Properties

Label 756.4.t.d.269.7
Level $756$
Weight $4$
Character 756.269
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 214 x^{14} + 30952 x^{12} - 2415192 x^{10} + 136176800 x^{8} - 4497757024 x^{6} + \cdots + 7263930548224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.7
Root \(6.73954 + 3.89107i\) of defining polynomial
Character \(\chi\) \(=\) 756.269
Dual form 756.4.t.d.593.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.73954 + 11.6732i) q^{5} +(9.49487 + 15.9012i) q^{7} +(-3.36020 - 1.94001i) q^{11} -22.9512i q^{13} +(57.1882 - 99.0529i) q^{17} +(112.404 - 64.8964i) q^{19} +(145.313 - 83.8966i) q^{23} +(-28.3427 + 49.0910i) q^{25} +111.992i q^{29} +(13.4452 + 7.76260i) q^{31} +(-121.627 + 218.002i) q^{35} +(166.902 + 289.082i) q^{37} +289.289 q^{41} -38.3502 q^{43} +(-137.463 - 238.094i) q^{47} +(-162.695 + 301.959i) q^{49} +(-542.435 - 313.175i) q^{53} -52.2991i q^{55} +(-232.366 + 402.470i) q^{59} +(142.015 - 81.9922i) q^{61} +(267.915 - 154.681i) q^{65} +(-11.3096 + 19.5888i) q^{67} +740.773i q^{71} +(846.739 + 488.865i) q^{73} +(-1.05618 - 71.8512i) q^{77} +(463.725 + 803.195i) q^{79} -1152.68 q^{83} +1541.69 q^{85} +(-554.282 - 960.045i) q^{89} +(364.951 - 217.919i) q^{91} +(1515.10 + 874.743i) q^{95} +1076.97i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 50 q^{7} - 390 q^{19} - 284 q^{25} + 984 q^{31} - 182 q^{37} + 472 q^{43} + 130 q^{49} - 24 q^{61} - 1522 q^{67} + 4458 q^{73} + 434 q^{79} - 2616 q^{85} - 4560 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.73954 + 11.6732i 0.602802 + 1.04408i 0.992395 + 0.123097i \(0.0392826\pi\)
−0.389592 + 0.920987i \(0.627384\pi\)
\(6\) 0 0
\(7\) 9.49487 + 15.9012i 0.512675 + 0.858583i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.36020 1.94001i −0.0921034 0.0531759i 0.453241 0.891388i \(-0.350268\pi\)
−0.545344 + 0.838212i \(0.683601\pi\)
\(12\) 0 0
\(13\) 22.9512i 0.489656i −0.969567 0.244828i \(-0.921269\pi\)
0.969567 0.244828i \(-0.0787314\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 57.1882 99.0529i 0.815893 1.41317i −0.0927924 0.995685i \(-0.529579\pi\)
0.908685 0.417482i \(-0.137087\pi\)
\(18\) 0 0
\(19\) 112.404 64.8964i 1.35722 0.783592i 0.367973 0.929836i \(-0.380052\pi\)
0.989249 + 0.146244i \(0.0467184\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 145.313 83.8966i 1.31739 0.760593i 0.334079 0.942545i \(-0.391575\pi\)
0.983307 + 0.181952i \(0.0582415\pi\)
\(24\) 0 0
\(25\) −28.3427 + 49.0910i −0.226742 + 0.392728i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 111.992i 0.717117i 0.933507 + 0.358558i \(0.116732\pi\)
−0.933507 + 0.358558i \(0.883268\pi\)
\(30\) 0 0
\(31\) 13.4452 + 7.76260i 0.0778979 + 0.0449743i 0.538443 0.842662i \(-0.319013\pi\)
−0.460545 + 0.887636i \(0.652346\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −121.627 + 218.002i −0.587391 + 1.05283i
\(36\) 0 0
\(37\) 166.902 + 289.082i 0.741580 + 1.28445i 0.951776 + 0.306795i \(0.0992565\pi\)
−0.210196 + 0.977659i \(0.567410\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 289.289 1.10194 0.550969 0.834526i \(-0.314258\pi\)
0.550969 + 0.834526i \(0.314258\pi\)
\(42\) 0 0
\(43\) −38.3502 −0.136008 −0.0680041 0.997685i \(-0.521663\pi\)
−0.0680041 + 0.997685i \(0.521663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −137.463 238.094i −0.426619 0.738926i 0.569951 0.821679i \(-0.306962\pi\)
−0.996570 + 0.0827528i \(0.973629\pi\)
\(48\) 0 0
\(49\) −162.695 + 301.959i −0.474329 + 0.880348i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −542.435 313.175i −1.40583 0.811659i −0.410851 0.911703i \(-0.634768\pi\)
−0.994983 + 0.100044i \(0.968102\pi\)
\(54\) 0 0
\(55\) 52.2991i 0.128218i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −232.366 + 402.470i −0.512737 + 0.888087i 0.487154 + 0.873316i \(0.338035\pi\)
−0.999891 + 0.0147706i \(0.995298\pi\)
\(60\) 0 0
\(61\) 142.015 81.9922i 0.298084 0.172099i −0.343498 0.939153i \(-0.611612\pi\)
0.641582 + 0.767055i \(0.278279\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 267.915 154.681i 0.511242 0.295166i
\(66\) 0 0
\(67\) −11.3096 + 19.5888i −0.0206222 + 0.0357186i −0.876152 0.482034i \(-0.839898\pi\)
0.855530 + 0.517753i \(0.173231\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 740.773i 1.23822i 0.785304 + 0.619110i \(0.212507\pi\)
−0.785304 + 0.619110i \(0.787493\pi\)
\(72\) 0 0
\(73\) 846.739 + 488.865i 1.35758 + 0.783799i 0.989297 0.145916i \(-0.0466128\pi\)
0.368282 + 0.929714i \(0.379946\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.05618 71.8512i −0.00156316 0.106340i
\(78\) 0 0
\(79\) 463.725 + 803.195i 0.660419 + 1.14388i 0.980506 + 0.196491i \(0.0629548\pi\)
−0.320086 + 0.947388i \(0.603712\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1152.68 −1.52438 −0.762188 0.647356i \(-0.775875\pi\)
−0.762188 + 0.647356i \(0.775875\pi\)
\(84\) 0 0
\(85\) 1541.69 1.96729
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −554.282 960.045i −0.660155 1.14342i −0.980575 0.196146i \(-0.937157\pi\)
0.320420 0.947276i \(-0.396176\pi\)
\(90\) 0 0
\(91\) 364.951 217.919i 0.420410 0.251034i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1515.10 + 874.743i 1.63627 + 0.944703i
\(96\) 0 0
\(97\) 1076.97i 1.12732i 0.826007 + 0.563659i \(0.190607\pi\)
−0.826007 + 0.563659i \(0.809393\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −417.629 + 723.355i −0.411442 + 0.712638i −0.995048 0.0993989i \(-0.968308\pi\)
0.583606 + 0.812037i \(0.301641\pi\)
\(102\) 0 0
\(103\) 488.227 281.878i 0.467053 0.269653i −0.247952 0.968772i \(-0.579758\pi\)
0.715005 + 0.699119i \(0.246424\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 112.506 64.9552i 0.101648 0.0586865i −0.448314 0.893876i \(-0.647975\pi\)
0.549962 + 0.835190i \(0.314642\pi\)
\(108\) 0 0
\(109\) 39.5821 68.5582i 0.0347824 0.0602449i −0.848110 0.529820i \(-0.822260\pi\)
0.882893 + 0.469575i \(0.155593\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1143.03i 0.951571i −0.879561 0.475786i \(-0.842164\pi\)
0.879561 0.475786i \(-0.157836\pi\)
\(114\) 0 0
\(115\) 1958.69 + 1130.85i 1.58825 + 0.916975i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2118.05 31.1345i 1.63161 0.0239840i
\(120\) 0 0
\(121\) −657.973 1139.64i −0.494345 0.856230i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 920.818 0.658884
\(126\) 0 0
\(127\) −435.975 −0.304618 −0.152309 0.988333i \(-0.548671\pi\)
−0.152309 + 0.988333i \(0.548671\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −505.534 875.611i −0.337166 0.583989i 0.646733 0.762717i \(-0.276135\pi\)
−0.983898 + 0.178728i \(0.942802\pi\)
\(132\) 0 0
\(133\) 2099.19 + 1171.17i 1.36859 + 0.763559i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −889.720 513.680i −0.554846 0.320340i 0.196228 0.980558i \(-0.437131\pi\)
−0.751074 + 0.660218i \(0.770464\pi\)
\(138\) 0 0
\(139\) 2093.41i 1.27741i 0.769450 + 0.638707i \(0.220530\pi\)
−0.769450 + 0.638707i \(0.779470\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −44.5256 + 77.1206i −0.0260379 + 0.0450989i
\(144\) 0 0
\(145\) −1307.31 + 754.774i −0.748730 + 0.432280i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2188.48 1263.52i 1.20327 0.694709i 0.241991 0.970279i \(-0.422200\pi\)
0.961281 + 0.275569i \(0.0888664\pi\)
\(150\) 0 0
\(151\) −631.489 + 1093.77i −0.340330 + 0.589469i −0.984494 0.175419i \(-0.943872\pi\)
0.644164 + 0.764887i \(0.277205\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 209.265i 0.108443i
\(156\) 0 0
\(157\) 866.760 + 500.424i 0.440605 + 0.254384i 0.703854 0.710344i \(-0.251461\pi\)
−0.263249 + 0.964728i \(0.584794\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2713.78 + 1514.06i 1.32842 + 0.741148i
\(162\) 0 0
\(163\) 699.008 + 1210.72i 0.335893 + 0.581784i 0.983656 0.180058i \(-0.0576286\pi\)
−0.647763 + 0.761842i \(0.724295\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4131.29 −1.91430 −0.957152 0.289586i \(-0.906482\pi\)
−0.957152 + 0.289586i \(0.906482\pi\)
\(168\) 0 0
\(169\) 1670.24 0.760237
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 376.529 + 652.167i 0.165474 + 0.286609i 0.936823 0.349803i \(-0.113751\pi\)
−0.771350 + 0.636412i \(0.780418\pi\)
\(174\) 0 0
\(175\) −1049.71 + 15.4304i −0.453434 + 0.00666529i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1468.90 848.071i −0.613357 0.354122i 0.160921 0.986967i \(-0.448553\pi\)
−0.774278 + 0.632846i \(0.781887\pi\)
\(180\) 0 0
\(181\) 2704.01i 1.11043i −0.831708 0.555213i \(-0.812637\pi\)
0.831708 0.555213i \(-0.187363\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2249.68 + 3896.56i −0.894052 + 1.54854i
\(186\) 0 0
\(187\) −384.327 + 221.891i −0.150293 + 0.0867717i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2561.33 1478.78i 0.970320 0.560215i 0.0709865 0.997477i \(-0.477385\pi\)
0.899334 + 0.437263i \(0.144052\pi\)
\(192\) 0 0
\(193\) 2209.84 3827.55i 0.824184 1.42753i −0.0783576 0.996925i \(-0.524968\pi\)
0.902541 0.430603i \(-0.141699\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 136.187i 0.0492534i −0.999697 0.0246267i \(-0.992160\pi\)
0.999697 0.0246267i \(-0.00783971\pi\)
\(198\) 0 0
\(199\) −881.994 509.219i −0.314185 0.181395i 0.334612 0.942356i \(-0.391395\pi\)
−0.648798 + 0.760961i \(0.724728\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1780.80 + 1063.35i −0.615704 + 0.367648i
\(204\) 0 0
\(205\) 1949.68 + 3376.94i 0.664250 + 1.15052i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −503.599 −0.166673
\(210\) 0 0
\(211\) −4421.97 −1.44275 −0.721377 0.692543i \(-0.756490\pi\)
−0.721377 + 0.692543i \(0.756490\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −258.463 447.671i −0.0819861 0.142004i
\(216\) 0 0
\(217\) 4.22613 + 287.500i 0.00132207 + 0.0899390i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2273.38 1312.54i −0.691965 0.399506i
\(222\) 0 0
\(223\) 2676.81i 0.803823i 0.915679 + 0.401911i \(0.131654\pi\)
−0.915679 + 0.401911i \(0.868346\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 917.491 1589.14i 0.268264 0.464648i −0.700149 0.713997i \(-0.746883\pi\)
0.968414 + 0.249349i \(0.0802166\pi\)
\(228\) 0 0
\(229\) 2248.39 1298.11i 0.648813 0.374592i −0.139189 0.990266i \(-0.544449\pi\)
0.788001 + 0.615674i \(0.211116\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −700.293 + 404.314i −0.196900 + 0.113680i −0.595209 0.803571i \(-0.702931\pi\)
0.398309 + 0.917251i \(0.369597\pi\)
\(234\) 0 0
\(235\) 1852.88 3209.28i 0.514334 0.890853i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1514.16i 0.409803i 0.978783 + 0.204901i \(0.0656874\pi\)
−0.978783 + 0.204901i \(0.934313\pi\)
\(240\) 0 0
\(241\) 2377.48 + 1372.64i 0.635465 + 0.366886i 0.782866 0.622191i \(-0.213757\pi\)
−0.147400 + 0.989077i \(0.547091\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4621.32 + 135.892i −1.20508 + 0.0354361i
\(246\) 0 0
\(247\) −1489.45 2579.81i −0.383690 0.664571i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2572.17 0.646829 0.323415 0.946257i \(-0.395169\pi\)
0.323415 + 0.946257i \(0.395169\pi\)
\(252\) 0 0
\(253\) −651.041 −0.161781
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2593.23 4491.60i −0.629420 1.09019i −0.987668 0.156561i \(-0.949959\pi\)
0.358248 0.933626i \(-0.383374\pi\)
\(258\) 0 0
\(259\) −3012.04 + 5398.73i −0.722621 + 1.29522i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2388.44 + 1378.97i 0.559990 + 0.323310i 0.753142 0.657859i \(-0.228538\pi\)
−0.193151 + 0.981169i \(0.561871\pi\)
\(264\) 0 0
\(265\) 8442.62i 1.95708i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −624.369 + 1081.44i −0.141518 + 0.245117i −0.928069 0.372409i \(-0.878532\pi\)
0.786550 + 0.617526i \(0.211865\pi\)
\(270\) 0 0
\(271\) −304.361 + 175.723i −0.0682237 + 0.0393890i −0.533724 0.845659i \(-0.679208\pi\)
0.465500 + 0.885048i \(0.345874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 190.474 109.970i 0.0417673 0.0241144i
\(276\) 0 0
\(277\) −942.774 + 1632.93i −0.204498 + 0.354200i −0.949973 0.312333i \(-0.898889\pi\)
0.745475 + 0.666534i \(0.232223\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8690.49i 1.84495i 0.386057 + 0.922475i \(0.373837\pi\)
−0.386057 + 0.922475i \(0.626163\pi\)
\(282\) 0 0
\(283\) −7757.78 4478.95i −1.62951 0.940799i −0.984238 0.176848i \(-0.943410\pi\)
−0.645274 0.763951i \(-0.723257\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2746.77 + 4600.04i 0.564935 + 0.946104i
\(288\) 0 0
\(289\) −4084.48 7074.53i −0.831362 1.43996i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7151.22 1.42587 0.712933 0.701232i \(-0.247366\pi\)
0.712933 + 0.701232i \(0.247366\pi\)
\(294\) 0 0
\(295\) −6264.16 −1.23632
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1925.53 3335.11i −0.372429 0.645065i
\(300\) 0 0
\(301\) −364.131 609.814i −0.0697280 0.116774i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1914.22 + 1105.18i 0.359371 + 0.207483i
\(306\) 0 0
\(307\) 263.121i 0.0489157i −0.999701 0.0244578i \(-0.992214\pi\)
0.999701 0.0244578i \(-0.00778595\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3283.90 5687.88i 0.598755 1.03707i −0.394250 0.919003i \(-0.628996\pi\)
0.993005 0.118071i \(-0.0376711\pi\)
\(312\) 0 0
\(313\) −1003.18 + 579.188i −0.181161 + 0.104593i −0.587838 0.808979i \(-0.700021\pi\)
0.406677 + 0.913572i \(0.366687\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1434.46 828.187i 0.254156 0.146737i −0.367510 0.930020i \(-0.619790\pi\)
0.621666 + 0.783283i \(0.286456\pi\)
\(318\) 0 0
\(319\) 217.266 376.315i 0.0381333 0.0660489i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14845.2i 2.55731i
\(324\) 0 0
\(325\) 1126.70 + 650.499i 0.192301 + 0.111025i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2480.77 4446.50i 0.415712 0.745117i
\(330\) 0 0
\(331\) −2701.35 4678.87i −0.448578 0.776960i 0.549716 0.835352i \(-0.314736\pi\)
−0.998294 + 0.0583918i \(0.981403\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −304.885 −0.0497243
\(336\) 0 0
\(337\) −9033.79 −1.46024 −0.730122 0.683317i \(-0.760537\pi\)
−0.730122 + 0.683317i \(0.760537\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.1191 52.1677i −0.00478310 0.00828458i
\(342\) 0 0
\(343\) −6346.27 + 280.024i −0.999028 + 0.0440813i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1876.21 + 1083.23i 0.290260 + 0.167582i 0.638059 0.769987i \(-0.279737\pi\)
−0.347799 + 0.937569i \(0.613071\pi\)
\(348\) 0 0
\(349\) 5910.25i 0.906499i 0.891384 + 0.453250i \(0.149735\pi\)
−0.891384 + 0.453250i \(0.850265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1201.00 2080.20i 0.181085 0.313648i −0.761165 0.648558i \(-0.775373\pi\)
0.942250 + 0.334910i \(0.108706\pi\)
\(354\) 0 0
\(355\) −8647.21 + 4992.47i −1.29281 + 0.746402i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7559.87 + 4364.69i −1.11141 + 0.641670i −0.939193 0.343390i \(-0.888425\pi\)
−0.172213 + 0.985060i \(0.555092\pi\)
\(360\) 0 0
\(361\) 4993.59 8649.15i 0.728034 1.26099i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13178.9i 1.88990i
\(366\) 0 0
\(367\) 10060.7 + 5808.55i 1.43096 + 0.826168i 0.997194 0.0748556i \(-0.0238496\pi\)
0.433770 + 0.901023i \(0.357183\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −170.499 11598.9i −0.0238595 1.62314i
\(372\) 0 0
\(373\) −4242.65 7348.48i −0.588944 1.02008i −0.994371 0.105953i \(-0.966211\pi\)
0.405427 0.914127i \(-0.367123\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2570.35 0.351140
\(378\) 0 0
\(379\) −7285.37 −0.987399 −0.493699 0.869633i \(-0.664356\pi\)
−0.493699 + 0.869633i \(0.664356\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7291.06 + 12628.5i 0.972731 + 1.68482i 0.687229 + 0.726441i \(0.258827\pi\)
0.285502 + 0.958378i \(0.407840\pi\)
\(384\) 0 0
\(385\) 831.617 496.573i 0.110086 0.0657343i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1257.64 + 726.099i 0.163920 + 0.0946393i 0.579716 0.814819i \(-0.303164\pi\)
−0.415796 + 0.909458i \(0.636497\pi\)
\(390\) 0 0
\(391\) 19191.6i 2.48225i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6250.58 + 10826.3i −0.796205 + 1.37907i
\(396\) 0 0
\(397\) −1501.67 + 866.988i −0.189840 + 0.109604i −0.591908 0.806006i \(-0.701625\pi\)
0.402068 + 0.915610i \(0.368292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3683.42 + 2126.62i −0.458706 + 0.264834i −0.711500 0.702686i \(-0.751984\pi\)
0.252794 + 0.967520i \(0.418650\pi\)
\(402\) 0 0
\(403\) 178.161 308.584i 0.0220219 0.0381431i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1295.16i 0.157737i
\(408\) 0 0
\(409\) 7407.36 + 4276.64i 0.895527 + 0.517033i 0.875746 0.482772i \(-0.160370\pi\)
0.0197804 + 0.999804i \(0.493703\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8606.03 + 126.505i −1.02536 + 0.0150724i
\(414\) 0 0
\(415\) −7768.53 13455.5i −0.918897 1.59158i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11821.3 −1.37830 −0.689151 0.724618i \(-0.742016\pi\)
−0.689151 + 0.724618i \(0.742016\pi\)
\(420\) 0 0
\(421\) 9584.58 1.10956 0.554779 0.831998i \(-0.312803\pi\)
0.554779 + 0.831998i \(0.312803\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3241.73 + 5614.85i 0.369993 + 0.640848i
\(426\) 0 0
\(427\) 2652.18 + 1479.69i 0.300581 + 0.167699i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7118.04 4109.60i −0.795508 0.459287i 0.0463903 0.998923i \(-0.485228\pi\)
−0.841898 + 0.539637i \(0.818562\pi\)
\(432\) 0 0
\(433\) 183.154i 0.0203276i −0.999948 0.0101638i \(-0.996765\pi\)
0.999948 0.0101638i \(-0.00323529\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10889.2 18860.6i 1.19199 2.06459i
\(438\) 0 0
\(439\) −11916.7 + 6880.10i −1.29556 + 0.747993i −0.979634 0.200790i \(-0.935649\pi\)
−0.315928 + 0.948783i \(0.602316\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5187.15 + 2994.80i −0.556318 + 0.321191i −0.751666 0.659543i \(-0.770750\pi\)
0.195348 + 0.980734i \(0.437416\pi\)
\(444\) 0 0
\(445\) 7471.21 12940.5i 0.795886 1.37852i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16572.5i 1.74188i −0.491385 0.870942i \(-0.663509\pi\)
0.491385 0.870942i \(-0.336491\pi\)
\(450\) 0 0
\(451\) −972.069 561.225i −0.101492 0.0585965i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5003.42 + 2791.49i 0.515525 + 0.287619i
\(456\) 0 0
\(457\) 5588.89 + 9680.24i 0.572073 + 0.990859i 0.996353 + 0.0853283i \(0.0271939\pi\)
−0.424280 + 0.905531i \(0.639473\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12231.1 −1.23570 −0.617852 0.786295i \(-0.711997\pi\)
−0.617852 + 0.786295i \(0.711997\pi\)
\(462\) 0 0
\(463\) −13290.3 −1.33402 −0.667011 0.745048i \(-0.732427\pi\)
−0.667011 + 0.745048i \(0.732427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6213.58 + 10762.2i 0.615697 + 1.06642i 0.990262 + 0.139217i \(0.0444586\pi\)
−0.374565 + 0.927201i \(0.622208\pi\)
\(468\) 0 0
\(469\) −418.867 + 6.15717i −0.0412399 + 0.000606209i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 128.864 + 74.3998i 0.0125268 + 0.00723236i
\(474\) 0 0
\(475\) 7357.35i 0.710692i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2655.35 + 4599.21i −0.253291 + 0.438712i −0.964430 0.264339i \(-0.914846\pi\)
0.711139 + 0.703051i \(0.248180\pi\)
\(480\) 0 0
\(481\) 6634.78 3830.59i 0.628940 0.363119i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12571.7 + 7258.29i −1.17702 + 0.679551i
\(486\) 0 0
\(487\) −1409.76 + 2441.78i −0.131176 + 0.227203i −0.924130 0.382078i \(-0.875209\pi\)
0.792954 + 0.609281i \(0.208542\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11622.3i 1.06824i −0.845407 0.534122i \(-0.820642\pi\)
0.845407 0.534122i \(-0.179358\pi\)
\(492\) 0 0
\(493\) 11093.1 + 6404.62i 1.01341 + 0.585090i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11779.2 + 7033.55i −1.06311 + 0.634804i
\(498\) 0 0
\(499\) 1565.67 + 2711.82i 0.140459 + 0.243282i 0.927670 0.373402i \(-0.121809\pi\)
−0.787211 + 0.616684i \(0.788476\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18250.0 1.61774 0.808872 0.587984i \(-0.200078\pi\)
0.808872 + 0.587984i \(0.200078\pi\)
\(504\) 0 0
\(505\) −11258.5 −0.992073
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4710.36 + 8158.58i 0.410182 + 0.710457i 0.994909 0.100773i \(-0.0321317\pi\)
−0.584727 + 0.811230i \(0.698798\pi\)
\(510\) 0 0
\(511\) 266.148 + 18105.8i 0.0230405 + 1.56743i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6580.85 + 3799.46i 0.563081 + 0.325095i
\(516\) 0 0
\(517\) 1066.72i 0.0907434i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4266.12 7389.13i 0.358737 0.621351i −0.629013 0.777395i \(-0.716541\pi\)
0.987750 + 0.156044i \(0.0498742\pi\)
\(522\) 0 0
\(523\) −5291.29 + 3054.93i −0.442394 + 0.255416i −0.704613 0.709592i \(-0.748879\pi\)
0.262219 + 0.965008i \(0.415546\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1537.82 887.859i 0.127113 0.0733885i
\(528\) 0 0
\(529\) 7993.77 13845.6i 0.657004 1.13796i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6639.55i 0.539570i
\(534\) 0 0
\(535\) 1516.47 + 875.536i 0.122547 + 0.0707527i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1132.49 699.013i 0.0905006 0.0558601i
\(540\) 0 0
\(541\) −3917.88 6785.97i −0.311355 0.539282i 0.667301 0.744788i \(-0.267449\pi\)
−0.978656 + 0.205506i \(0.934116\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1067.06 0.0838676
\(546\) 0 0
\(547\) −16124.4 −1.26039 −0.630193 0.776438i \(-0.717024\pi\)
−0.630193 + 0.776438i \(0.717024\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7267.88 + 12588.3i 0.561927 + 0.973287i
\(552\) 0 0
\(553\) −8368.74 + 15000.0i −0.643535 + 1.15346i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10054.8 + 5805.12i 0.764872 + 0.441599i 0.831042 0.556209i \(-0.187745\pi\)
−0.0661703 + 0.997808i \(0.521078\pi\)
\(558\) 0 0
\(559\) 880.185i 0.0665972i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5721.06 + 9909.16i −0.428266 + 0.741778i −0.996719 0.0809371i \(-0.974209\pi\)
0.568453 + 0.822716i \(0.307542\pi\)
\(564\) 0 0
\(565\) 13342.9 7703.52i 0.993521 0.573609i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22603.5 13050.1i 1.66536 0.961495i 0.695267 0.718751i \(-0.255286\pi\)
0.970091 0.242743i \(-0.0780473\pi\)
\(570\) 0 0
\(571\) 2595.16 4494.95i 0.190200 0.329436i −0.755116 0.655591i \(-0.772420\pi\)
0.945316 + 0.326155i \(0.105753\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9511.42i 0.689832i
\(576\) 0 0
\(577\) 19142.6 + 11052.0i 1.38114 + 0.797399i 0.992294 0.123905i \(-0.0395419\pi\)
0.388842 + 0.921304i \(0.372875\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10944.6 18329.0i −0.781509 1.30880i
\(582\) 0 0
\(583\) 1215.13 + 2104.66i 0.0863214 + 0.149513i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4437.47 −0.312017 −0.156009 0.987756i \(-0.549863\pi\)
−0.156009 + 0.987756i \(0.549863\pi\)
\(588\) 0 0
\(589\) 2015.06 0.140966
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13896.3 24069.1i −0.962315 1.66678i −0.716661 0.697421i \(-0.754331\pi\)
−0.245654 0.969358i \(-0.579003\pi\)
\(594\) 0 0
\(595\) 14638.1 + 24514.6i 1.00858 + 1.68908i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6526.51 3768.08i −0.445185 0.257028i 0.260609 0.965444i \(-0.416077\pi\)
−0.705795 + 0.708417i \(0.749410\pi\)
\(600\) 0 0
\(601\) 348.179i 0.0236315i −0.999930 0.0118157i \(-0.996239\pi\)
0.999930 0.0118157i \(-0.00376115\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8868.86 15361.3i 0.595984 1.03228i
\(606\) 0 0
\(607\) 12737.0 7353.70i 0.851694 0.491726i −0.00952801 0.999955i \(-0.503033\pi\)
0.861222 + 0.508229i \(0.169700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5464.54 + 3154.95i −0.361819 + 0.208896i
\(612\) 0 0
\(613\) 8696.67 15063.1i 0.573010 0.992483i −0.423245 0.906015i \(-0.639109\pi\)
0.996255 0.0864672i \(-0.0275578\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17411.5i 1.13608i 0.823000 + 0.568041i \(0.192298\pi\)
−0.823000 + 0.568041i \(0.807702\pi\)
\(618\) 0 0
\(619\) 7394.09 + 4268.98i 0.480119 + 0.277197i 0.720466 0.693490i \(-0.243928\pi\)
−0.240347 + 0.970687i \(0.577261\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10003.0 17929.2i 0.643278 1.15300i
\(624\) 0 0
\(625\) 9748.72 + 16885.3i 0.623918 + 1.08066i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38179.2 2.42020
\(630\) 0 0
\(631\) 15670.8 0.988662 0.494331 0.869274i \(-0.335413\pi\)
0.494331 + 0.869274i \(0.335413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2938.27 5089.23i −0.183625 0.318047i
\(636\) 0 0
\(637\) 6930.33 + 3734.04i 0.431067 + 0.232258i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3120.23 + 1801.46i 0.192265 + 0.111004i 0.593042 0.805171i \(-0.297927\pi\)
−0.400778 + 0.916175i \(0.631260\pi\)
\(642\) 0 0
\(643\) 18859.3i 1.15667i 0.815800 + 0.578334i \(0.196297\pi\)
−0.815800 + 0.578334i \(0.803703\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8923.20 15455.4i 0.542206 0.939128i −0.456571 0.889687i \(-0.650923\pi\)
0.998777 0.0494414i \(-0.0157441\pi\)
\(648\) 0 0
\(649\) 1561.59 901.585i 0.0944497 0.0545305i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16920.5 + 9769.08i −1.01401 + 0.585442i −0.912365 0.409378i \(-0.865746\pi\)
−0.101650 + 0.994820i \(0.532412\pi\)
\(654\) 0 0
\(655\) 6814.13 11802.4i 0.406489 0.704059i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17003.2i 1.00509i 0.864552 + 0.502544i \(0.167602\pi\)
−0.864552 + 0.502544i \(0.832398\pi\)
\(660\) 0 0
\(661\) 13929.6 + 8042.28i 0.819668 + 0.473235i 0.850302 0.526295i \(-0.176419\pi\)
−0.0306343 + 0.999531i \(0.509753\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 476.229 + 32397.4i 0.0277705 + 1.88920i
\(666\) 0 0
\(667\) 9395.74 + 16273.9i 0.545434 + 0.944720i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −636.262 −0.0366060
\(672\) 0 0
\(673\) 5276.73 0.302233 0.151117 0.988516i \(-0.451713\pi\)
0.151117 + 0.988516i \(0.451713\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4172.65 7227.24i −0.236880 0.410288i 0.722937 0.690914i \(-0.242792\pi\)
−0.959817 + 0.280625i \(0.909458\pi\)
\(678\) 0 0
\(679\) −17125.1 + 10225.7i −0.967897 + 0.577948i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11941.9 6894.65i −0.669024 0.386261i 0.126682 0.991943i \(-0.459567\pi\)
−0.795707 + 0.605682i \(0.792900\pi\)
\(684\) 0 0
\(685\) 13847.9i 0.772408i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7187.75 + 12449.5i −0.397433 + 0.688374i
\(690\) 0 0
\(691\) −30742.0 + 17748.9i −1.69244 + 0.977133i −0.739908 + 0.672708i \(0.765131\pi\)
−0.952536 + 0.304426i \(0.901535\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24436.8 + 14108.6i −1.33373 + 0.770028i
\(696\) 0 0
\(697\) 16543.9 28655.0i 0.899063 1.55722i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13027.5i 0.701912i 0.936392 + 0.350956i \(0.114143\pi\)
−0.936392 + 0.350956i \(0.885857\pi\)
\(702\) 0 0
\(703\) 37520.8 + 21662.6i 2.01298 + 1.16219i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15467.5 + 227.366i −0.822795 + 0.0120947i
\(708\) 0 0
\(709\) −2669.66 4623.99i −0.141412 0.244933i 0.786616 0.617442i \(-0.211831\pi\)
−0.928029 + 0.372509i \(0.878498\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2605.02 0.136829
\(714\) 0 0
\(715\) −1200.33 −0.0627828
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 480.344 + 831.979i 0.0249149 + 0.0431538i 0.878214 0.478268i \(-0.158735\pi\)
−0.853299 + 0.521422i \(0.825402\pi\)
\(720\) 0 0
\(721\) 9117.85 + 5086.99i 0.470966 + 0.262759i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5497.79 3174.15i −0.281632 0.162600i
\(726\) 0 0
\(727\) 10608.2i 0.541178i −0.962695 0.270589i \(-0.912782\pi\)
0.962695 0.270589i \(-0.0872184\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2193.18 + 3798.70i −0.110968 + 0.192203i
\(732\) 0 0
\(733\) −4227.26 + 2440.61i −0.213011 + 0.122982i −0.602710 0.797960i \(-0.705912\pi\)
0.389699 + 0.920942i \(0.372579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 76.0048 43.8814i 0.00379874 0.00219320i
\(738\) 0 0
\(739\) 726.391 1258.15i 0.0361579 0.0626274i −0.847380 0.530987i \(-0.821821\pi\)
0.883538 + 0.468359i \(0.155155\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21934.1i 1.08302i −0.840695 0.541510i \(-0.817853\pi\)
0.840695 0.541510i \(-0.182147\pi\)
\(744\) 0 0
\(745\) 29498.7 + 17031.1i 1.45067 + 0.837545i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2101.09 + 1172.23i 0.102500 + 0.0571862i
\(750\) 0 0
\(751\) −8380.16 14514.9i −0.407186 0.705266i 0.587388 0.809306i \(-0.300156\pi\)
−0.994573 + 0.104040i \(0.966823\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17023.8 −0.820607
\(756\) 0 0
\(757\) −29239.3 −1.40386 −0.701930 0.712246i \(-0.747678\pi\)
−0.701930 + 0.712246i \(0.747678\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13062.4 22624.7i −0.622222 1.07772i −0.989071 0.147440i \(-0.952897\pi\)
0.366849 0.930280i \(-0.380437\pi\)
\(762\) 0 0
\(763\) 1465.98 21.5493i 0.0695573 0.00102246i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9237.17 + 5333.09i 0.434857 + 0.251065i
\(768\) 0 0
\(769\) 22095.8i 1.03614i 0.855337 + 0.518072i \(0.173350\pi\)
−0.855337 + 0.518072i \(0.826650\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11406.9 + 19757.3i −0.530760 + 0.919303i 0.468596 + 0.883413i \(0.344760\pi\)
−0.999356 + 0.0358904i \(0.988573\pi\)
\(774\) 0 0
\(775\) −762.148 + 440.026i −0.0353254 + 0.0203951i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32517.3 18773.8i 1.49557 0.863470i
\(780\) 0 0
\(781\) 1437.11 2489.14i 0.0658435 0.114044i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13490.5i 0.613372i
\(786\) 0 0
\(787\) 20936.1 + 12087.5i 0.948276 + 0.547487i 0.892545 0.450959i \(-0.148918\pi\)
0.0557309 + 0.998446i \(0.482251\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18175.6 10853.0i 0.817003 0.487847i
\(792\) 0 0
\(793\) −1881.82 3259.41i −0.0842691 0.145958i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16204.7 −0.720201 −0.360101 0.932913i \(-0.617258\pi\)
−0.360101 + 0.932913i \(0.617258\pi\)
\(798\) 0 0
\(799\) −31445.1 −1.39230
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1896.81 3285.36i −0.0833584 0.144381i
\(804\) 0 0
\(805\) 615.658 + 41882.7i 0.0269554 + 1.83375i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24980.6 14422.5i −1.08562 0.626785i −0.153216 0.988193i \(-0.548963\pi\)
−0.932408 + 0.361408i \(0.882296\pi\)
\(810\) 0 0
\(811\) 24978.8i 1.08154i 0.841172 + 0.540768i \(0.181866\pi\)
−0.841172 + 0.540768i \(0.818134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9421.98 + 16319.4i −0.404954 + 0.701401i
\(816\) 0 0
\(817\) −4310.71 + 2488.79i −0.184593 + 0.106575i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8539.34 4930.19i 0.363002 0.209579i −0.307395 0.951582i \(-0.599457\pi\)
0.670397 + 0.742003i \(0.266124\pi\)
\(822\) 0 0
\(823\) −4660.50 + 8072.22i −0.197393 + 0.341895i −0.947683 0.319214i \(-0.896581\pi\)
0.750289 + 0.661110i \(0.229914\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27727.4i 1.16587i −0.812518 0.582936i \(-0.801904\pi\)
0.812518 0.582936i \(-0.198096\pi\)
\(828\) 0 0
\(829\) 15400.4 + 8891.42i 0.645208 + 0.372511i 0.786618 0.617440i \(-0.211830\pi\)
−0.141410 + 0.989951i \(0.545164\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20605.7 + 33383.9i 0.857077 + 1.38858i
\(834\) 0 0
\(835\) −27843.0 48225.4i −1.15395 1.99869i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37414.7 −1.53957 −0.769786 0.638302i \(-0.779637\pi\)
−0.769786 + 0.638302i \(0.779637\pi\)
\(840\) 0 0
\(841\) 11846.8 0.485744
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11256.7 + 19497.1i 0.458273 + 0.793752i
\(846\) 0 0
\(847\) 11874.3 21283.3i 0.481706 0.863403i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48506.0 + 28004.9i 1.95389 + 1.12808i
\(852\) 0 0
\(853\) 45000.8i 1.80633i −0.429297 0.903163i \(-0.641239\pi\)
0.429297 0.903163i \(-0.358761\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3211.66 5562.76i 0.128014 0.221727i −0.794893 0.606750i \(-0.792473\pi\)
0.922907 + 0.385023i \(0.125806\pi\)
\(858\) 0 0
\(859\) 9746.17 5626.95i 0.387119 0.223503i −0.293792 0.955869i \(-0.594917\pi\)
0.680911 + 0.732366i \(0.261584\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27330.4 15779.2i 1.07803 0.622399i 0.147663 0.989038i \(-0.452825\pi\)
0.930363 + 0.366639i \(0.119492\pi\)
\(864\) 0 0
\(865\) −5075.26 + 8790.61i −0.199496 + 0.345537i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3598.52i 0.140474i
\(870\) 0 0
\(871\) 449.586 + 259.568i 0.0174898 + 0.0100978i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8743.05 + 14642.1i 0.337793 + 0.565706i
\(876\) 0 0
\(877\) 7959.71 + 13786.6i 0.306477 + 0.530834i 0.977589 0.210522i \(-0.0675164\pi\)
−0.671112 + 0.741356i \(0.734183\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23711.9 −0.906783 −0.453392 0.891311i \(-0.649786\pi\)
−0.453392 + 0.891311i \(0.649786\pi\)
\(882\) 0 0
\(883\) −10170.8 −0.387629 −0.193814 0.981038i \(-0.562086\pi\)
−0.193814 + 0.981038i \(0.562086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4088.38 7081.29i −0.154763 0.268057i 0.778210 0.628004i \(-0.216128\pi\)
−0.932973 + 0.359947i \(0.882795\pi\)
\(888\) 0 0
\(889\) −4139.52 6932.51i −0.156170 0.261540i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −30902.8 17841.8i −1.15803 0.668591i
\(894\) 0 0
\(895\) 22862.4i 0.853861i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −869.349 + 1505.76i −0.0322519 + 0.0558619i
\(900\) 0 0
\(901\) −62041.8 + 35819.8i −2.29402 + 1.32445i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 31564.5 18223.8i 1.15938 0.669368i
\(906\) 0 0
\(907\) 21720.2 37620.6i 0.795159 1.37726i −0.127580 0.991828i \(-0.540721\pi\)
0.922738 0.385427i \(-0.125946\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6894.34i 0.250735i −0.992110 0.125368i \(-0.959989\pi\)
0.992110 0.125368i \(-0.0400110\pi\)
\(912\) 0 0
\(913\) 3873.23 + 2236.21i 0.140400 + 0.0810600i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9123.26 16352.4i 0.328546 0.588881i
\(918\) 0 0
\(919\) −22803.2 39496.3i −0.818508 1.41770i −0.906782 0.421601i \(-0.861468\pi\)
0.0882738 0.996096i \(-0.471865\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17001.7 0.606301
\(924\) 0 0
\(925\) −18921.8 −0.672588
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2502.59 + 4334.61i 0.0883825 + 0.153083i 0.906828 0.421502i \(-0.138497\pi\)
−0.818445 + 0.574585i \(0.805164\pi\)
\(930\) 0 0
\(931\) 1308.54 + 44499.7i 0.0460640 + 1.56651i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5180.37 2990.89i −0.181194 0.104612i
\(936\) 0 0
\(937\) 1553.37i 0.0541583i 0.999633 + 0.0270791i \(0.00862061\pi\)
−0.999633 + 0.0270791i \(0.991379\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9229.76 + 15986.4i −0.319747 + 0.553817i −0.980435 0.196843i \(-0.936931\pi\)
0.660688 + 0.750660i \(0.270264\pi\)
\(942\) 0 0
\(943\) 42037.6 24270.4i 1.45168 0.838126i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 32928.5 19011.3i 1.12992 0.652359i 0.186005 0.982549i \(-0.440446\pi\)
0.943915 + 0.330190i \(0.107113\pi\)
\(948\) 0 0
\(949\) 11220.0 19433.7i 0.383791 0.664746i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7237.56i 0.246010i 0.992406 + 0.123005i \(0.0392531\pi\)
−0.992406 + 0.123005i \(0.960747\pi\)
\(954\) 0 0
\(955\) 34524.3 + 19932.6i 1.16982 + 0.675398i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −279.658 19024.9i −0.00941672 0.640612i
\(960\) 0 0
\(961\) −14775.0 25591.0i −0.495955 0.859019i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 59573.1 1.98728
\(966\) 0 0
\(967\) −29380.5 −0.977057 −0.488528 0.872548i \(-0.662466\pi\)
−0.488528 + 0.872548i \(0.662466\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6132.73 + 10622.2i 0.202686 + 0.351063i 0.949393 0.314090i \(-0.101699\pi\)
−0.746707 + 0.665153i \(0.768366\pi\)
\(972\) 0 0
\(973\) −33287.6 + 19876.6i −1.09677 + 0.654898i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11649.2 + 6725.69i 0.381466 + 0.220239i 0.678456 0.734641i \(-0.262649\pi\)
−0.296990 + 0.954881i \(0.595983\pi\)
\(978\) 0 0
\(979\) 4301.25i 0.140417i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7782.25 + 13479.2i −0.252508 + 0.437356i −0.964216 0.265119i \(-0.914589\pi\)
0.711708 + 0.702476i \(0.247922\pi\)
\(984\) 0 0
\(985\) 1589.74 917.836i 0.0514247 0.0296900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5572.79 + 3217.45i −0.179175 + 0.103447i
\(990\) 0 0
\(991\) 23244.2 40260.1i 0.745081 1.29052i −0.205076 0.978746i \(-0.565744\pi\)
0.950157 0.311772i \(-0.100923\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13727.6i 0.437381i
\(996\) 0 0
\(997\) −7592.45 4383.50i −0.241179 0.139245i 0.374540 0.927211i \(-0.377801\pi\)
−0.615718 + 0.787966i \(0.711134\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.t.d.269.7 yes 16
3.2 odd 2 inner 756.4.t.d.269.2 16
7.5 odd 6 inner 756.4.t.d.593.2 yes 16
21.5 even 6 inner 756.4.t.d.593.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.t.d.269.2 16 3.2 odd 2 inner
756.4.t.d.269.7 yes 16 1.1 even 1 trivial
756.4.t.d.593.2 yes 16 7.5 odd 6 inner
756.4.t.d.593.7 yes 16 21.5 even 6 inner