998966i \(0.485523\pi\)
\(114\) −2.10621 −0.197265
\(115\) −25.6994 −2.39648
\(116\) −8.65869 −0.803940
\(117\) 9.57426 0.885141
\(118\) 8.15272 0.750519
\(119\) −1.00000 −0.0916698
\(120\) −7.81687 −0.713579
\(121\) 11.8654 1.07867
\(122\) 5.84923 0.529564
\(123\) 1.21321 0.109391
\(124\) 4.20535 0.377652
\(125\) −2.33775 −0.209095
\(126\) 1.91043 0.170195
\(127\) −5.55875 −0.493260 −0.246630 0.969110i \(-0.579323\pi\)
−0.246630 + 0.969110i \(0.579323\pi\)
\(128\) −6.88613 −0.608654
\(129\) 2.29175 0.201777
\(130\) −11.7331 −1.02906
\(131\) −3.51134 −0.306787 −0.153393 0.988165i \(-0.549020\pi\)
−0.153393 + 0.988165i \(0.549020\pi\)
\(132\) −5.33543 −0.464389
\(133\) 2.64366 0.229234
\(134\) 4.63717 0.400590
\(135\) −14.2731 −1.22843
\(136\) −2.83488 −0.243089
\(137\) −1.93780 −0.165557 −0.0827786 0.996568i \(-0.526379\pi\)
−0.0827786 + 0.996568i \(0.526379\pi\)
\(138\) −6.73916 −0.573676
\(139\) 4.69834 0.398508 0.199254 0.979948i \(-0.436148\pi\)
0.199254 + 0.979948i \(0.436148\pi\)
\(140\) 3.73516 0.315679
\(141\) −5.05596 −0.425789
\(142\) −10.4734 −0.878910
\(143\) −21.0366 −1.75917
\(144\) 0.0647319 0.00539433
\(145\) 21.3979 1.77700
\(146\) 11.1621 0.923780
\(147\) 0.907578 0.0748558
\(148\) −11.8881 −0.977194
\(149\) 4.24162 0.347487 0.173743 0.984791i \(-0.444414\pi\)
0.173743 + 0.984791i \(0.444414\pi\)
\(150\) 3.37049 0.275199
\(151\) 12.4584 1.01385 0.506924 0.861991i \(-0.330783\pi\)
0.506924 + 0.861991i \(0.330783\pi\)
\(152\) 7.49446 0.607881
\(153\) −2.17630 −0.175944
\(154\) −4.19761 −0.338253
\(155\) −10.3925 −0.834746
\(156\) 4.90869 0.393010
\(157\) −17.6472 −1.40840 −0.704199 0.710002i \(-0.748694\pi\)
−0.704199 + 0.710002i \(0.748694\pi\)
\(158\) 1.70345 0.135519
\(159\) 4.69790 0.372568
\(160\) 17.1465 1.35555
\(161\) 8.45881 0.666648
\(162\) 1.98847 0.156229
\(163\) −2.67557 −0.209567 −0.104783 0.994495i \(-0.533415\pi\)
−0.104783 + 0.994495i \(0.533415\pi\)
\(164\) −1.64341 −0.128329
\(165\) 13.1852 1.02647
\(166\) −4.02414 −0.312334
\(167\) −1.95783 −0.151501 −0.0757507 0.997127i \(-0.524135\pi\)
−0.0757507 + 0.997127i \(0.524135\pi\)
\(168\) 2.57288 0.198502
\(169\) 6.35407 0.488775
\(170\) 2.66702 0.204551
\(171\) 5.75340 0.439973
\(172\) −3.10441 −0.236709
\(173\) 6.01732 0.457488 0.228744 0.973487i \(-0.426538\pi\)
0.228744 + 0.973487i \(0.426538\pi\)
\(174\) 5.61117 0.425382
\(175\) −4.23054 −0.319799
\(176\) −0.142229 −0.0107209
\(177\) 8.42897 0.633560
\(178\) −11.7591 −0.881382
\(179\) 1.75112 0.130885 0.0654423 0.997856i \(-0.479154\pi\)
0.0654423 + 0.997856i \(0.479154\pi\)
\(180\) 8.12884 0.605888
\(181\) 2.76491 0.205514 0.102757 0.994707i \(-0.467234\pi\)
0.102757 + 0.994707i \(0.467234\pi\)
\(182\) 3.86188 0.286262
\(183\) 6.04742 0.447038
\(184\) 23.9798 1.76781
\(185\) 29.3785 2.15995
\(186\) −2.72523 −0.199824
\(187\) 4.78178 0.349678
\(188\) 6.84881 0.499501
\(189\) 4.69790 0.341722
\(190\) −7.05069 −0.511511
\(191\) 18.8461 1.36365 0.681827 0.731514i \(-0.261186\pi\)
0.681827 + 0.731514i \(0.261186\pi\)
\(192\) 4.55031 0.328390
\(193\) 11.9107 0.857348 0.428674 0.903459i \(-0.358981\pi\)
0.428674 + 0.903459i \(0.358981\pi\)
\(194\) −13.3139 −0.955883
\(195\) −12.1306 −0.868693
\(196\) −1.22941 −0.0878148
\(197\) −17.2682 −1.23031 −0.615153 0.788408i \(-0.710906\pi\)
−0.615153 + 0.788408i \(0.710906\pi\)
\(198\) −9.13526 −0.649215
\(199\) −15.2451 −1.08070 −0.540350 0.841440i \(-0.681708\pi\)
−0.540350 + 0.841440i \(0.681708\pi\)
\(200\) −11.9931 −0.848040
\(201\) 4.79429 0.338163
\(202\) 2.85108 0.200601
\(203\) −7.04298 −0.494321
\(204\) −1.11578 −0.0781204
\(205\) 4.06130 0.283653
\(206\) −11.1513 −0.776945
\(207\) 18.4089 1.27951
\(208\) 0.130854 0.00907306
\(209\) −12.6414 −0.874423
\(210\) −2.42053 −0.167032
\(211\) 8.51331 0.586080 0.293040 0.956100i \(-0.405333\pi\)
0.293040 + 0.956100i \(0.405333\pi\)
\(212\) −6.36378 −0.437066
\(213\) −10.8283 −0.741942
\(214\) 3.43593 0.234875
\(215\) 7.67179 0.523212
\(216\) 13.3180 0.906175
\(217\) 3.42063 0.232208
\(218\) −3.12821 −0.211869
\(219\) 11.5403 0.779820
\(220\) −17.8607 −1.20417
\(221\) −4.39933 −0.295931
\(222\) 7.70394 0.517054
\(223\) −2.49093 −0.166805 −0.0834027 0.996516i \(-0.526579\pi\)
−0.0834027 + 0.996516i \(0.526579\pi\)
\(224\) −5.64366 −0.377083
\(225\) −9.20694 −0.613796
\(226\) 0.848534 0.0564437
\(227\) −16.9842 −1.12728 −0.563640 0.826020i \(-0.690600\pi\)
−0.563640 + 0.826020i \(0.690600\pi\)
\(228\) 2.94975 0.195352
\(229\) −16.3303 −1.07914 −0.539568 0.841942i \(-0.681413\pi\)
−0.539568 + 0.841942i \(0.681413\pi\)
\(230\) −22.5598 −1.48755
\(231\) −4.33984 −0.285540
\(232\) −19.9660 −1.31083
\(233\) −5.77825 −0.378546 −0.189273 0.981925i \(-0.560613\pi\)
−0.189273 + 0.981925i \(0.560613\pi\)
\(234\) 8.40461 0.549427
\(235\) −16.9252 −1.10408
\(236\) −11.4179 −0.743241
\(237\) 1.76117 0.114400
\(238\) −0.877834 −0.0569015
\(239\) 7.44275 0.481432 0.240716 0.970596i \(-0.422618\pi\)
0.240716 + 0.970596i \(0.422618\pi\)
\(240\) −0.0820157 −0.00529409
\(241\) 21.9036 1.41093 0.705467 0.708743i \(-0.250737\pi\)
0.705467 + 0.708743i \(0.250737\pi\)
\(242\) 10.4159 0.669557
\(243\) 16.1495 1.03599
\(244\) −8.19184 −0.524429
\(245\) 3.03818 0.194102
\(246\) 1.06500 0.0679016
\(247\) 11.6303 0.740019
\(248\) 9.69710 0.615766
\(249\) −4.16049 −0.263661
\(250\) −2.05216 −0.129790
\(251\) 16.5769 1.04632 0.523162 0.852233i \(-0.324752\pi\)
0.523162 + 0.852233i \(0.324752\pi\)
\(252\) −2.67556 −0.168544
\(253\) −40.4482 −2.54296
\(254\) −4.87966 −0.306177
\(255\) 2.75739 0.172674
\(256\) −16.0723 −1.00452
\(257\) 12.1158 0.755764 0.377882 0.925854i \(-0.376653\pi\)
0.377882 + 0.925854i \(0.376653\pi\)
\(258\) 2.01178 0.125248
\(259\) −9.66977 −0.600850
\(260\) 16.4322 1.01908
\(261\) −15.3277 −0.948758
\(262\) −3.08237 −0.190430
\(263\) 3.20135 0.197404 0.0987018 0.995117i \(-0.468531\pi\)
0.0987018 + 0.995117i \(0.468531\pi\)
\(264\) −12.3029 −0.757193
\(265\) 15.7265 0.966074
\(266\) 2.32069 0.142291
\(267\) −12.1575 −0.744030
\(268\) −6.49436 −0.396706
\(269\) 15.4400 0.941396 0.470698 0.882294i \(-0.344002\pi\)
0.470698 + 0.882294i \(0.344002\pi\)
\(270\) −12.5294 −0.762514
\(271\) −24.8878 −1.51182 −0.755912 0.654673i \(-0.772806\pi\)
−0.755912 + 0.654673i \(0.772806\pi\)
\(272\) −0.0297440 −0.00180349
\(273\) 3.99273 0.241651
\(274\) −1.70106 −0.102765
\(275\) 20.2295 1.21989
\(276\) 9.43820 0.568113
\(277\) −11.2870 −0.678172 −0.339086 0.940755i \(-0.610118\pi\)
−0.339086 + 0.940755i \(0.610118\pi\)
\(278\) 4.12437 0.247363
\(279\) 7.44433 0.445680
\(280\) 8.61289 0.514719
\(281\) 13.0332 0.777495 0.388747 0.921344i \(-0.372908\pi\)
0.388747 + 0.921344i \(0.372908\pi\)
\(282\) −4.43829 −0.264297
\(283\) 21.7190 1.29106 0.645531 0.763734i \(-0.276636\pi\)
0.645531 + 0.763734i \(0.276636\pi\)
\(284\) 14.6680 0.870387
\(285\) −7.28959 −0.431798
\(286\) −18.4667 −1.09196
\(287\) −1.33675 −0.0789061
\(288\) −12.2823 −0.723742
\(289\) 1.00000 0.0588235
\(290\) 18.7838 1.10302
\(291\) −13.7650 −0.806920
\(292\) −15.6325 −0.914822
\(293\) −28.9400 −1.69069 −0.845346 0.534219i \(-0.820606\pi\)
−0.845346 + 0.534219i \(0.820606\pi\)
\(294\) 0.796703 0.0464647
\(295\) 28.2165 1.64283
\(296\) −27.4127 −1.59333
\(297\) −22.4643 −1.30351
\(298\) 3.72344 0.215693
\(299\) 37.2131 2.15209
\(300\) −4.72037 −0.272531
\(301\) −2.52513 −0.145546
\(302\) 10.9364 0.629318
\(303\) 2.94769 0.169340
\(304\) 0.0786330 0.00450991
\(305\) 20.2441 1.15918
\(306\) −1.91043 −0.109212
\(307\) −11.5836 −0.661110 −0.330555 0.943787i \(-0.607236\pi\)
−0.330555 + 0.943787i \(0.607236\pi\)
\(308\) 5.87875 0.334973
\(309\) −11.5291 −0.655867
\(310\) −9.12289 −0.518146
\(311\) −15.7999 −0.895932 −0.447966 0.894051i \(-0.647851\pi\)
−0.447966 + 0.894051i \(0.647851\pi\)
\(312\) 11.3189 0.640808
\(313\) 20.2658 1.14549 0.572745 0.819733i \(-0.305878\pi\)
0.572745 + 0.819733i \(0.305878\pi\)
\(314\) −15.4913 −0.874225
\(315\) 6.61200 0.372544
\(316\) −2.38568 −0.134205
\(317\) 6.36537 0.357515 0.178757 0.983893i \(-0.442792\pi\)
0.178757 + 0.983893i \(0.442792\pi\)
\(318\) 4.12398 0.231261
\(319\) 33.6780 1.88561
\(320\) 15.2325 0.851521
\(321\) 3.55235 0.198273
\(322\) 7.42544 0.413803
\(323\) −2.64366 −0.147097
\(324\) −2.78485 −0.154714
\(325\) −18.6115 −1.03238
\(326\) −2.34871 −0.130083
\(327\) −3.23421 −0.178852
\(328\) −3.78954 −0.209242
\(329\) 5.57082 0.307130
\(330\) 11.5744 0.637151
\(331\) 24.5910 1.35165 0.675823 0.737064i \(-0.263788\pi\)
0.675823 + 0.737064i \(0.263788\pi\)
\(332\) 5.63581 0.309305
\(333\) −21.0443 −1.15322
\(334\) −1.71865 −0.0940403
\(335\) 16.0492 0.876863
\(336\) 0.0269950 0.00147270
\(337\) 7.11956 0.387827 0.193913 0.981019i \(-0.437882\pi\)
0.193913 + 0.981019i \(0.437882\pi\)
\(338\) 5.57782 0.303393
\(339\) 0.877285 0.0476476
\(340\) −3.73516 −0.202568
\(341\) −16.3567 −0.885766
\(342\) 5.05053 0.273101
\(343\) −1.00000 −0.0539949
\(344\) −7.15844 −0.385957
\(345\) −23.3242 −1.25573
\(346\) 5.28221 0.283973
\(347\) 1.51477 0.0813173 0.0406586 0.999173i \(-0.487054\pi\)
0.0406586 + 0.999173i \(0.487054\pi\)
\(348\) −7.85844 −0.421257
\(349\) 24.7937 1.32717 0.663587 0.748099i \(-0.269033\pi\)
0.663587 + 0.748099i \(0.269033\pi\)
\(350\) −3.71372 −0.198506
\(351\) 20.6676 1.10315
\(352\) 26.9867 1.43840
\(353\) −11.8416 −0.630267 −0.315133 0.949047i \(-0.602049\pi\)
−0.315133 + 0.949047i \(0.602049\pi\)
\(354\) 7.39923 0.393265
\(355\) −36.2485 −1.92387
\(356\) 16.4686 0.872836
\(357\) −0.907578 −0.0480341
\(358\) 1.53719 0.0812430
\(359\) −26.6743 −1.40781 −0.703907 0.710292i \(-0.748563\pi\)
−0.703907 + 0.710292i \(0.748563\pi\)
\(360\) 18.7442 0.987909
\(361\) −12.0111 −0.632162
\(362\) 2.42713 0.127567
\(363\) 10.7688 0.565215
\(364\) −5.40856 −0.283486
\(365\) 38.6319 2.02209
\(366\) 5.30863 0.277487
\(367\) −28.6897 −1.49759 −0.748796 0.662801i \(-0.769368\pi\)
−0.748796 + 0.662801i \(0.769368\pi\)
\(368\) 0.251599 0.0131155
\(369\) −2.90918 −0.151446
\(370\) 25.7895 1.34073
\(371\) −5.17630 −0.268740
\(372\) 3.81668 0.197886
\(373\) −26.8946 −1.39255 −0.696275 0.717775i \(-0.745161\pi\)
−0.696275 + 0.717775i \(0.745161\pi\)
\(374\) 4.19761 0.217053
\(375\) −2.12169 −0.109564
\(376\) 15.7926 0.814443
\(377\) −30.9844 −1.59578
\(378\) 4.12398 0.212114
\(379\) 0.960453 0.0493351 0.0246676 0.999696i \(-0.492147\pi\)
0.0246676 + 0.999696i \(0.492147\pi\)
\(380\) 9.87449 0.506551
\(381\) −5.04500 −0.258463
\(382\) 16.5437 0.846451
\(383\) −10.9913 −0.561627 −0.280814 0.959762i \(-0.590604\pi\)
−0.280814 + 0.959762i \(0.590604\pi\)
\(384\) −6.24970 −0.318929
\(385\) −14.5279 −0.740411
\(386\) 10.4556 0.532175
\(387\) −5.49544 −0.279349
\(388\) 18.6461 0.946614
\(389\) −25.4239 −1.28904 −0.644520 0.764587i \(-0.722943\pi\)
−0.644520 + 0.764587i \(0.722943\pi\)
\(390\) −10.6487 −0.539218
\(391\) −8.45881 −0.427781
\(392\) −2.83488 −0.143183
\(393\) −3.18681 −0.160753
\(394\) −15.1586 −0.763679
\(395\) 5.89563 0.296641
\(396\) 12.7939 0.642920
\(397\) −15.0140 −0.753533 −0.376767 0.926308i \(-0.622964\pi\)
−0.376767 + 0.926308i \(0.622964\pi\)
\(398\) −13.3827 −0.670815
\(399\) 2.39933 0.120117
\(400\) −0.125833 −0.00629166
\(401\) −11.0656 −0.552588 −0.276294 0.961073i \(-0.589106\pi\)
−0.276294 + 0.961073i \(0.589106\pi\)
\(402\) 4.20859 0.209906
\(403\) 15.0485 0.749618
\(404\) −3.99294 −0.198656
\(405\) 6.88207 0.341973
\(406\) −6.18257 −0.306836
\(407\) 46.2387 2.29197
\(408\) −2.57288 −0.127376
\(409\) 28.5650 1.41245 0.706225 0.707988i \(-0.250397\pi\)
0.706225 + 0.707988i \(0.250397\pi\)
\(410\) 3.56515 0.176070
\(411\) −1.75870 −0.0867504
\(412\) 15.6173 0.769411
\(413\) −9.28732 −0.456999
\(414\) 16.1600 0.794220
\(415\) −13.9275 −0.683676
\(416\) −24.8283 −1.21731
\(417\) 4.26411 0.208815
\(418\) −11.0970 −0.542774
\(419\) −1.98566 −0.0970057 −0.0485029 0.998823i \(-0.515445\pi\)
−0.0485029 + 0.998823i \(0.515445\pi\)
\(420\) 3.38995 0.165413
\(421\) 25.1984 1.22810 0.614048 0.789269i \(-0.289540\pi\)
0.614048 + 0.789269i \(0.289540\pi\)
\(422\) 7.47327 0.363793
\(423\) 12.1238 0.589479
\(424\) −14.6742 −0.712643
\(425\) 4.23054 0.205211
\(426\) −9.50544 −0.460540
\(427\) −6.66325 −0.322457
\(428\) −4.81202 −0.232598
\(429\) −19.0924 −0.921788
\(430\) 6.73456 0.324769
\(431\) −27.4984 −1.32455 −0.662275 0.749261i \(-0.730409\pi\)
−0.662275 + 0.749261i \(0.730409\pi\)
\(432\) 0.139734 0.00672297
\(433\) 28.1977 1.35509 0.677547 0.735480i \(-0.263043\pi\)
0.677547 + 0.735480i \(0.263043\pi\)
\(434\) 3.00275 0.144137
\(435\) 19.4202 0.931129
\(436\) 4.38106 0.209815
\(437\) 22.3622 1.06973
\(438\) 10.1305 0.484052
\(439\) 6.31298 0.301302 0.150651 0.988587i \(-0.451863\pi\)
0.150651 + 0.988587i \(0.451863\pi\)
\(440\) −41.1849 −1.96341
\(441\) −2.17630 −0.103633
\(442\) −3.86188 −0.183691
\(443\) 26.4557 1.25695 0.628473 0.777831i \(-0.283680\pi\)
0.628473 + 0.777831i \(0.283680\pi\)
\(444\) −10.7894 −0.512041
\(445\) −40.6982 −1.92928
\(446\) −2.18663 −0.103540
\(447\) 3.84960 0.182080
\(448\) −5.01368 −0.236874
\(449\) −34.5555 −1.63077 −0.815387 0.578916i \(-0.803476\pi\)
−0.815387 + 0.578916i \(0.803476\pi\)
\(450\) −8.08216 −0.380997
\(451\) 6.39206 0.300990
\(452\) −1.18837 −0.0558963
\(453\) 11.3069 0.531247
\(454\) −14.9093 −0.699728
\(455\) 13.3659 0.626605
\(456\) 6.80181 0.318524
\(457\) 26.5922 1.24393 0.621965 0.783045i \(-0.286334\pi\)
0.621965 + 0.783045i \(0.286334\pi\)
\(458\) −14.3353 −0.669844
\(459\) −4.69790 −0.219279
\(460\) 31.5950 1.47313
\(461\) −0.310199 −0.0144474 −0.00722371 0.999974i \(-0.502299\pi\)
−0.00722371 + 0.999974i \(0.502299\pi\)
\(462\) −3.80966 −0.177241
\(463\) 22.4654 1.04406 0.522028 0.852928i \(-0.325175\pi\)
0.522028 + 0.852928i \(0.325175\pi\)
\(464\) −0.209487 −0.00972517
\(465\) −9.43201 −0.437399
\(466\) −5.07235 −0.234972
\(467\) −11.6126 −0.537365 −0.268682 0.963229i \(-0.586588\pi\)
−0.268682 + 0.963229i \(0.586588\pi\)
\(468\) −11.7707 −0.544099
\(469\) −5.28251 −0.243924
\(470\) −14.8575 −0.685325
\(471\) −16.0162 −0.737988
\(472\) −26.3285 −1.21187
\(473\) 12.0746 0.555190
\(474\) 1.54601 0.0710107
\(475\) −11.1841 −0.513162
\(476\) 1.22941 0.0563498
\(477\) −11.2652 −0.515798
\(478\) 6.53350 0.298836
\(479\) 31.7976 1.45287 0.726435 0.687235i \(-0.241176\pi\)
0.726435 + 0.687235i \(0.241176\pi\)
\(480\) 15.5617 0.710293
\(481\) −42.5405 −1.93968
\(482\) 19.2277 0.875799
\(483\) 7.67704 0.349317
\(484\) −14.5874 −0.663064
\(485\) −46.0794 −2.09236
\(486\) 14.1766 0.643064
\(487\) −23.0166 −1.04298 −0.521490 0.853257i \(-0.674624\pi\)
−0.521490 + 0.853257i \(0.674624\pi\)
\(488\) −18.8895 −0.855089
\(489\) −2.42829 −0.109811
\(490\) 2.66702 0.120484
\(491\) −33.3176 −1.50360 −0.751802 0.659389i \(-0.770815\pi\)
−0.751802 + 0.659389i \(0.770815\pi\)
\(492\) −1.49153 −0.0672432
\(493\) 7.04298 0.317200
\(494\) 10.2095 0.459347
\(495\) −31.6171 −1.42108
\(496\) 0.101743 0.00456841
\(497\) 11.9310 0.535177
\(498\) −3.65222 −0.163660
\(499\) 37.0236 1.65741 0.828703 0.559689i \(-0.189079\pi\)
0.828703 + 0.559689i \(0.189079\pi\)
\(500\) 2.87405 0.128531
\(501\) −1.77688 −0.0793853
\(502\) 14.5518 0.649477
\(503\) −12.4172 −0.553654 −0.276827 0.960920i \(-0.589283\pi\)
−0.276827 + 0.960920i \(0.589283\pi\)
\(504\) −6.16956 −0.274814
\(505\) 9.86759 0.439102
\(506\) −35.5068 −1.57847
\(507\) 5.76682 0.256113
\(508\) 6.83397 0.303208
\(509\) 11.9257 0.528597 0.264299 0.964441i \(-0.414860\pi\)
0.264299 + 0.964441i \(0.414860\pi\)
\(510\) 2.42053 0.107183
\(511\) −12.7155 −0.562499
\(512\) −0.336507 −0.0148716
\(513\) 12.4196 0.548340
\(514\) 10.6357 0.469120
\(515\) −38.5945 −1.70067
\(516\) −2.81749 −0.124033
\(517\) −26.6385 −1.17156
\(518\) −8.48845 −0.372961
\(519\) 5.46119 0.239719
\(520\) 37.8909 1.66163
\(521\) 26.3980 1.15652 0.578259 0.815853i \(-0.303732\pi\)
0.578259 + 0.815853i \(0.303732\pi\)
\(522\) −13.4551 −0.588916
\(523\) 13.6272 0.595874 0.297937 0.954586i \(-0.403701\pi\)
0.297937 + 0.954586i \(0.403701\pi\)
\(524\) 4.31686 0.188583
\(525\) −3.83955 −0.167572
\(526\) 2.81025 0.122533
\(527\) −3.42063 −0.149005
\(528\) −0.129084 −0.00561767
\(529\) 48.5515 2.11094
\(530\) 13.8053 0.599664
\(531\) −20.2120 −0.877126
\(532\) −3.25013 −0.140911
\(533\) −5.88081 −0.254726
\(534\) −10.6723 −0.461836
\(535\) 11.8917 0.514125
\(536\) −14.9753 −0.646835
\(537\) 1.58927 0.0685823
\(538\) 13.5538 0.584346
\(539\) 4.78178 0.205966
\(540\) 17.5474 0.755120
\(541\) 26.3358 1.13226 0.566132 0.824314i \(-0.308439\pi\)
0.566132 + 0.824314i \(0.308439\pi\)
\(542\) −21.8473 −0.938424
\(543\) 2.50937 0.107687
\(544\) 5.64366 0.241970
\(545\) −10.8267 −0.463766
\(546\) 3.50496 0.149998
\(547\) −2.25139 −0.0962624 −0.0481312 0.998841i \(-0.515327\pi\)
−0.0481312 + 0.998841i \(0.515327\pi\)
\(548\) 2.38234 0.101769
\(549\) −14.5012 −0.618898
\(550\) 17.7582 0.757211
\(551\) −18.6192 −0.793206
\(552\) 21.7635 0.926316
\(553\) −1.94051 −0.0825190
\(554\) −9.90815 −0.420957
\(555\) 26.6633 1.13179
\(556\) −5.77618 −0.244964
\(557\) 30.3355 1.28536 0.642679 0.766136i \(-0.277823\pi\)
0.642679 + 0.766136i \(0.277823\pi\)
\(558\) 6.53489 0.276644
\(559\) −11.1089 −0.469854
\(560\) 0.0903677 0.00381873
\(561\) 4.33984 0.183228
\(562\) 11.4410 0.482608
\(563\) 10.9867 0.463035 0.231518 0.972831i \(-0.425631\pi\)
0.231518 + 0.972831i \(0.425631\pi\)
\(564\) 6.21583 0.261734
\(565\) 2.93677 0.123551
\(566\) 19.0657 0.801391
\(567\) −2.26519 −0.0951292
\(568\) 33.8229 1.41918
\(569\) −28.8479 −1.20937 −0.604684 0.796465i \(-0.706701\pi\)
−0.604684 + 0.796465i \(0.706701\pi\)
\(570\) −6.39905 −0.268027
\(571\) −10.5165 −0.440100 −0.220050 0.975489i \(-0.570622\pi\)
−0.220050 + 0.975489i \(0.570622\pi\)
\(572\) 25.8626 1.08137
\(573\) 17.1043 0.714542
\(574\) −1.17345 −0.0489788
\(575\) −35.7854 −1.49235
\(576\) −10.9113 −0.454637
\(577\) −36.8288 −1.53320 −0.766601 0.642123i \(-0.778054\pi\)
−0.766601 + 0.642123i \(0.778054\pi\)
\(578\) 0.877834 0.0365131
\(579\) 10.8099 0.449242
\(580\) −26.3067 −1.09233
\(581\) 4.58417 0.190183
\(582\) −12.0834 −0.500873
\(583\) 24.7519 1.02512
\(584\) −36.0469 −1.49163
\(585\) 29.0883 1.20265
\(586\) −25.4045 −1.04945
\(587\) 30.1420 1.24409 0.622047 0.782980i \(-0.286301\pi\)
0.622047 + 0.782980i \(0.286301\pi\)
\(588\) −1.11578 −0.0460141
\(589\) 9.04298 0.372610
\(590\) 24.7694 1.01974
\(591\) −15.6722 −0.644669
\(592\) −0.287618 −0.0118210
\(593\) −7.88925 −0.323973 −0.161986 0.986793i \(-0.551790\pi\)
−0.161986 + 0.986793i \(0.551790\pi\)
\(594\) −19.7199 −0.809119
\(595\) −3.03818 −0.124553
\(596\) −5.21467 −0.213601
\(597\) −13.8362 −0.566276
\(598\) 32.6669 1.33585
\(599\) 29.8059 1.21783 0.608917 0.793234i \(-0.291604\pi\)
0.608917 + 0.793234i \(0.291604\pi\)
\(600\) −10.8847 −0.444365
\(601\) 11.9432 0.487175 0.243587 0.969879i \(-0.421676\pi\)
0.243587 + 0.969879i \(0.421676\pi\)
\(602\) −2.21664 −0.0903436
\(603\) −11.4963 −0.468167
\(604\) −15.3164 −0.623216
\(605\) 36.0493 1.46561
\(606\) 2.58758 0.105113
\(607\) −4.67281 −0.189664 −0.0948318 0.995493i \(-0.530231\pi\)
−0.0948318 + 0.995493i \(0.530231\pi\)
\(608\) −14.9199 −0.605082
\(609\) −6.39206 −0.259019
\(610\) 17.7710 0.719527
\(611\) 24.5079 0.991483
\(612\) 2.67556 0.108153
\(613\) 42.3894 1.71209 0.856046 0.516900i \(-0.172914\pi\)
0.856046 + 0.516900i \(0.172914\pi\)
\(614\) −10.1685 −0.410366
\(615\) 3.68595 0.148632
\(616\) 13.5558 0.546178
\(617\) −23.2809 −0.937255 −0.468628 0.883396i \(-0.655251\pi\)
−0.468628 + 0.883396i \(0.655251\pi\)
\(618\) −10.1206 −0.407112
\(619\) −43.2201 −1.73716 −0.868582 0.495545i \(-0.834968\pi\)
−0.868582 + 0.495545i \(0.834968\pi\)
\(620\) 12.7766 0.513121
\(621\) 39.7387 1.59466
\(622\) −13.8697 −0.556125
\(623\) 13.3956 0.536683
\(624\) 0.118760 0.00475420
\(625\) −28.2552 −1.13021
\(626\) 17.7900 0.711032
\(627\) −11.4730 −0.458189
\(628\) 21.6956 0.865748
\(629\) 9.66977 0.385559
\(630\) 5.80424 0.231246
\(631\) 30.6825 1.22145 0.610725 0.791843i \(-0.290878\pi\)
0.610725 + 0.791843i \(0.290878\pi\)
\(632\) −5.50113 −0.218823
\(633\) 7.72649 0.307100
\(634\) 5.58774 0.221917
\(635\) −16.8885 −0.670200
\(636\) −5.77563 −0.229019
\(637\) −4.39933 −0.174308
\(638\) 29.5637 1.17044
\(639\) 25.9654 1.02718
\(640\) −20.9213 −0.826988
\(641\) −21.3561 −0.843517 −0.421758 0.906708i \(-0.638587\pi\)
−0.421758 + 0.906708i \(0.638587\pi\)
\(642\) 3.11838 0.123072
\(643\) 22.7013 0.895253 0.447626 0.894221i \(-0.352269\pi\)
0.447626 + 0.894221i \(0.352269\pi\)
\(644\) −10.3993 −0.409791
\(645\) 6.96275 0.274158
\(646\) −2.32069 −0.0913065
\(647\) 35.2630 1.38633 0.693165 0.720779i \(-0.256216\pi\)
0.693165 + 0.720779i \(0.256216\pi\)
\(648\) −6.42156 −0.252263
\(649\) 44.4099 1.74324
\(650\) −16.3378 −0.640823
\(651\) 3.10449 0.121675
\(652\) 3.28936 0.128821
\(653\) −30.0593 −1.17631 −0.588155 0.808748i \(-0.700146\pi\)
−0.588155 + 0.808748i \(0.700146\pi\)
\(654\) −2.83910 −0.111018
\(655\) −10.6681 −0.416836
\(656\) −0.0397604 −0.00155238
\(657\) −27.6727 −1.07961
\(658\) 4.89026 0.190642
\(659\) −18.9747 −0.739148 −0.369574 0.929201i \(-0.620496\pi\)
−0.369574 + 0.929201i \(0.620496\pi\)
\(660\) −16.2100 −0.630973
\(661\) 25.8038 1.00365 0.501825 0.864969i \(-0.332662\pi\)
0.501825 + 0.864969i \(0.332662\pi\)
\(662\) 21.5869 0.838997
\(663\) −3.99273 −0.155065
\(664\) 12.9956 0.504327
\(665\) 8.03191 0.311464
\(666\) −18.4734 −0.715831
\(667\) −59.5753 −2.30676
\(668\) 2.40697 0.0931284
\(669\) −2.26072 −0.0874044
\(670\) 14.0886 0.544289
\(671\) 31.8622 1.23003
\(672\) −5.12206 −0.197588
\(673\) 4.38401 0.168991 0.0844956 0.996424i \(-0.473072\pi\)
0.0844956 + 0.996424i \(0.473072\pi\)
\(674\) 6.24979 0.240733
\(675\) −19.8747 −0.764976
\(676\) −7.81174 −0.300452
\(677\) −32.1115 −1.23415 −0.617073 0.786906i \(-0.711682\pi\)
−0.617073 + 0.786906i \(0.711682\pi\)
\(678\) 0.770111 0.0295759
\(679\) 15.1668 0.582047
\(680\) −8.61289 −0.330289
\(681\) −15.4145 −0.590684
\(682\) −14.3585 −0.549815
\(683\) −18.7093 −0.715892 −0.357946 0.933742i \(-0.616523\pi\)
−0.357946 + 0.933742i \(0.616523\pi\)
\(684\) −7.07327 −0.270453
\(685\) −5.88738 −0.224945
\(686\) −0.877834 −0.0335159
\(687\) −14.8210 −0.565457
\(688\) −0.0751073 −0.00286344
\(689\) −22.7722 −0.867553
\(690\) −20.4748 −0.779462
\(691\) −40.9131 −1.55641 −0.778205 0.628011i \(-0.783869\pi\)
−0.778205 + 0.628011i \(0.783869\pi\)
\(692\) −7.39773 −0.281220
\(693\) 10.4066 0.395314
\(694\) 1.32972 0.0504755
\(695\) 14.2744 0.541459
\(696\) −18.1207 −0.686865
\(697\) 1.33675 0.0506331
\(698\) 21.7647 0.823807
\(699\) −5.24421 −0.198354
\(700\) 5.20106 0.196582
\(701\) −17.6240 −0.665649 −0.332825 0.942989i \(-0.608002\pi\)
−0.332825 + 0.942989i \(0.608002\pi\)
\(702\) 18.1427 0.684753
\(703\) −25.5636 −0.964148
\(704\) 23.9743 0.903566
\(705\) −15.3609 −0.578526
\(706\) −10.3950 −0.391221
\(707\) −3.24786 −0.122148
\(708\) −10.3626 −0.389451
\(709\) −8.18690 −0.307466 −0.153733 0.988112i \(-0.549130\pi\)
−0.153733 + 0.988112i \(0.549130\pi\)
\(710\) −31.8201 −1.19419
\(711\) −4.22314 −0.158380
\(712\) 37.9749 1.42317
\(713\) 28.9345 1.08361
\(714\) −0.796703 −0.0298159
\(715\) −63.9130 −2.39021
\(716\) −2.15283 −0.0804552
\(717\) 6.75488 0.252266
\(718\) −23.4156 −0.873862
\(719\) 42.6093 1.58906 0.794530 0.607225i \(-0.207717\pi\)
0.794530 + 0.607225i \(0.207717\pi\)
\(720\) 0.196667 0.00732936
\(721\) 12.7031 0.473090
\(722\) −10.5437 −0.392397
\(723\) 19.8792 0.739316
\(724\) −3.39919 −0.126330
\(725\) 29.7956 1.10658
\(726\) 9.45321 0.350841
\(727\) −10.5470 −0.391166 −0.195583 0.980687i \(-0.562660\pi\)
−0.195583 + 0.980687i \(0.562660\pi\)
\(728\) −12.4716 −0.462227
\(729\) 7.86138 0.291162
\(730\) 33.9124 1.25515
\(731\) 2.52513 0.0933951
\(732\) −7.43474 −0.274796
\(733\) 6.61491 0.244327 0.122164 0.992510i \(-0.461017\pi\)
0.122164 + 0.992510i \(0.461017\pi\)
\(734\) −25.1848 −0.929589
\(735\) 2.75739 0.101708
\(736\) −47.7387 −1.75967
\(737\) 25.2598 0.930457
\(738\) −2.55378 −0.0940058
\(739\) −0.834376 −0.0306930 −0.0153465 0.999882i \(-0.504885\pi\)
−0.0153465 + 0.999882i \(0.504885\pi\)
\(740\) −36.1181 −1.32773
\(741\) 10.5554 0.387763
\(742\) −4.54393 −0.166813
\(743\) 52.9082 1.94101 0.970506 0.241077i \(-0.0775006\pi\)
0.970506 + 0.241077i \(0.0775006\pi\)
\(744\) 8.80088 0.322656
\(745\) 12.8868 0.472136
\(746\) −23.6090 −0.864387
\(747\) 9.97654 0.365022
\(748\) −5.87875 −0.214948
\(749\) −3.91410 −0.143018
\(750\) −1.86249 −0.0680086
\(751\) 35.3681 1.29060 0.645300 0.763929i \(-0.276732\pi\)
0.645300 + 0.763929i \(0.276732\pi\)
\(752\) 0.165699 0.00604241
\(753\) 15.0448 0.548264
\(754\) −27.1992 −0.990535
\(755\) 37.8508 1.37753
\(756\) −5.77563 −0.210058
\(757\) −19.6550 −0.714372 −0.357186 0.934033i \(-0.616264\pi\)
−0.357186 + 0.934033i \(0.616264\pi\)
\(758\) 0.843118 0.0306234
\(759\) −36.7099 −1.33248
\(760\) 22.7695 0.825938
\(761\) −6.80776 −0.246781 −0.123390 0.992358i \(-0.539377\pi\)
−0.123390 + 0.992358i \(0.539377\pi\)
\(762\) −4.42868 −0.160434
\(763\) 3.56356 0.129009
\(764\) −23.1695 −0.838243
\(765\) −6.61200 −0.239057
\(766\) −9.64851 −0.348615
\(767\) −40.8579 −1.47529
\(768\) −14.5868 −0.526357
\(769\) 44.3645 1.59983 0.799913 0.600116i \(-0.204879\pi\)
0.799913 + 0.600116i \(0.204879\pi\)
\(770\) −12.7531 −0.459590
\(771\) 10.9961 0.396013
\(772\) −14.6431 −0.527015
\(773\) −25.6974 −0.924270 −0.462135 0.886810i \(-0.652916\pi\)
−0.462135 + 0.886810i \(0.652916\pi\)
\(774\) −4.82408 −0.173398
\(775\) −14.4711 −0.519819
\(776\) 42.9960 1.54347
\(777\) −8.77607 −0.314840
\(778\) −22.3179 −0.800137
\(779\) −3.53392 −0.126616
\(780\) 14.9135 0.533989
\(781\) −57.0513 −2.04146
\(782\) −7.42544 −0.265533
\(783\) −33.0872 −1.18244
\(784\) −0.0297440 −0.00106229
\(785\) −53.6153 −1.91361
\(786\) −2.79749 −0.0997833
\(787\) 25.6566 0.914558 0.457279 0.889323i \(-0.348824\pi\)
0.457279 + 0.889323i \(0.348824\pi\)
\(788\) 21.2296 0.756274
\(789\) 2.90547 0.103438
\(790\) 5.17538 0.184132
\(791\) −0.966622 −0.0343691
\(792\) 29.5015 1.04829
\(793\) −29.3138 −1.04096
\(794\) −13.1798 −0.467735
\(795\) 14.2731 0.506213
\(796\) 18.7425 0.664310
\(797\) 20.3683 0.721483 0.360741 0.932666i \(-0.382524\pi\)
0.360741 + 0.932666i \(0.382524\pi\)
\(798\) 2.10621 0.0745590
\(799\) −5.57082 −0.197082
\(800\) 23.8757 0.844135
\(801\) 29.1528 1.03006
\(802\) −9.71373 −0.343004
\(803\) 60.8026 2.14568
\(804\) −5.89414 −0.207870
\(805\) 25.6994 0.905785
\(806\) 13.2101 0.465305
\(807\) 14.0130 0.493282
\(808\) −9.20731 −0.323912
\(809\) −36.5480 −1.28496 −0.642480 0.766303i \(-0.722094\pi\)
−0.642480 + 0.766303i \(0.722094\pi\)
\(810\) 6.04132 0.212270
\(811\) 7.33037 0.257404 0.128702 0.991683i \(-0.458919\pi\)
0.128702 + 0.991683i \(0.458919\pi\)
\(812\) 8.65869 0.303861
\(813\) −22.5876 −0.792182
\(814\) 40.5899 1.42268
\(815\) −8.12886 −0.284742
\(816\) −0.0269950 −0.000945014 0
\(817\) −6.67557 −0.233549
\(818\) 25.0754 0.876739
\(819\) −9.57426 −0.334552
\(820\) −4.99299 −0.174363
\(821\) 1.76321 0.0615366 0.0307683 0.999527i \(-0.490205\pi\)
0.0307683 + 0.999527i \(0.490205\pi\)
\(822\) −1.54385 −0.0538479
\(823\) 0.636323 0.0221808 0.0110904 0.999938i \(-0.496470\pi\)
0.0110904 + 0.999938i \(0.496470\pi\)
\(824\) 36.0119 1.25454
\(825\) 18.3599 0.639209
\(826\) −8.15272 −0.283670
\(827\) −6.81869 −0.237109 −0.118554 0.992948i \(-0.537826\pi\)
−0.118554 + 0.992948i \(0.537826\pi\)
\(828\) −22.6321 −0.786519
\(829\) 50.9480 1.76950 0.884749 0.466068i \(-0.154330\pi\)
0.884749 + 0.466068i \(0.154330\pi\)
\(830\) −12.2261 −0.424373
\(831\) −10.2439 −0.355356
\(832\) −22.0568 −0.764683
\(833\) 1.00000 0.0346479
\(834\) 3.74318 0.129616
\(835\) −5.94824 −0.205847
\(836\) 15.5414 0.537511
\(837\) 16.0698 0.555453
\(838\) −1.74308 −0.0602137
\(839\) 2.95064 0.101867 0.0509336 0.998702i \(-0.483780\pi\)
0.0509336 + 0.998702i \(0.483780\pi\)
\(840\) 7.81687 0.269708
\(841\) 20.6036 0.710470
\(842\) 22.1200 0.762307
\(843\) 11.8286 0.407400
\(844\) −10.4663 −0.360266
\(845\) 19.3048 0.664106
\(846\) 10.6427 0.365903
\(847\) −11.8654 −0.407700
\(848\) −0.153964 −0.00528714
\(849\) 19.7117 0.676504
\(850\) 3.71372 0.127379
\(851\) −81.7948 −2.80389
\(852\) 13.3124 0.456075
\(853\) −28.8764 −0.988709 −0.494355 0.869260i \(-0.664596\pi\)
−0.494355 + 0.869260i \(0.664596\pi\)
\(854\) −5.84923 −0.200156
\(855\) 17.4799 0.597799
\(856\) −11.0960 −0.379254
\(857\) −9.83977 −0.336120 −0.168060 0.985777i \(-0.553750\pi\)
−0.168060 + 0.985777i \(0.553750\pi\)
\(858\) −16.7599 −0.572175
\(859\) −11.1344 −0.379900 −0.189950 0.981794i \(-0.560833\pi\)
−0.189950 + 0.981794i \(0.560833\pi\)
\(860\) −9.43175 −0.321620
\(861\) −1.21321 −0.0413460
\(862\) −24.1390 −0.822178
\(863\) 22.7030 0.772818 0.386409 0.922328i \(-0.373715\pi\)
0.386409 + 0.922328i \(0.373715\pi\)
\(864\) −26.5133 −0.902002
\(865\) 18.2817 0.621596
\(866\) 24.7529 0.841137
\(867\) 0.907578 0.0308230
\(868\) −4.20535 −0.142739
\(869\) 9.27910 0.314772
\(870\) 17.0477 0.577973
\(871\) −23.2395 −0.787440
\(872\) 10.1023 0.342106
\(873\) 33.0075 1.11713
\(874\) 19.6303 0.664005
\(875\) 2.33775 0.0790304
\(876\) −14.1877 −0.479358
\(877\) 1.55717 0.0525819 0.0262910 0.999654i \(-0.491630\pi\)
0.0262910 + 0.999654i \(0.491630\pi\)
\(878\) 5.54175 0.187025
\(879\) −26.2653 −0.885907
\(880\) −0.432118 −0.0145667
\(881\) −10.3326 −0.348113 −0.174056 0.984736i \(-0.555687\pi\)
−0.174056 + 0.984736i \(0.555687\pi\)
\(882\) −1.91043 −0.0643276
\(883\) 23.6160 0.794743 0.397371 0.917658i \(-0.369922\pi\)
0.397371 + 0.917658i \(0.369922\pi\)
\(884\) 5.40856 0.181910
\(885\) 25.6087 0.860828
\(886\) 23.2237 0.780215
\(887\) 13.9260 0.467588 0.233794 0.972286i \(-0.424886\pi\)
0.233794 + 0.972286i \(0.424886\pi\)
\(888\) −24.8791 −0.834889
\(889\) 5.55875 0.186435
\(890\) −35.7263 −1.19755
\(891\) 10.8317 0.362874
\(892\) 3.06237 0.102536
\(893\) 14.7274 0.492832
\(894\) 3.37931 0.113021
\(895\) 5.32021 0.177835
\(896\) 6.88613 0.230050
\(897\) 33.7738 1.12767
\(898\) −30.3340 −1.01226
\(899\) −24.0915 −0.803495
\(900\) 11.3191 0.377302
\(901\) 5.17630 0.172448
\(902\) 5.61117 0.186831
\(903\) −2.29175 −0.0762646
\(904\) −2.74026 −0.0911398
\(905\) 8.40028 0.279235
\(906\) 9.92562 0.329757
\(907\) 11.3628 0.377295 0.188648 0.982045i \(-0.439590\pi\)
0.188648 + 0.982045i \(0.439590\pi\)
\(908\) 20.8805 0.692943
\(909\) −7.06832 −0.234442
\(910\) 11.7331 0.388948
\(911\) 4.75507 0.157543 0.0787713 0.996893i \(-0.474900\pi\)
0.0787713 + 0.996893i \(0.474900\pi\)
\(912\) 0.0713656 0.00236315
\(913\) −21.9205 −0.725462
\(914\) 23.3435 0.772136
\(915\) 18.3731 0.607398
\(916\) 20.0766 0.663349
\(917\) 3.51134 0.115955
\(918\) −4.12398 −0.136111
\(919\) −32.6303 −1.07637 −0.538187 0.842825i \(-0.680891\pi\)
−0.538187 + 0.842825i \(0.680891\pi\)
\(920\) 72.8548 2.40195
\(921\) −10.5130 −0.346416
\(922\) −0.272303 −0.00896784
\(923\) 52.4882 1.72767
\(924\) 5.33543 0.175523
\(925\) 40.9084 1.34506
\(926\) 19.7209 0.648070
\(927\) 27.6459 0.908010
\(928\) 39.7482 1.30480
\(929\) −47.3546 −1.55365 −0.776827 0.629714i \(-0.783172\pi\)
−0.776827 + 0.629714i \(0.783172\pi\)
\(930\) −8.27974 −0.271503
\(931\) −2.64366 −0.0866424
\(932\) 7.10382 0.232693
\(933\) −14.3397 −0.469460
\(934\) −10.1939 −0.333554
\(935\) 14.5279 0.475113
\(936\) −27.1419 −0.887161
\(937\) −51.6525 −1.68741 −0.843707 0.536803i \(-0.819632\pi\)
−0.843707 + 0.536803i \(0.819632\pi\)
\(938\) −4.63717 −0.151409
\(939\) 18.3928 0.600226
\(940\) 20.8079 0.678680
\(941\) −54.7240 −1.78395 −0.891975 0.452084i \(-0.850681\pi\)
−0.891975 + 0.452084i \(0.850681\pi\)
\(942\) −14.0596 −0.458086
\(943\) −11.3073 −0.368218
\(944\) −0.276242 −0.00899091
\(945\) 14.2731 0.464303
\(946\) 10.5995 0.344619
\(947\) −36.9728 −1.20145 −0.600727 0.799454i \(-0.705122\pi\)
−0.600727 + 0.799454i \(0.705122\pi\)
\(948\) −2.16519 −0.0703221
\(949\) −55.9395 −1.81587
\(950\) −9.81779 −0.318531
\(951\) 5.77707 0.187334
\(952\) 2.83488 0.0918791
\(953\) −7.91313 −0.256331 −0.128166 0.991753i \(-0.540909\pi\)
−0.128166 + 0.991753i \(0.540909\pi\)
\(954\) −9.88897 −0.320167
\(955\) 57.2578 1.85282
\(956\) −9.15017 −0.295938
\(957\) 30.5654 0.988039
\(958\) 27.9130 0.901830
\(959\) 1.93780 0.0625747
\(960\) 13.8247 0.446189
\(961\) −19.2993 −0.622557
\(962\) −37.3435 −1.20400
\(963\) −8.51826 −0.274497
\(964\) −26.9284 −0.867306
\(965\) 36.1867 1.16489
\(966\) 6.73916 0.216829
\(967\) 8.05906 0.259162 0.129581 0.991569i \(-0.458637\pi\)
0.129581 + 0.991569i \(0.458637\pi\)
\(968\) −33.6371 −1.08114
\(969\) −2.39933 −0.0770775
\(970\) −40.4500 −1.29877
\(971\) −1.81193 −0.0581476 −0.0290738 0.999577i \(-0.509256\pi\)
−0.0290738 + 0.999577i \(0.509256\pi\)
\(972\) −19.8544 −0.636829
\(973\) −4.69834 −0.150622
\(974\) −20.2047 −0.647401
\(975\) −16.8914 −0.540959
\(976\) −0.198192 −0.00634396
\(977\) 15.1934 0.486079 0.243040 0.970016i \(-0.421855\pi\)
0.243040 + 0.970016i \(0.421855\pi\)
\(978\) −2.13163 −0.0681621
\(979\) −64.0547 −2.04720
\(980\) −3.73516 −0.119315
\(981\) 7.75538 0.247610
\(982\) −29.2474 −0.933321
\(983\) 11.6472 0.371488 0.185744 0.982598i \(-0.440530\pi\)
0.185744 + 0.982598i \(0.440530\pi\)
\(984\) −3.43930 −0.109641
\(985\) −52.4638 −1.67164
\(986\) 6.18257 0.196893
\(987\) 5.05596 0.160933
\(988\) −14.2984 −0.454892
\(989\) −21.3596 −0.679195
\(990\) −27.7546 −0.882099
\(991\) −47.1759 −1.49859 −0.749296 0.662235i \(-0.769608\pi\)
−0.749296 + 0.662235i \(0.769608\pi\)
\(992\) −19.3049 −0.612931
\(993\) 22.3183 0.708249
\(994\) 10.4734 0.332197
\(995\) −46.3175 −1.46836
\(996\) 5.11494 0.162073
\(997\) 39.7574 1.25913 0.629564 0.776949i \(-0.283234\pi\)
0.629564 + 0.776949i \(0.283234\pi\)
\(998\) 32.5006 1.02879
\(999\) −45.4276 −1.43727
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.2.a.b.1.3 5
3.2 odd 2 1071.2.a.m.1.3 5
4.3 odd 2 1904.2.a.t.1.2 5
5.4 even 2 2975.2.a.m.1.3 5
7.2 even 3 833.2.e.i.18.3 10
7.3 odd 6 833.2.e.h.324.3 10
7.4 even 3 833.2.e.i.324.3 10
7.5 odd 6 833.2.e.h.18.3 10
7.6 odd 2 833.2.a.g.1.3 5
8.3 odd 2 7616.2.a.bq.1.4 5
8.5 even 2 7616.2.a.bt.1.2 5
17.16 even 2 2023.2.a.j.1.3 5
21.20 even 2 7497.2.a.br.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.2.a.b.1.3 5 1.1 even 1 trivial
833.2.a.g.1.3 5 7.6 odd 2
833.2.e.h.18.3 10 7.5 odd 6
833.2.e.h.324.3 10 7.3 odd 6
833.2.e.i.18.3 10 7.2 even 3
833.2.e.i.324.3 10 7.4 even 3
1071.2.a.m.1.3 5 3.2 odd 2
1904.2.a.t.1.2 5 4.3 odd 2
2023.2.a.j.1.3 5 17.16 even 2
2975.2.a.m.1.3 5 5.4 even 2
7497.2.a.br.1.3 5 21.20 even 2
7616.2.a.bq.1.4 5 8.3 odd 2
7616.2.a.bt.1.2 5 8.5 even 2